31,390 research outputs found

    QR Factorization of Tall and Skinny Matrices in a Grid Computing Environment

    Get PDF
    Previous studies have reported that common dense linear algebra operations do not achieve speed up by using multiple geographical sites of a computational grid. Because such operations are the building blocks of most scientific applications, conventional supercomputers are still strongly predominant in high-performance computing and the use of grids for speeding up large-scale scientific problems is limited to applications exhibiting parallelism at a higher level. We have identified two performance bottlenecks in the distributed memory algorithms implemented in ScaLAPACK, a state-of-the-art dense linear algebra library. First, because ScaLAPACK assumes a homogeneous communication network, the implementations of ScaLAPACK algorithms lack locality in their communication pattern. Second, the number of messages sent in the ScaLAPACK algorithms is significantly greater than other algorithms that trade flops for communication. In this paper, we present a new approach for computing a QR factorization -- one of the main dense linear algebra kernels -- of tall and skinny matrices in a grid computing environment that overcomes these two bottlenecks. Our contribution is to articulate a recently proposed algorithm (Communication Avoiding QR) with a topology-aware middleware (QCG-OMPI) in order to confine intensive communications (ScaLAPACK calls) within the different geographical sites. An experimental study conducted on the Grid'5000 platform shows that the resulting performance increases linearly with the number of geographical sites on large-scale problems (and is in particular consistently higher than ScaLAPACK's).Comment: Accepted at IPDPS10. (IEEE International Parallel & Distributed Processing Symposium 2010 in Atlanta, GA, USA.

    A service oriented architecture for engineering design

    Get PDF
    Decision making in engineering design can be effectively addressed by using genetic algorithms to solve multi-objective problems. These multi-objective genetic algorithms (MOGAs) are well suited to implementation in a Service Oriented Architecture. Often the evaluation process of the MOGA is compute-intensive due to the use of a complex computer model to represent the real-world system. The emerging paradigm of Grid Computing offers a potential solution to the compute-intensive nature of this objective function evaluation, by allowing access to large amounts of compute resources in a distributed manner. This paper presents a grid-enabled framework for multi-objective optimisation using genetic algorithms (MOGA-G) to aid decision making in engineering design

    Parallel Unsmoothed Aggregation Algebraic Multigrid Algorithms on GPUs

    Full text link
    We design and implement a parallel algebraic multigrid method for isotropic graph Laplacian problems on multicore Graphical Processing Units (GPUs). The proposed AMG method is based on the aggregation framework. The setup phase of the algorithm uses a parallel maximal independent set algorithm in forming aggregates and the resulting coarse level hierarchy is then used in a K-cycle iteration solve phase with a â„“1\ell^1-Jacobi smoother. Numerical tests of a parallel implementation of the method for graphics processors are presented to demonstrate its effectiveness.Comment: 18 pages, 3 figure
    • …
    corecore