47 research outputs found

    Improving Power, Performance and Area with Test: A Case Study

    Get PDF
    As more low power devices are needed for applications such as Internet of Things, reducing power and area is becoming more critical. Reducing power consumption and area caused by full scan design-for-test should be considered as a way to help achieve these stricter requirements. This is especially important for designs that use near-threshold technology. In this work, we use partial scan to improve power, performance and area on a graphics processing unit shader block. We present our non-scan D flip-flop (DFF) selection algorithm that maximizes non-scan DFF count while achieving automatic test pattern generation results close to those of the full scan design. We identify a category of stuck-at faults that are unique to partial scan designs and propose a check to identify and contain them. Our final test coverage of the partial scan design is within 0.1% of the full scan test coverage for both stuck-at and transition delay fault models. In addition, we present the PPA (power, performance and area) results for both the full scan and partial scan designs. The most noteworthy improvement is seen in the hold total negative slack

    Improving Power, Performance and Area with Test: A Case Study

    Get PDF
    As more low power devices are needed for applications such as Internet of Things, reducing power and area is becoming more critical. Reducing power consumption and area caused by full scan design-for-test should be considered as a way to help achieve these stricter requirements. This is especially important for designs that use near-threshold technology. In this work, we use partial scan to improve power, performance and area on a graphics processing unit shader block. We present our non-scan D flip-flop (DFF) selection algorithm that maximizes non-scan DFF count while achieving automatic test pattern generation results close to those of the full scan design. We identify a category of stuck-at faults that are unique to partial scan designs and propose a check to identify and contain them. Our final test coverage of the partial scan design is within 0.1% of the full scan test coverage for both stuck-at and transition delay fault models. In addition, we present the PPA (power, performance and area) results for both the full scan and partial scan designs. The most noteworthy improvement is seen in the hold total negative slack

    New Techniques for On-line Testing and Fault Mitigation in GPUs

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Optimization of Cell-Aware Test

    Get PDF

    Optimization of Cell-Aware Test

    Get PDF

    Multi-level simulation of nano-electronic digital circuits on GPUs

    Get PDF
    Simulation of circuits and faults is an essential part in design and test validation tasks of contemporary nano-electronic digital integrated CMOS circuits. Shrinking technology processes with smaller feature sizes and strict performance and reliability requirements demand not only detailed validation of the functional properties of a design, but also accurate validation of non-functional aspects including the timing behavior. However, due to the rising complexity of the circuit behavior and the steady growth of the designs with respect to the transistor count, timing-accurate simulation of current designs requires a lot of computational effort which can only be handled by proper abstraction and a high degree of parallelization. This work presents a simulation model for scalable and accurate timing simulation of digital circuits on data-parallel graphics processing unit (GPU) accelerators. By providing compact modeling and data-structures as well as through exploiting multiple dimensions of parallelism, the simulation model enables not only fast and timing-accurate simulation at logic level, but also massively-parallel simulation with switch level accuracy. The model facilitates extensions for fast and efficient fault simulation of small delay faults at logic level, as well as first-order parametric and parasitic faults at switch level. With the parallelization on GPUs, detailed and scalable simulation is enabled that is applicable even to multi-million gate designs. This way, comprehensive analyses of realistic timing-related faults in presence of process- and parameter variations are enabled for the first time. Additional simulation efficiency is achieved by merging the presented methods in a unified simulation model, that allows to combine the unique advantages of the different levels of abstraction in a mixed-abstraction multi-level simulation flow to reach even higher speedups. Experimental results show that the implemented parallel approach achieves unprecedented simulation throughput as well as high speedup compared to conventional timing simulators. The underlying model scales for multi-million gate designs and gives detailed insights into the timing behavior of digital CMOS circuits, thereby enabling large-scale applications to aid even highly complex design and test validation tasks

    Quality and Quantity in Robustness-Checking Using Formal Techniques

    Get PDF
    Fault tolerance is one of the main challenges for future technology scaling to tolerate transient faults. Various techniques at design level are available to catch and handle transient faults, e.g., Triple Modular Redundancy. An important but missing step is to verify the implementation of those techniques since the implementation might be buggy itself. The thesis is focusing on formally verifying digital circuits with respect to fault-tolerant aspects. It considers transient faults and basically checks whether these faults can influence the output behavior of sequential circuits for any kind of scenarios. As a result the designer is pin-pointed directly to critical parts of the design and gets a prove about the absence of faulty behavior for non-critical parts. The focus of the verification is completeness with respect to the analysis. Three issues need to be adequately addressed: 1) cover all input stimuli, 2) all possible transient faults, and, 3) all possibly exponential long (wrt. to number of state bits) propagation paths. All three issues are addressed in different engines. A tool called RobuCheck has been implemented and evaluated on different academic benchmarks from ITC'99 and industrial benchmarks from IBM

    Application of Logic Synthesis Toward the Inference and Control of Gene Regulatory Networks

    Get PDF
    In the quest to understand cell behavior and cure genetic diseases such as cancer, the fundamental approach being taken is undergoing a gradual change. It is becoming more acceptable to view these diseases as an engineering problem, and systems engineering approaches are being deployed to tackle genetic diseases. In this light, we believe that logic synthesis techniques can play a very important role. Several techniques from the field of logic synthesis can be adapted to assist in the arguably huge effort of modeling cell behavior, inferring biological networks, and controlling genetic diseases. Genes interact with other genes in a Gene Regulatory Network (GRN) and can be modeled as a Boolean Network (BN) or equivalently as a Finite State Machine (FSM). As the expression of genes deter- mine cell behavior, important problems include (i) inferring the GRN from observed gene expression data from biological measurements, and (ii) using the inferred GRN to explain how genetic diseases occur and determine the ”best” therapy towards treatment of disease. We report results on the application of logic synthesis techniques that we have developed to address both these problems. In the first technique, we present Boolean Satisfiability (SAT) based approaches to infer the predictor (logical support) of each gene that regulates melanoma, using gene expression data from patients who are suffering from the disease. From the output of such a tool, biologists can construct targeted experiments to understand the logic functions that regulate a particular target gene. Our second technique builds upon the first, in which we use a logic synthesis technique; implemented using SAT, to determine gene regulating functions for predictors and gene expression data. This technique determines a BN (or family of BNs) to describe the GRN and is validated on a synthetic network and the p53 network. The first two techniques assume binary valued gene expression data. In the third technique, we utilize continuous (analog) expression data, and present an algorithm to infer and rank predictors using modified Zhegalkin polynomials. We demonstrate our method to rank predictors for genes in the mutated mammalian and melanoma networks. The final technique assumes that the GRN is known, and uses weighted partial Max-SAT (WPMS) towards cancer therapy. In this technique, the GRN is assumed to be known. Cancer is modeled using a stuck-at fault model, and ATPG techniques are used to characterize genes leading to cancer and select drugs to treat cancer. To steer the GRN state towards a desirable healthy state, the optimal selection of drugs is formulated using WPMS. Our techniques can be used to find a set of drugs with the least side-effects, and is demonstrated in the context of growth factor pathways for colon cancer

    Machine learning support for logic diagnosis

    Get PDF

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations
    corecore