

IMPROVING POWER, PERFORMANCE AND AREA WITH TEST: A CASE STUDY

A Thesis

by

IGNATIUS PRAVEEN LAWRENCE

Submitted to the Office of Graduate and Professional Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Weiping Shi

Co-Chair of Committee, Duncan M. H. Walker

Committee Member, Jiang Hu

Head of Department, Miroslav Begovic

August 2018

Major Subject: Computer Engineering

Copyright 2018 Ignatius Praveen Lawrence

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/187121956?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

ABSTRACT

As more low power devices are needed for applications such as Internet of Things, reducing

power and area is becoming more critical. Reducing power consumption and area caused by full

scan design-for-test should be considered as a way to help achieve these stricter requirements. This

is especially important for designs that use near-threshold technology. In this work, we use partial

scan to improve power, performance and area on a graphics processing unit shader block.

We present our non-scan D flip-flop (DFF) selection algorithm that maximizes non-scan

DFF count while achieving automatic test pattern generation results close to those of the full scan

design. We identify a category of stuck-at faults that are unique to partial scan designs and propose

a check to identify and contain them. Our final test coverage of the partial scan design is within

0.1% of the full scan test coverage for both stuck-at and transition delay fault models.

In addition, we present the PPA (power, performance and area) results for both the full

scan and partial scan designs. The most noteworthy improvement is seen in the hold total negative

slack.

iii

DEDICATION

I dedicate this work to my parents.

iv

ACKNOWLEDGEMENTS

I would like to sincerely thank my academic advisor Dr. Walker for his guidance

throughout my education at Texas A&M University. Through his patient and thoughtful

mentorship, he helped me make the best decisions regarding my thesis and coursework. I owe my

successful academic experience to him.

I would like to thank the design for testability team at Arm® for giving me the opportunity

to research on partial scan. My work would not have been possible without the steadfast support

from Teresa McLaurin, Richard Slobodnik and Mark Nathan.

Thanks go to my committee chair Dr. Shi and my committee member Dr. Hu for their

support throughout my research.

I am also thankful to my colleagues at the EDA lab in computer science and engineering

department for being supportive and making my experience a great one.

Finally, thanks to my mother and father for their encouragement.

v

CONTRIBUTORS AND FUNDING SOURCES

This research was conducted at and funded by Arm®, Austin TX from May through

December 2017. The work was managed by Teresa McLaurin, who is a Fellow and the head of

the design for testability team at Arm®. The student was mentored by Mark Nathan.

Level1 checks of the partial scan algorithm were arrived at by Teresa McLaurin, Frank

Frederick and Mark Nathan. The student developed Level2 checks to make the partial scan

algorithm compatible with graphics processing unit (GPU) shader cores. The idea to determine

sequential redundancy from full scan automatic test pattern generation (ATPG) results were

proposed by Richard Slobodnik.

Power, performance and area (PPA) results shown in Tables 8 through Table 11 were

provided by Leo Prakash and Mark Appleton.

This work was supported by my thesis committee consisting of my advisor Prof. Hank

Walker of the Department of Computer Science and Engineering, and Prof. Weiping Shi and Prof.

Jiang Hu of the Department of Electrical and Computer Engineering.

vi

NOMENCLATURE

SAF Stuck-at Fault

TDF Transition Delay Fault

DFF D Flip-Flop

SDFF Scan D Flip-Flop

PPA Power, Performance and Area

TC Test Coverage

PC Pattern Count

OT Overlap Threshold

SR Sequential Redundancy

vii

TABLE OF CONTENTS

 Page

ABSTRACT ... ii

DEDICATION .. iii

ACKNOWLEDGEMENTS .. iv

CONTRIBUTORS AND FUNDING SOURCES ... v

NOMENCLATURE ... vi

TABLE OF CONTENTS ... vii

LIST OF FIGURES .. ix

LIST OF TABLES ... x

CHAPTER I INTRODUCTION AND LITERATURE REVIEW 1

CHAPTER II PARTIAL SCAN ALGORITHM – LEVEL1 ... 10

Shift register check .. 10
PI/PO check ... 11

RAM check .. 11
ICG check .. 11

Self-drive check ... 11
CDC check ... 11
Fan-in and Fan-out check ... 11

Non-scan to non-scan paths check ... 12

CHAPTER III SEQUENTIAL REDUNDANCY .. 14

CHAPTER IV PARTIAL SCAN ALGORITHM – LEVEL2 .. 19

Overlap threshold check... 19
Sequential redundancy check ... 23
Identification of “problematic” DFFs .. 25
Ordering non-scan candidate DFFs ... 27

viii

CHAPTER V OTHER X-GENERATION ISSUES ... 31

CHAPTER VI RESULTS AND DISCUSSION... 34

CHAPTER VII CONCLUSION AND FUTURE WORK.. 45

REFERENCES .. 47

ix

LIST OF FIGURES

 Page

Figure 1 Scan architecture .. 2

Figure 2 Hold fixing on scan paths ... 4

Figure 3 Partial scan design with one non-scan DFF ... 7

Figure 4 Back to back non-scan flip-flops .. 12

Figure 5 Sequential redundancy illustration ... 14

Figure 6 Determining sequential redundancy from full scan SAF and TDF ATPG results 17

Figure 7 Non-scan DFFs feeding in to combinational logic ... 20

Figure 8 Overlap threshold example ... 21

Figure 9 Non-scan DFFs with common fan-in and fan-out DFFs .. 22

Figure 10 Parallels between sequential redundancy and overlap threshold conditions 24

Figure 11 Level1 checks (except non-scan to non-scan connectivity check) 28

Figure 12 Elimination of problematic non-scan candidate DFFs (Part of Level2 checks) 29

Figure 13 Level2 checks and non-scan to non-scan connectivity check performed after

problematic DFF identification ... 30

Figure 14 Non-scan DFFs in fan-out of last SDFF in scan chain ... 31

Figure 15 Reset overriding for resettable non-scan flip-flop on fan-out of last flip-flop in scan

chain .. 32

Figure 16 Set overriding for settable non-scan flip-flop on fan-out of last flip-flop in scan

chain .. 33

file:///C:/Users/praveenignatius17/Google%20Drive/TAMU%20ECEN/Thesis/Thesis_ver1.docx%23_Toc511667268
file:///C:/Users/praveenignatius17/Google%20Drive/TAMU%20ECEN/Thesis/Thesis_ver1.docx%23_Toc511667269
file:///C:/Users/praveenignatius17/Google%20Drive/TAMU%20ECEN/Thesis/Thesis_ver1.docx%23_Toc511667270
file:///C:/Users/praveenignatius17/Google%20Drive/TAMU%20ECEN/Thesis/Thesis_ver1.docx%23_Toc511667271
file:///C:/Users/praveenignatius17/Google%20Drive/TAMU%20ECEN/Thesis/Thesis_ver1.docx%23_Toc511667272
file:///C:/Users/praveenignatius17/Google%20Drive/TAMU%20ECEN/Thesis/Thesis_ver1.docx%23_Toc511667273
file:///C:/Users/praveenignatius17/Google%20Drive/TAMU%20ECEN/Thesis/Thesis_ver1.docx%23_Toc511667274
file:///C:/Users/praveenignatius17/Google%20Drive/TAMU%20ECEN/Thesis/Thesis_ver1.docx%23_Toc511667275
file:///C:/Users/praveenignatius17/Google%20Drive/TAMU%20ECEN/Thesis/Thesis_ver1.docx%23_Toc511667276
file:///C:/Users/praveenignatius17/Google%20Drive/TAMU%20ECEN/Thesis/Thesis_ver1.docx%23_Toc511667277
file:///C:/Users/praveenignatius17/Google%20Drive/TAMU%20ECEN/Thesis/Thesis_ver1.docx%23_Toc511667278
file:///C:/Users/praveenignatius17/Google%20Drive/TAMU%20ECEN/Thesis/Thesis_ver1.docx%23_Toc511667279
file:///C:/Users/praveenignatius17/Google%20Drive/TAMU%20ECEN/Thesis/Thesis_ver1.docx%23_Toc511667280
file:///C:/Users/praveenignatius17/Google%20Drive/TAMU%20ECEN/Thesis/Thesis_ver1.docx%23_Toc511667280
file:///C:/Users/praveenignatius17/Google%20Drive/TAMU%20ECEN/Thesis/Thesis_ver1.docx%23_Toc511667281
file:///C:/Users/praveenignatius17/Google%20Drive/TAMU%20ECEN/Thesis/Thesis_ver1.docx%23_Toc511667282
file:///C:/Users/praveenignatius17/Google%20Drive/TAMU%20ECEN/Thesis/Thesis_ver1.docx%23_Toc511667282
file:///C:/Users/praveenignatius17/Google%20Drive/TAMU%20ECEN/Thesis/Thesis_ver1.docx%23_Toc511667283
file:///C:/Users/praveenignatius17/Google%20Drive/TAMU%20ECEN/Thesis/Thesis_ver1.docx%23_Toc511667283

x

LIST OF TABLES

 Page

Table 1 Truth table for circuit in Figure 5 .. 15

Table 2 Original partial scan results ... 35

Table 3 Partial scan results with overlap threshold/sequential redundancy check 36

Table 4 Partial scan with semi-automatic identification of problematic non-scan DFFs 38

Table 5 Partial scan with automatic identification of problematic non-scan DFFs 39

Table 6 Partial scan results for GPU shader core 2 .. 41

Table 7 GPU Shader Block Area/Density results ... 42

Table 8 GPU Shader Block Power analysis results .. 43

Table 9 GPU Shader Block Frequency results ... 43

Table 10 GPU Shader Block TNS results ... 44

1

CHAPTER I

INTRODUCTION AND LITERATURE REVIEW

Scan [1] based testing is the most commonly used structural Design for Test (DFT)

technique. In this technique, all D flip-flops (DFFs) in the design are replaced with their equivalent

scan DFFs (SDFFs). The difference between a non-scan DFF and its scan counterpart is that an

SDFF has a two-input multiplexer at its D input. A scan enable (SE) signal selects either the

functional (when SE=0) or the scan input (SI) (when SE=1). Scan input is nothing but the output

of another SDFF in the design. Thus, when SE=1, all DFFs in the design are configured into scan

chains, thus enabling values to be shifted in and out of these flops. When SE=0, the DFFs are

configured to their functional mode letting them sample data from the combinational logic.

By effectively turning all DFFs into control and observe points, scan-based testing converts

a sequential testing problem into a combinational problem. Figure 1 illustrates scan-based testing.

This example shows a simple design containing 3 SDFFs. When SE=1, these 3 registers form a

shift register whose values can be shifted in from the scan input pin and shifted out through the

scan output pin. The primary input and output pins are under the control of the tester. Thus, all

inputs to the combinational logic cloud can be controlled by the tester. When SE=0, the SDFFs

sample the inputs coming from the combinational logic cloud. Then again, the SE pin is made high

so that the response captured into the SDFFs is shifted out onto the tester.

While this example design has a single scan chain, large designs typically have many scan

chains in order to save the time required to shift values into all SDFFs. The basic scan-based testing

can be summarized as below:

i) Shift values into scan chains through scan input ports (SE=1).

2

ii) After all SDFFs in the design are loaded with values, set SE=0. This lets all SDFFs

capture their functional inputs.

iii) Again, set SE=1 and shift all the captured values out through the scan output ports.

By transforming testing of a sequential design into a combinational testing problem, scan-

based architecture has proven itself to be a very convenient structural testing technique.

Figure 1 Scan architecture

Scan Input Scan Output

Scan

Enable

PI/POs

Combinational Logic

Functional/

Scan clock

D Q

CK

D Q

CK

D
Q

CK

0
1

0
1

0
1

3

But this convenience comes at a price. Below are the primary drawbacks of this technique:

i) Every DFF in the design needs to have a two-input multiplexer at its D-input. This

additional multiplexer creates the following problems:

a) Additional area

b) Additional power consumption: The additional multiplexers will lead to more

static and dynamic power consumption.

ii) Timing closure problems: The paths from the output of a DFF to the scan input of

the next DFF typically cause hold timing issues. This is solved by buffering these

paths, which further worsens area and power consumption.

Figure 2 shows the example design with buffering included for hold time fixing. This hold

fixing problem is an overhead for the implementation team and can delay tape-out.

4

One promising solution that can achieve the ease of testability of a scan-based design while

mitigating the above drawbacks is partial scan. Partial scan is an old topic [2] [3] [4] [5] [6] [7]

[8], but with the new low power requirements of the Internet of Things (IOT), we revisit the

possibilities on current designs. The idea of partial scan is to leave a subset of the DFFs as non-

scan. These non-scan DFFs do not include the scan multiplexer at their D-input. Also, the scan

path from their output is avoided.

In [2] [3], it is asserted that the cyclic nature of sequential circuits that occur due to

feedback paths is the main reason for testability complexities in a partial scan design. Feedback

Figure 2 Hold fixing on scan paths

Buffers for

hold fixing

Scan

Input

Scan

Output

Scan

Enable

PI/POs

Combinational Logic

Functional/

Scan clock

D
Q

CK

D
Q

CK

D Q

CK

0
1

0
1

0
1

5

paths are broken to ease the testability of these paths i.e. DFFs that feedback are made SDFFs.

This work is extended in [4] by minimizing the maximum distance between non-scan to non-scan

DFFs. A minimal set of SDFFs are chosen such that cyclic paths are avoided for non-scan DFFs.

The algorithm which solves the “dmax problem” then selects non-scan DFFs ensuring all non-scan

to non-scan DFF path lengths are below a certain limit. This limit differed for different benchmark

circuits. In the balanced structural scan test [5], SDFFs are chosen such that all paths between any

two SDFFs have the same number of non-scan DFFs, i.e. the paths between any two SDFFs are

balanced. Values shifted into the SDFFs are held constant for a few cycles before capturing the

circuit response, to allow scan values to propagate through non-scan DFFs.

A cost function optimization-based approach was presented in [6][7]. Here the problem of

selecting non-scan DFFs is approached by solving an optimization problem that considers both

performance improvement and testability. Factors such as congestion and timing are considered in

the cost function. The different cost factors are then scaled according to their importance. The

challenge in this approach is to come up with the most optimal cost function that will work for all

designs. Another problem is that it needs considerable input from the physical design team.

In [8] two approaches are presented for selecting non-scan DFFs. In the first approach,

exhaustive functional fault simulation is performed on the circuit to determine all possible test

vectors for every fault. The DFFs required to be set to specific values are noted in each of these

tests. Final test vectors are chosen such that most faults can be covered by making the least number

of DFFs as SDFFs. Such exhaustive simulations are impractical in modern designs. The second

approach is similar to the first one except that an exhaustive test generation is avoided. Instead,

only one test is generated per fault site. While the second approach is more computation friendly,

for the same number of non-scan DFFs, it is not as effective as the first approach for ATPG results.

6

In this work it is assumed that non-scan DFFs are always bad control/observe points, which may

not always be the case.

Figure 3 shows a three DFF design with one non-scan DFF. As shown in Figure 3, since

the DFF in the middle is non-scan, scan path hold fixing may be required only for the path between

the first and the last DFFs. Another noteworthy fact is that having only a subset of the DFFs as

SDFFs:

i) reduces the number of scan chains

and/or

ii) reduces the number of scan cells in each scan chain.

Thus, apart from the potential power, performance and area (PPA) enhancement, a partial

scan design would need fewer bits per pattern to load as compared to its equivalent full scan design.

Unlike full scan design, a single capture cycle is not sufficient for detecting stuck-at faults

(SAFs) in a partial scan design. In Figure 3, we can see that two capture cycles are required to

propagate faults captured by the non-scan DFF to the SDFF in its fan-out cone. Partial scan

mandates multiple capture cycles for SAF testing. For SAF testing in full scan designs, multiple

capture cycles are used typically to reduce pattern count [9] [10]. In [11], multiple capture cycles

were used in N-detection test scenarios.

7

A non-ideal partial scan design can have negative ramifications. Unlike SDFFs that are

loaded with desired values through scan chain shifting, non-scan DFFs in the design are loaded

with values through the functional logic. This means all inputs to the combinational logic cloud

in the fan-in of the non-scan DFF need to be set with appropriate values to load that non-scan

DFFs with the desired values. Non-scan DFFs are no longer safe observe/control points unlike

their scan counterparts. This can have the below negative consequences for DFT:

i) Lower Test Coverage (TC)

ii) Higher Pattern Count (PC)

Buffers for

hold fixing

Scan Input

Scan

Output

Scan

Enable

PI/POs

Combinational Logic

Functional/

Scan clock

D Q

CK

D
Q

CK

D
Q

CK

0

1

0

1

Figure 3 Partial scan design with one non-scan DFF

8

To enjoy PPA enhancements without the above drawbacks, an optimum non-scan DFF

selection algorithm (henceforth called partial scan algorithm) is required. For non-scan candidacy,

this algorithm must identify those DFFs that are easy to control through the combinational logic

fan-in and whose captured values are easy to propagate to SDFFs in the fan-out logic. The TC loss

and PC increase need to be kept at minimal levels, if not completely eradicated.

In this work, we explore the idea of partial scan in the context of an Arm® GPU shader

core. We split our elaborate checks for identifying non-scan DFFs into two levels of partial scan

algorithm. Level1 checks are run on all DFFs in the design. Level2 checks are a more complicated

and time-consuming set of checks. Non-scan candidates that pass Level2 checks are the final non-

scan DFFs.

We use the ATPG tool’s ability to simulate the last few shift cycles to determine the values

of non-scan DFFs, mitigating the issue of unknown (“X”) values in the non-scan DFFs propagating

in the logic.

We identify a category of faults in SAF test, which are sequentially redundant [12] faults.

These SAFs cannot be tested in partial scan designs. We provide a simple yet efficient way to

identify these faults and add a check in Level2 to minimize them.

We then perform SAF and transition delay fault (TDF) ATPG to prove the effectiveness of

our partial scan algorithm. Final TC is within 0.1% of the full scan design for both fault models.

PPA results prove why partial scan is worth considering for modern designs, especially in areas

such as near-threshold technology.

In Chapter II, we describe Level1 checks of our partial scan algorithm. We introduce

sequential redundancy in Chapter III. Chapter IV details Level2 checks and how we address

9

sequential redundancy. Chapter V discusses other X-generation issues. We present our ATPG and

PPA results in Chapter VI. Conclusions and future work are discussed in Chapter VII.

10

CHAPTER II

PARTIAL SCAN ALGORITHM – LEVEL1

In Level1 of our partial scan algorithm, we run some preliminary checks to identify a subset

of all the DFFs on which to run the advanced Level2 checks. We refer to the DFFs that pass Level1

checks as non-scan “candidates”. The non-scan candidates that pass Level2 checks are the final

non-scan DFFs. Level1 checks can be summarized as:

i) Shift register check

ii) Primary input (PI) / primary output (PO) check

iii) RAM check

iv) Integrated Clock Gating (ICG) check

v) Self-drive check

vi) Clock Domain Crossing (CDC) check

vii) Fan-in and Fan-out check

viii) Non-scan to non-scan paths check

These checks are described below.

Shift register check

In the case of a shift register, only the first DFF needs to be an SDFF and the remaining

DFFs can be non-scan. Since shift register DFFs are automatically handled by EDA tools and are

often already non-scan DFFs, we do not need to include those in our algorithm. For this reason,

shift register DFFs fail this check.

11

PI/PO check

DFFs that are in the fan-out of PIs and those that are in the fan-in of POs are made SDFFs.

This is because, at system level, the core will be integrated with other intellectual property (IP).

We do not want to jeopardize controllability/observability of logic external to our IP due to their

interface with non-scan DFFs. In short, DFFs connected to PIs and POs fail this check.

RAM check

DFFs that interface with memories are made SDFFs. This is to accommodate the possibility

that memories may not include an internal scan collar. DFFs in the fan-in and fan-out of memories

fail this check.

ICG check

DFFs that lie in the fan-in of ICGs are made SDFFs. We avoid non-scan DFFs in clock

gating logic as this becomes too complex for the ATPG tools to handle.

Self-drive check

DFFs that feedback to themselves fail this check and are scan inserted. DFFs that feedback

to themselves are difficult to set to a desired value without any hardware modifications.

CDC check

Any DFF that has a fan-in DFF from a different clock domain is made an SDFF. The

capture DFFs on CDC paths (that are either false or multicycle) will always be an X after the shift

procedure. We do not consider such DFFs as non-scan to reduce the amount of Xs in the design

before we enter into capture cycles (we try to make the design as X-free as possible).

Fan-in and Fan-out check

Fan-in and fan-out to a DFF are considered because the more complex the control or the

observe logic must be, the less likely the ATPG tool will be able to get coverage with a moderate

12

number of patterns. Fan-in and fan-out thresholds are variables in the partial scan algorithm to

achieve the minimum desired percentage of non-scan DFFs.

Non-scan to non-scan paths check

One of the Level1 rules is that there can be no paths where the launch point and capture

point are both non-scan cells. This was done to help reduce the complexity of the logic for the

ATPG tool. For N back-to-back non-scan DFFs, the faults captured by the first non-scan DFF need

N + 1 capture cycles to be observed at an SDFF at the fan-out of the nth non-scan DFF. The extra

complexity of multiple sequential non-scan DFFs may be too much for today’s ATPG tools to

handle.

Figure 4 shows two back-to-back non-scan DFFs. The following explanation justifies why

we avoid such paths.

Figure 4 Back to back non-scan flip-flops

C1 C2 C3
D Q

FF1

Scan

D Q

FF2

Non-

D Q

FF3

Non

D Q

FF4

Scan

13

DFFs FF2 and FF3 are non-scan DFFs. Because FF2 and FF3 are connected back to back,

faults in combinational logic C1 need 3 capture cycles to propagate to SDFF FF4. For N back to

back non-scan DFFs, the faults captured by the first non-scan DFF need N + 1 capture cycles to

be observed at an SDFF at the fan-out of the Nth non-scan DFF. As this is bad for observability,

we avoid non-scan to non-scan paths. For the logic in Figure 4, the following are the only outcomes

possible:

i) If FF1 is a non-scan DFF, FF2 must be SDFF.

ii) If FF2 is non-scan DFF, FF1 and FF3 must be SDFFs.

iii) If FF3 is non-scan DFF, FF2 and FF4 must be SDFFs.

iv) If FF4 is non-scan DFF, FF3 must be SDFF.

To summarize, all non-scan candidate DFFs in the fan-in and fan-out of a non-scan DFF

fail the non-scan to non-scan connectivity check.

14

CHAPTER III

SEQUENTIAL REDUNDANCY

By introducing non-scan DFFs, we effectively revert testing from being a purely

combinational problem to a sequential one. This creates a new set of SAFs that do not exist in a

full-scan design. Figure 5 shows an example of a sequentially redundant [12] fault.

Figure 5 Sequential redundancy illustration

S

FF1

S

FF2

S

FF3

NS

FF4

NS

FF5

A1

A2

A3

O1

SA1 S

FF6

S = Scan

NS = Non-scan

15

In Figure 5, DFFs FF1, FF2, FF3 and FF6 are SDFFs. DFFs FF4 and FF5 are non-scan

DFFs. The values at the Q outputs of FF4 and FF5 in the current cycle depend on the Q outputs of

FF1, FF2 and FF3 in the previous cycle. After shifting values into all SDFFs, two capture cycles

are needed to propagate the faults captured by non-scan DFFs FF4 and FF5 to the SDFF FF6.

Table 1 shows the truth table for Q outputs of non-scan DFFs FF4 and FF5 as a function

of Q outputs of scan DFFs FF1, FF2 and FF3.

Table 1 Truth table for circuit in Figure 5

Cycle N Cycle N+1

QFF1 QFF2 QFF3 QFF4 QFF5

0 0 0 0 0

0 0 1 0 1

0 1 0 0 0

0 1 1 0 1

1 0 0 0 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

16

To detect the stuck-at 1 (SA1) fault in Figure 6, we need the output values of FF4 and FF5

(QFF4, QFF5) set to 1 and 0, respectively. As shown in Table 1, (QFF4, QFF5) can never achieve

the value set (1, 0). This SA1 defect is a sequentially redundant fault. If FF4 and FF5 had been

SDFFs, they could have been set to any of the four possible values during shift mode and detected

the SA1 fault.

We define a sequentially redundant fault as a fault whose presence does not affect the

behavior of the sequential circuit. Combinational redundant faults (which are automatically

detected by the ATPG tool) are not included in our definition of sequentially redundant faults.

Sequential and combinational redundant logic can be present in a design due to improper RTL

coding style or ineffective optimization by the synthesis tool. Sometimes they are deliberately

intended to address timing issues. Sequentially redundant faults were found in our partial scan

design and must be addressed if they are significant in number.

Classical research work on identifying sequential redundancy has focused on logic

optimization during synthesis. Sequential redundancy was detected in [13] by looking for don’t

care conditions in state transition diagrams. In [14], a circuit was made feedback free by cutting at

the feedback lines assuming they are fully controllable and observable. Test generation and fault

simulation were then performed on this feedback free circuit. C-cycle redundancy was presented

in [15]. In this work, an arbitrary set of inputs was provided to the circuit for C clock cycles (where

C >= 0). The possible states of the circuit at the end of these C cycles were analyzed for both fault-

free and faulty cases to determine sequential redundancy. If a state Sf in the faulty circuit and a

state S in the fault-free circuit existed such that the response of both the circuits to any input I was

the same, then the fault was considered sequentially redundant. The circuit was then optimized by

17

removing the region associated with that fault. It was shown that different benchmark circuits

needed different values of C to detect all the redundant faults.

We came up with a simple way of determining the possibility of sequentially redundant

faults even before generating the partial-scan design. We first perform SAF and Launch-off

Capture (LOC) [16] TDF ATPG on the full-scan design. Sequentially redundant faults are not

detected during TDF ATPG. If we consider the sequentially redundant SA1 fault in Figure 6, the

slow-to-fall fault on the same node will remain untested. This is because, during the launch of

capture transition, all DFFs are in their functional mode and sequentially redundant faults are

S

FF1

S

FF2

S

FF3

NS

FF4

NS

FF5

A1

A2

A3

O1

SA1 S

FF6

S = Scan

NS = Non-scan

Figure 6 Determining sequential redundancy from full scan SAF and TDF ATPG results

18

exposed. During SAF ATPG, the sequentially redundant faults are hidden since there is control

and observe at every DFF. We determine sequentially redundant faults as those that are undetected

during full-scan transition delay ATPG and detected during full-scan SAF ATPG. This technique

does not involve using synthesis or test generation/fault simulation engines. Instead, it only relies

on existing full-scan ATPG results.

Determining sequentially redundant faults beforehand allows us to use that information in

a Level2 check of our partial scan algorithm. This enables us to generate a partial scan netlist with

a minimal amount of sequentially redundant faults.

19

CHAPTER IV

PARTIAL SCAN ALGORITHM – LEVEL2

Level2 checks are performed on non-scan candidate DFFs i.e. DFFs that pass Level1

checks. Level2 checks are summarized below:

i) Overlap threshold check

ii) Sequential redundancy check

iii) Identification of “problematic” DFFs

We will show why it is necessary to process the non-scan candidate DFFs in a specific

order instead of a random order. At the very end, we will show our entire partial scan algorithm in

the form of flowcharts.

Level2 checks are elaborated below.

Overlap threshold check

The overlap threshold check was added to control the number of non-scan DFFs that feed

into a single combinational logic cloud. The GPU is a computationally intensive design, resulting

in DFFs whose fan-in ranges from 1 to 18,000 and fan-out from 1 to 4,000. We looked at modules

that included a high level of computational logic and identified a common problem: high fan-in

from non-scan DFFs into combinational logic resulted in too many untested faults in that logic.

This condition also exacerbated the propagation of faults captured by non-scan DFFs that needed

to be propagated through that logic. With these observations, we concluded that in certain modules,

when high fan-in includes many non-scan DFFs, this can significantly reduce test coverage. We

call this the “overlap threshold” problem. Figure 7 illustrates this condition.

20

To limit the number of non-scan flip-flops feeding into a combinational logic cloud, we

limit the number of non-scan flip-flops that fan-in to a scan flip-flop. In Figure 7, if we limit the

maximum number of non-scan flip-flops that fan-in to scan flip-flops FF7, FF8 and FF9 to some

value N, it is guaranteed that the combinational logic cloud shown in the figure will not have more

than N non-scan flip-flops feeding in.

Figure 7 Non-scan DFFs feeding in to combinational logic

Combo logic cloud

NS

FF12
NS

FF11
NS

FF10

S

FF1

S

FF2

S

FF3

S

FF9

S

FF8

S

FF7

NS

FF4

NS

FF5

NS

FF6

Non-scan DFFs

Non-scan DFFs

S = Scan

NS = Non-scan

21

Figure 8 gives a more specific example. FF1, FF2, FF3, FF4, FF5, FF7 and FF8 are non-

scan DFFs feeding into the combinational logic fan-in to SDFF FF6. For faults captured by FF2

to propagate to FF6, FF1, FF3, FF4 and FF8 must be a 1 while DFFs FF5 and FF7 must be a 0.

NS

FF8
NS

FF7

NS

FF1

NS

FF2

NS

FF3

S

FF6

NS

FF4

NS

FF5

S = Scan

NS = Non-scan

Faults captured

by FF2 need to

propagate

through this path

Figure 8 Overlap threshold example

22

Since non-scan DFFs are weak control points, it might be difficult for the ATPG to satisfy

all the constraints. If we limit the maximum number of non-scan DFFs that fan-in to SDFF FF6 to

some value N, it is guaranteed that the combinational logic cloud (AND gate + OR gate) shown in

the figure will not have more than N non-scan DFFs feeding in. This is a simple yet effective way

of implementing overlap threshold check.

In the next section, we will reveal how we addressed both sequential redundancy and the

overlap threshold problem by using only the overlap threshold check.

S

FF1

S

FF2

S

FF3

NS

FF4

NS

FF5

A1

A2

A3

O1

SA1 S

FF6

S = Scan

NS = Non-scan

Figure 9 Non-scan DFFs with common fan-in and fan-out DFFs

23

Sequential redundancy check

Sequential redundancy was described in Chapter III. In this section, we will discuss how

the sequential redundancy check was implemented using the overlap threshold check. To create a

simpler implementation, we chose an aggressive way to tackle sequential redundancy.

Non-scan DFFs that illuminate sequential redundancy have common fan-in and fan-out

DFFs. This is evident in Figure 9. In the event of two or more non-scan candidate DFFs having

common fan-in and fan-out DFFs, only one of those candidates will pass the sequential redundancy

check. In Figure 9, only FF4 or FF5 will end up passing the check. Just because there are non-scan

candidates that have common fan-in and fan-out DFFs does not mean there will be sequential

redundancy. However, the simplified flow is more aggressive in replacing these DFFs with SDFFs.

Figure 10 illustrates the parallels between sequential redundancy and the overlap threshold

problem.

24

In Figure 10, there are two non-scan DFF candidates FF3 and FF4 that need to be evaluated

for sequential redundancy and the overlap threshold condition. The candidates have common fan-

in DFFs: FF1 and FF2, and common fan-out DFFs: FF5 and FF6.

Hence, only one of them will end up passing the sequential redundancy check based on the

order in which they are processed. If FF3 is processed before FF4, FF4 will fail the sequential

redundancy check. While checking for the overlap threshold condition, we consider the DFFs in

the fan-out of the candidate and ensure that the number of non-scan DFFs that fan-in is below the

set threshold.

FF1

FF2

C1

FF3

C2

FF4

FF5

FF6

Combo#1
Combo#2

D Q

D Q
D Q

D Q D Q

D Q

Overlap

threshold

Figure 10 Parallels between sequential redundancy and overlap threshold

conditions

25

When FF3 is processed, we look at the number of non-scan DFFs that fan-in to DFFs FF5

and FF6; the same is true for FF4. Now, if we set the overlap threshold limit to one (i.e. only one

non-scan DFF can fan-in to a combinational logic cloud), FF5 and FF6 will have only one non-

scan DFF in their fan-in. Assuming FF3 is processed before FF4, FF3 will end up passing the

overlap threshold check and FF4 will not. Thus, the overlap threshold limit of one meets the

sequential redundancy requirements.

Implementing an overlap threshold limit of 1 is very aggressive and we ended up losing a

considerable number of non-scan DFFs. Our non-scan DFF count dropped from ~30% to ~20%

after adding this check. But by losing only a third of the non-scan DFFs, we regained two-thirds

of the lost SAF coverage.

The overlap threshold check enables a lot of flexibility. We can set the overlap threshold

limit to one to push the coverage as high as possible. An overlap threshold limit of one is the most

conservative value: it completely gets rid of sequential redundancy and the overlap threshold

problem. However, the threshold can be varied anywhere from one to the maximum fan-in minus

one. With higher threshold values, we can get a higher non-scan DFF count usually at the cost of

lower coverage and/or a higher pattern count due to an increase in sequential redundancy and the

overlap threshold problem. However, as in LOC transition delay testing, one could argue that the

lost coverage is for faults that can never affect functional operation.

Identification of “problematic” DFFs

After addressing the overlap threshold and sequential redundancy problems, we still saw

around 0.1% lower test coverage as compared to the full scan design. The non-scan DFFs that

affected these faults, either in the observe or control paths of the faults, were collected. We refer

to these non-scan DFFs as “problematic” DFFs. We associated a weight with each problematic

26

DFF. The weight is the number of untested faults on a control or observe path from that DFF. We

ranked these problematic DFFs in decreasing weight order to identify the worst ones. DFFs with

higher weight are associated with more untested faults.

We identified the following properties of the problematic DFFs:

i) Many were high fan-in/fan-out DFFs. High fan-in/fan-out DFFs affect more logic,

hence can be problematic. Based on this, we adjusted the maximum fan-in threshold

to 120 and maximum fan-out threshold to 100 on the GPU shader block. DFFs with

thresholds above these levels will be non-scan DFF candidates. Note that these

thresholds have nothing to do with overlap threshold. These are the thresholds

described in Chapter II.

ii) There were low fan-in/fan-out problematic DFFs. These DFFs were involved in

arithmetic intensive logic and the combinational logic depth between these DFFs

and the SDFFs in their fan-out was high.

There are two ways to address the low fan-in/fan-out problematic DFFs problem:

i) We select the problematic DFFs whose weight is above a certain value and exclude

them while processing non-scan DFF candidates. This is a more accurate approach

with some iterative work involved. It is iterative since making a problematic DFF

a SDFF may allow another DFF to become non-scan. We call this the “semi-

automatic” way of identifying problematic DFFs. For the GPU shader block, we

selected 100 as the cut-off weight. So, any problematic DFF whose weight was

above or equal to 100 was excluded and made SDFF.

ii) We check if a candidate DFF is involved in arithmetic logic and exclude it if none

of its fan-out DFFs have a fan-in below a certain threshold. To check if a candidate

27

is involved in arithmetic logic, we look for adder cells in the fan-in/fan-out. By

having at least one fan-out DFF with low fan-in, the non-scan DFF has at least one

easy path to propagate captured faults. Here, we assume that a low fan-in DFF has

less combinational logic in its fan-in. This is an automatic but less accurate

technique than i).

Ordering non-scan candidate DFFs

In three of our checks: overlap threshold check, sequential redundancy check and non-scan

to non-scan connectivity check, the order in which we process the non-scan candidate DFFs has a

significant impact on the non-scan DFF count and ATPG results. Non-scan candidates that are

processed early and pass all checks jeopardize the chances of other candidate DFFs that overlap

with them. Besides, it is guaranteed that the non-scan candidates in their fan-in and fan-out will be

made SDFFs. This can be disastrous to non-scan DFF count if high fan-in/fan-out DFFs are

processed early on.

We process non-scan candidate DFFs in order of increasing fan-in. All candidates with a

given fan-in are processed in order of increasing fan-out. We gave preference to low fan-in over

low fan-out DFFs because it is easier to set desired values in low fan-in DFFs due to smaller

combinational logic in the fan-in cone.

Our partial scan algorithm is shown in the below flow charts. Note that the flow charts

show the various checks in the order in which they are implemented. Non-scan to non-scan paths

check which is a Level1 check is moved to the end of the flow. Figure 11 shows the Level1 checks

(except non-scan to non-scan paths check).

28

Figure 11 Level1 checks (except non-scan to non-scan connectivity check)

PAS

Fan-in/Fan-out

Last DFF?

Shift Register

PAS

PI/PO Check

PASS

RAM Check

PASS

ICG Check

PASS

Self-drive Check

PASS

CDC Check

PASS

For each DFF in design

Add to non-scan

candidate DFF list

Level1 checks

complete

YE

NO

29

As shown in Figure 12, problematic non-scan candidate DFFs are eliminated and the

remaining candidates are eligible for the remaining Level2 checks. As mentioned previously,

there are two ways to identify problematic non-scan candidates.

NO

For each non-scan

candidate DFF

Problematic DFF?

Add to refined non-scan

candidate DFF list

Last DFF?

Problematic candidates

eliminated

YES

NO

Figure 12 Elimination of problematic non-scan candidate DFFs (Part of Level2 checks)

30

Figure 13 shows the Level2 checks and non-scan to non-scan connectivity check.

Figure 13 Level2 checks and non-scan to non-scan connectivity check performed after

problematic DFF identification

Last DFF?

Overlap threshold / Sequential

redundancy Check

PASS

Non-scan to non-scan

connectivity Check

PASS

For each refined candidate

Fan-in: Min to Max

Fan-out: Min to Max

Add to non-scan

DFF list

Level2 checks

complete

YES

NO

31

CHAPTER V

OTHER X-GENERATION ISSUES

Even though we simulate the last few shift cycles, we found that there was still some X

generation. Since the value in the last DFF of a scan chain is known only after all shift cycles, the

non-scan DFFs that lie in the fan-out of these DFFs propagate X’s during the capture phase. Figure

14 shows two non-scan DFFs in the fan-out of last SDFF in a scan chain.

C
o

m
p

a
ct

o
r

D
ec

o
m

p
re

ss
o

r

NS

NS

Last SDFF in

scan chain “n”

0
1

N

n

S

0
1

N

n

S

Scan chain #

Non-scan DFFs

in fan-out of last

SDFF in scan

chain “n”

Scan chain “n”

Combo

Logic

S = Scan

NS = Non-scan

Figure 14 Non-scan DFFs in fan-out of last SDFF in scan chain

32

These DFFs will capture X’s during the first capture cycle since the tool is unable to

simulate shift values for the last DFF in a scan chain. To prevent this, we override the set/reset

ports of all non-scan DFFs that are functionally adjacent to the last SDFF of each scan chain with

the scan enable signal so that they are either 1 or 0 at the end of shift instead of X as described in

[17] . If these non-scan DFFs are neither set nor reset DFFs, then we use a set or reset DFF to

be able to initialize them during shift. Figure 15 shows an example of how a resettable non-scan

DFF on the fan-out of last DFFs in scan chains is handled. A settable DFF shown in Figure 16 is

handled in the same manner where shift enables the set, rather than the reset. This resolved the

issue that was causing the X-generation.

SE

Functional Reset

D Q

R

Figure 15 Reset overriding for resettable non-scan flip-flop on fan-out of last flip-flop in scan

chain

33

During shift, SE=1. This guarantees the non-scan DFF in Figure 15 to be reset during and

at the end of the shift phase. The non-scan DFF in Figure 16 is guaranteed to be set during and at

the end of the shift phase. During functional mode, SE=0, so the overriding shown in Figure 15

and Figure 16 never affect functional mode of operation. In case of non-scan DFFs on the fan-out

of last DFFs in scan chains that have both set and reset pins, either set or reset can be overridden.

Non-scan DFFs on the fan-out of last DFFs in scan chains that are neither set nor reset

DFFs are dealt with in a unique way. We make these DFFs set or reset DFFs depending on whether

they fan-out to AND/NAND or OR/NOR gate. We configure these DFFs to be non-controlling to

ease the detection of all faults propagated through the other input of the AND/NAND or OR/NOR

gate. So, if the Q output of the DFF fans out to an AND gate without any inversion, we make it a

set DFF. If the Q output of the flip-flop fans out to a NOR gate without inversion, we make it a

reset DFF.

SE

Functional Set

D Q

SN

Figure 16 Set overriding for settable non-scan flip-flop on fan-out of last flip-flop in scan

chain

34

CHAPTER VI

RESULTS AND DISCUSSION

 All ATPG results shown in this section are with compression enabled. The same

compression hardware configuration is used for both full scan and partial scan.

 Since the number of scan chains in the design is fixed, there will be fewer DFFs per scan

chain in partial scan as compared to full-scan. This means fewer shift cycles per pattern. Hence, to

make a fair comparison w.r.t. pattern count, we introduce a new parameter: pattern volume which

is defined below:

Pattern volume = (Pattern count) x (Number of flip-flops in longest scan chain)

 Table 2 shows the full scan and original partial scan results for GPU shader core 1. The

original partial scan netlist is the one which does not include overlap threshold / sequential

redundancy checks. Also, the problematic DFFs are not excluded. The order of processing non-

scan candidate DFFs is increasing fan-out, increasing fan-in.

35

Table 2 Original partial scan results

Netlist

Non-scan DFF

% w.r.t. total

DFFs

(%)

Stuck-at ATPG Transition ATPG

Test

coverage

(%)

Pattern

Count

Pattern

volume

(K)

Test

coverage

(%)

Pattern

count

Pattern

volume

(K)

Full scan 99.75 11573 11631 97.46 27200 27336

Original

Partial scan

29.87 99.01 22396 15946 95.84 54243 38622

 SAF TC drops by 0.74% and TDF TC by 1.62%. PC nearly doubles in both cases. Pattern

volume increases by 37% and 41% for SAF and TDF ATPG respectively.

 Next, we determine the modules that have sequential redundancy and overlap threshold

problems. We determine modules that exhibit sequential redundancy by determining the full scan

faults that are both uncovered in TDF ATPG and covered in SAF ATPG. We then report these

faults hierarchically to determine the modules where sequential redundancy is concentrated.

It is important to understand that that not all sequentially redundant faults determined using

full scan TDF and SAFATPG results exist in the partial scan netlist. The sequentially redundant

faults determined this way give us all possible sequentially redundant faults. Sequentially

redundant faults contributed to ~0.26% (74K) of the total faults in the GPU shader core.

 Next, we need to determine the possibility of overlap threshold problem and the modules

where it is concentrated. For this, we take all uncovered faults from partial scan and delete all

sequentially redundant faults determined earlier. We also delete all untested faults from the full

36

scan ATPG run. This is done because the untested faults in full scan cannot be detected in partial

scan.

 Now that we have the untested faults from partial scan that are not sequentially redundant,

these need to be debugged manually to check for the overlap threshold problem. There is no

automation for this. We manually picked faults across different modules and determined the

overlap threshold problem.

 We found out that the same modules exhibited both sequential redundancy and overlap

threshold problems. We applied an overlap threshold limit of 1 for these modules. Table 3 shows

the results with overlap threshold (OT)/sequential redundancy (SR) check applied. Here again, the

non-scan candidates are processed in increasing fan-out, increasing fan-in order.

Table 3 Partial scan results with overlap threshold/sequential redundancy check

Netlist

Non-scan

DFF %

w.r.t. total

DFFs

 (%)

Stuck-at ATPG Transition ATPG

Test

coverage

(%)

Pattern

Count

Pattern

volume

(K)

Test

coverage

(%)

Pattern

count

Pattern

volume

(K)

Full scan 99.75 11573 11631 97.46 27200 27336

Original Partial

scan

29.87 99.01 22396 15946 95.84 54243 38622

Partial scan w/

OT/SR check

19.98 99.54 17194 13910 96.98 45101 36487

37

 The overlap threshold/sequential redundancy checks cause a loss of one-third of the non-

scan DFFs, but we gain 0.53% SAF TC and 1.14% TDF TC w.r.t. the original partial scan netlist.

Also, the pattern volume drops by 13% and 5.5% for SAF and TDF ATPG respectively w.r.t.

original partial scan. While we lose about a third of non-scan DFFs, we regain about two-thirds of

the lost fault coverage.

 Next, we determined the problematic non-scan DFFs in the partial scan netlist with overlap

threshold/sequential redundancy check. As described previously, there is a semi-automatic and an

automatic way to determine problematic non-scan DFFs. Based on the report given by our fault

debug script, fan-in and fan-out of non-scan DFFs have an upper limit of 120 and 100 respectively.

Also the order of processing non-scan DFFs is changed to increasing fan-in, increasing fan-out

order. This order was determined to be better based on the problematic DFFs report. Table 4 shows

the results with semi-automatic identification of problematic DFFs.

W.r.t. partial scan with only OT/SR check, we gain 0.14% SAF TC and 0.42% TDF TC.

With 20% non-scan DFFs, we are within 0.1% of TC w.r.t. full-scan ATPG. The pattern volume

increase is 8% and 24% for SAF and TDF ATPG respectively w.r.t. full-scan.

38

Table 4 Partial scan with semi-automatic identification of problematic non-scan DFFs

Netlist

Non-scan

DFF %

w.r.t. total

DFFs (%)

Stuck-at ATPG Transition ATPG

Test

coverage

(%)

Pattern

Count

Pattern

volume

(K)

Test

coverage

(%)

Pattern

count

Pattern

volume

(K)

Full scan 99.75 11573 11631 97.46 27200 27336

Original Partial

scan

29.87 99.01 22396 15946 95.84 54243 38622

Partial scan w/

OT/SR check

19.98 99.54 17194 13910 96.98 45101 36487

Partial scan w/

OT/SR and

semi-automatic

problematic

DFF check

20.36 99.68 15667 12612 97.40 42167 33945

Table 5 shows results with automatic identification of problematic non-scan DFFs. The

results of automatic and semi-automatic identification of problematic non-scan DFFs are very

close. W.r.t. semi-automatic problematic non-scan DFF identification, automatic identification

results in a 0.03% and 0.26% drop in stuck-at and transition TC respectively. Fan-in of the fan-out

flip-flops was limited to 70. As expected, semi-automatic identification can pin point the

problematic DFFs more accurately.

39

Table 5 Partial scan with automatic identification of problematic non-scan DFFs

Netlist

Non-scan

DFF %

w.r.t. total

DFFs (%)

Stuck-at ATPG Transition ATPG

Test

coverage

(%)

Pattern

Count

Pattern

volume

(K)

Test

coverage

(%)

Pattern

count

Pattern

volume

(K)

Full scan 99.75 11573 11631 97.46 27200 27336

Original Partial scan 29.87 99.01 22396 15946 95.84 54243 38622

Partial scan w/

OT/SR check

19.98 99.54 17194 13910 96.98 45101 36487

Final partial scan w/

OT/SR and semi-

automatic

problematic DFF

check

20.36 99.68 15667 12612 97.40 42167 33945

Final partial scan w/

OT/SR and

automatic

problematic DFF

check

20.34 99.65 16077 12959 97.14 37250 30024

40

We took all the learnings and attempted to apply them to another Arm® GPU shader core

block. Table 6 summarizes all results for shader core 2. Based on the problematic non-scan DFF

report given by our fault debug script, no fan-in/fan-out limit was required.

 Partial scan results of both the shader core blocks are similar in a number of ways. The

original partial scan netlist has 31% non-scan DFFs and one third of the non-scan DFFs are lost

by applying overlap threshold/sequential redundancy check. But by losing a third of the non-scan

DFFs, we gain half of the lost fault coverage. The coverage is bumped up further by eliminating

problematic DFFs. For the final partial scan netlist (with semi-automatic problematic non-scan

DFF identification), ATPG TC is within 0.1% of the full scan TC for both SAF and TDF.

 In the original partial scan netlist, SAF and TDF ATPG TC are 0.55% and 1.25% below

the corresponding full scan ATPG TC respectively. W.r.t. full scan, pattern volume increases by

117% for SAF and 108% for TDF ATPG.

In the partial scan netlist with the OT/SR check, SAF and TDF ATPG TC are 0.22% and

0.36% below the corresponding full scan ATPG TC. W.r.t. full scan, pattern volume increases by

90% for SAF and 89% for TDFATPG.

In the partial scan netlist with OT/SR check and semi-automatic problematic non-scan DFF

identification, SAF ATPG TC is 0.07% below full scan SAF ATPG TC. However, the transition

TC is 0.06% more than the corresponding full scan TC. W.r.t. full scan, pattern volume increases

by 80% for SAF and 87% for TDF ATPG.

41

Table 6 Partial scan results for GPU shader core 2

Netlist

Non-scan

DFF %

w.r.t. total

DFFs

 (%)

Stuck-at ATPG Transition ATPG

Test

coverage

(%)

Pattern

Count

Pattern

volume

(K)

Test

coverage

(%)

Pattern

count

Pattern

volume

(K)

Full scan 99.78 3956 3217 96.82 10624 8638

Original Partial

scan

31.39 99.23 12377 6994 95.57 32190 17914

Partial scan w/

OT/SR check

21.07 99.56 9458 6120 96.46 25212 16313

Final partial scan w/

OT/SR and semi-

automatic

problematic DFF

check

20.21 99.71 8880 5799

96.89 24703 16132

Final partial scan w/

OT/SR and

automatic

problematic DFF

check

20.19 99.60 9073 5934 96.5 22143

14482

42

For automatic problematic non-scan DFF identification, fan-in of the fan-out DFFs was

limited to 100. Unlike the earlier shader core 1, automatic detection of problematic non-scan DFFs

is not as effective as semi-automatic problematic non-scan DFF identification. SAF ATPG TC is

0.18% below full scan SAF ATPG TC. TDF TC is 0.32% below the corresponding full scan TC.

W.r.t. full scan the pattern volume increases by 85% for SAF and 68% for TDF ATPG.

PPA analysis was performed for the final partial scan netlist (using semi-automatic

problematic non-scan DFF identification) for GPU shader core 1. The PPA numbers shown in this

section are percentage change in partial scan netlist with respect to the full-scan netlist, due to the

proprietary nature of the data. Area and density results are shown in Table 7. Standard cell area

dropped by 0.92% and this is reflected on the total cell area. There is no change in RAM area

which is expected. No work was done to reduce the floorplan, so there is no change in total die

area. Physical utilization of the standard cells has dropped by 0.9%. We learned from our standard

cell team that due to their limited usage, the non-scan DFF standard cells are not optimized to the

same extent as their SDFF counterparts.

Table 7 GPU Shader Block Area/Density results

Difference w.r.t. full-scan

Standard cell area -0.92%

Total Area -0.66%

Density -0.90%

Area/Density results

43

Our vector-less power analysis results depicted in Table 8 show that leakage power

dropped by 0.5% while dynamic power dropped by 1.3%. Dynamic power simulations with

vectors were not run on this design.

Table 8 GPU Shader Block Power analysis results

Frequency results are shown in Table 9. Register to register (reg2reg) paths can now be

clocked at a frequency that is 2.09% higher with respect to full-scan. Maximum frequency for

input to register (in2reg) and register to output (reg2out) paths increased by 1.45%.

Table 9 GPU Shader Block Frequency results

Difference w.r.t. full-scan

Dynamic power -1.30%

Static power -0.50%

Power analysis results

Difference w.r.t. full-scan

regreg paths 2.09%

in2reg/reg2out paths 1.45%

Frequency results

44

The biggest benefit of partial scan is reflected in the total negative slack (TNS) results

shown in Table 10. On reg2reg paths, TNS improved by 77.5%. On in2reg paths, TNS improved

by 33.33%. There is no change in TNS for reg2out paths.

Table 10 GPU Shader Block TNS results

No change was seen in worst negative slack (WNS) result. According to the

implementation team that worked on shader core 1, achieving these PPA results with full scan

would require about 2 weeks of effort. Partial scan saved those 2 weeks of effort.

Difference w.r.t. full-scan

regreg paths -77.50%

in2reg paths -33.33%

reg2out paths 0.00%

Hold TNS results

45

CHAPTER VII

CONCLUSION AND FUTURE WORK

We presented our partial scan algorithm as a complex amalgamation of several checks. We

introduced sequentially redundant faults that manifest themselves during partial scan SAF ATPG

and presented a way not only to determine them but also eliminate/contain them. We presented

two different ways to identify problematic non-scan DFFs.

With 20% non-scan DFFs our ATPG TC lies within 0.1% of the full scan TC for both SAF

and TDF. We have proven the effectiveness of this algorithm on two different GPU shader cores.

In Chapter VI, we saw PPA improvements in the partial scan design, the most noteworthy

improvement being in the hold TNS.

One way to extend this work would be to analyze the presence of overlap threshold problem

in an automated way. In our work, overlap threshold problem was detected manually. Another area

for future work would be to involve test point analysis to determine locations of problematic DFFs.

In our work, we did not have any PPA targets. If DFFs on critical paths or congestion prone

areas are made non-scan, PPA improvements can be even better. However, consolidating desired

PPA and testability is a challenge. Also, physical design information will be needed before

performing scan insertion.

One downside of using partial scan is the reduced debug capability on silicon. The area of

post silicon debug on a partial scan design must be investigated. Also, if Logic Built-In Self-Test

(LBIST) is used, partial scan might mandate more test points thus negating the benefits. Partial

scan for designs with LBIST would be a challenging area for future research.

46

Near Threshold Voltage (NTV) designs are being considered for ultra-low power

applications. Partial scan benefits should be explored in such designs.

47

REFERENCES

[1] L. -T. Wang, C. E. Stroud, N. A. Touba (Eds.), “System on Chip Test Architectures”,

Morgan Kaufmann, Burlington, MA, 2008

[2] K. -T. Cheng, V. D. Agrawal, “A partial scan method for sequential circuits with

feedback”, IEEE Transactions on Computers, Vol. 39, No. 4, pp. 544-548, Washington,

DC, 1990

[3] S. T. Chakradhar, A. Balakrishnan, V. D. Agrawal, “An Exact Algorithm for

Selecting Partial Scan DFFs”, Design Automation Conference, pp. 81-86, San Diego,

CA, 1994

[4] D. H. Lee, S. M. Reddy, “On determining scan DFFs in partial-scan designs”, IEEE

International Conference on Computer-Aided Design, pp. 322-325, Santa Clara, CA,

1990

[5] R. Gupta, M. A. Breuer, “The Ballast methodology for structured partial scan design”,

IEEE Transactions on Computers, Vol. 39, No. 4, pp. 538-544, Washington, DC, 1990

[6] V. Chickermane, J. H. Patel, “An optimization based approach to the partial scan design

problem”, International Test Conference, pp. 377-386, Washington, DC, 1990

[7] V. Chickermane, J. H. Patel, “A fault oriented partial scan design approach”, IEEE

International Conference on Computer-Aided Design, pp. 400-403, Santa Clara, CA,

1991

[8] V. D. Agrawal, K. -T. Cheng, D. Johnson, T. Lin, “Designing circuits with partial scan”,

IEEE Design and Test of Computers, Vol. 5, No. 2, pp. 8-15, 1988

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.K.%20-T.%20Cheng.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.V.%20D.%20Agrawal.QT.&newsearch=true
http://ieeexplore.ieee.org/document/54847/
http://ieeexplore.ieee.org/document/54847/
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=12
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=1979
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.S.%20T.%20Chakradhar.QT.&newsearch=true
http://ieeexplore.ieee.org/document/1600350/
http://ieeexplore.ieee.org/document/1600350/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10665
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.D.%20H.%20Lee.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.S.%20M.%20Reddy.QT.&newsearch=true
http://ieeexplore.ieee.org/document/129914/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=296
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=296
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.R.%20Gupta.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.M.%20A.%20Breuer.QT.&newsearch=true
http://ieeexplore.ieee.org/document/54846/
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=12
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=1979
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.V.%20Chickermane.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.J.%20H.%20Patel.QT.&newsearch=true
http://ieeexplore.ieee.org/document/114045/
http://ieeexplore.ieee.org/document/114045/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=485
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.V.%20Chickermane.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.J.%20H.%20Patel.QT.&newsearch=true
http://ieeexplore.ieee.org/document/185287/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=345
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=345
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.V.%20D.%20Agrawal.QT.&newsearch=true
http://ieeexplore.ieee.org/document/2032/
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=54

48

[9] V. Jain, J. Waicukauski, “Scan Test Data Volume Reduction in Multi-Clocked Designs

with Safe Capture Technique”, International Test Conference, pp. 148-153, Baltimore,

MD, 2002

[10] I. Pomeranz, S. M. Reddy, “On Test Data Compression and n-Detection Test Sets”,

Design Automation Conference, pp. 748-751, Anaheim, CA, 2003

[11] G. Bhargava, D. Meehl, J. Sage, “Achieving serendipitous N-detect mark-offs in Multi-

Capture-Clock scan patterns”, International Test Conference, pp. 1-7, Santa Clara, CA,

2007

[12] M. A. Iyer, D. E. Long, M. Abramovici, “Surprises in Sequential Redundancy

Identification”, European Design and Test Conference, pp. 88-94, Paris, France, 1996

[13] M. Damiani, G. D. Micheli, “Synchronous Logic Synthesis: Circuit Specifications and

Optimization Algorithms”, IEEE International Symposium on Circuits and Systems, pp.

2566-2570, New Orleans, LA, 1990

[14] K. -T. Cheng, “On removing redundancy in sequential circuits”, Design Automation

Conference, pp. 164-169, San Francisco, CA, 1991

[15] M. A. Iyer, D. E. Long, M. Abramovici, “Identifying Sequential Redundancies Without

Search”, Design Automation Conference, pp. 457-462, Las Vegas, NV, 1996

[16] J. Savir, S. Patil, “On broad-side delay test”, IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, Vol. 2 Issue 3, pp. 368-372, Piscataway, NJ, 1994

[17] M. Abramovici, P. S. Parikh, B. Mathew, D. G. Saab, "On selecting DFFs for partial

reset", International Test Conference, pp. 1008-1012, Baltimore, MD, 1993

http://ieeexplore.ieee.org/document/4437648/
http://ieeexplore.ieee.org/document/4437648/
https://dl.acm.org/author_page.cfm?id=81384615208&coll=DL&dl=ACM&trk=0

