9 research outputs found

    Acceleration of ListNet for ranking using reconfigurable architecture

    Get PDF
    Document ranking is used to order query results by relevance with ranking models. ListNet is a well-known ranking approach for constructing and training learning-to-rank models. Compared with traditional learning approaches, ListNet delivers better accuracy, but is computationally too expensive to learn models with large data sets due to the large number of permutations and documents involved in computing the gradients. Currently, the long training time limits the practicality of ListNet in ranking applications such as breaking news search and stock prediction, and this situation is getting worse with the increase in data-set size. In order to tackle the challenge of long training time, this thesis optimises the ListNet algorithm, and designs hardware accelerators for learning the ListNet algorithm using Field Programmable Gate Arrays (FPGAs), making the algorithm more practical for real-world application. The contributions of this thesis include: 1) A novel computation method of the ListNet algorithm for ranking. The proposed computation method exposes more fine-grained parallelism for FPGA implementation. 2) A weighted sampling method that takes into account the ranking positions, along with an effective quantisation method based on FPGA devices. The proposed design achieves a 4.42x improvement over GPU implementation speed, while still guaranteeing the accuracy. 3) A full reconfigurable architecture for the ListNet training using multiple bitstream kernels. The proposed method achieves a higher model accuracy than pure fixed point training, and a better throughput than pure floating point training. This thesis has resulted in the acceleration of the ListNet algorithm for ranking using FPGAs by applying the above techniques. Significant improvements in speed have been achieved in this work against CPU and GPU implementations.Open Acces

    Leveraging Multiple Features for Image Retrieval and Matching

    Get PDF
    The goal of image retrieval and matching is to find and locate object instances in images from a large-scale image database. While visual features are abundant, how to combine them to improve performance by individual features remains a challenging task. In this work, we focus on leveraging multiple features for accurate and efficient image retrieval and matching. We first propose two graph-based approaches to rerank initially retrieved images for generic image retrieval. In the graph, vertices are images while edges are similarities between image pairs. Our first approach employs a mixture Markov model based on a random walk model on multiple graphs to fuse graphs. We introduce a probabilistic model to compute the importance of each feature for graph fusion under a naive Bayesian formulation, which requires statistics of similarities from a manually labeled dataset containing irrelevant images. To reduce human labeling, we further propose a fully unsupervised reranking algorithm based on a submodular objective function that can be efficiently optimized by greedy algorithm. By maximizing an information gain term over the graph, our submodular function favors a subset of database images that are similar to query images and resemble each other. The function also exploits the rank relationships of images from multiple ranked lists obtained by different features. We then study a more well-defined application, person re-identification, where the database contains labeled images of human bodies captured by multiple cameras. Re-identifications from multiple cameras are regarded as related tasks to exploit shared information. We apply a novel multi-task learning algorithm using both low level features and attributes. A low rank attribute embedding is joint learned within the multi-task learning formulation to embed original binary attributes to a continuous attribute space, where incorrect and incomplete attributes are rectified and recovered. To locate objects in images, we design an object detector based on object proposals and deep convolutional neural networks (CNN) in view of the emergence of deep networks. We improve a Fast RCNN framework and investigate two new strategies to detect objects accurately and efficiently: scale-dependent pooling (SDP) and cascaded rejection classifiers (CRC). The SDP improves detection accuracy by exploiting appropriate convolutional features depending on the scale of input object proposals. The CRC effectively utilizes convolutional features and greatly eliminates negative proposals in a cascaded manner, while maintaining a high recall for true objects. The two strategies together improve the detection accuracy and reduce the computational cost

    Action recognition from RGB-D data

    Get PDF
    In recent years, action recognition based on RGB-D data has attracted increasing attention. Different from traditional 2D action recognition, RGB-D data contains extra depth and skeleton modalities. Different modalities have their own characteristics. This thesis presents seven novel methods to take advantages of the three modalities for action recognition. First, effective handcrafted features are designed and frequent pattern mining method is employed to mine the most discriminative, representative and nonredundant features for skeleton-based action recognition. Second, to take advantages of powerful Convolutional Neural Networks (ConvNets), it is proposed to represent spatio-temporal information carried in 3D skeleton sequences in three 2D images by encoding the joint trajectories and their dynamics into color distribution in the images, and ConvNets are adopted to learn the discriminative features for human action recognition. Third, for depth-based action recognition, three strategies of data augmentation are proposed to apply ConvNets to small training datasets. Forth, to take full advantage of the 3D structural information offered in the depth modality and its being insensitive to illumination variations, three simple, compact yet effective images-based representations are proposed and ConvNets are adopted for feature extraction and classification. However, both of previous two methods are sensitive to noise and could not differentiate well fine-grained actions. Fifth, it is proposed to represent a depth map sequence into three pairs of structured dynamic images at body, part and joint levels respectively through bidirectional rank pooling to deal with the issue. The structured dynamic image preserves the spatial-temporal information, enhances the structure information across both body parts/joints and different temporal scales, and takes advantages of ConvNets for action recognition. Sixth, it is proposed to extract and use scene flow for action recognition from RGB and depth data. Last, to exploit the joint information in multi-modal features arising from heterogeneous sources (RGB, depth), it is proposed to cooperatively train a single ConvNet (referred to as c-ConvNet) on both RGB features and depth features, and deeply aggregate the two modalities to achieve robust action recognition

    Learning Label Structures with Neural Networks for Multi-label Classification

    Get PDF
    Multi-label classification (MLC) is the task of predicting a set of labels for a given input instance. A key challenge in MLC is how to capture underlying structures in label spaces. Due to the computational cost of learning from all possible label combinations, it is crucial to take into account scalability as well as predictive performance when we deal with large scale MLC problems. Another problem that arises when building MLC systems is which evaluation measures need to be used for performance comparison. Unlike traditional multi-class classification, several evaluation measures are often used together in MLC because each measure prefers a different MLC system. In other words, we need to understand the properties of MLC evaluation measures and build a system which performs well in terms of those evaluation measures in which we are particularly interested. In this thesis, we develop neural network architectures that efficiently and effectively utilize underlying label structures in large-scale MLC problems. In the literature, neural networks (NNs) that learn from pairwise relationships between labels have been used, but they do not scale well on large-scale label spaces. Thus, we propose a comparably simple NN architecture that uses a loss function which ignores label dependencies. We demonstrate that simpler NNs using cross-entropy per label works better than more complex NNs, particularly in terms of rank loss, an evaluation measure that takes into account the number of incorrectly ranked label pairs. Another commonly considered evaluation measure is subset 0/1 loss. Classifier chains (CCs) have shown state-of-the-art performance in terms of that measure because the joint probability of labels is optimized explicitly. CCs essentially convert the problem of learning the joint probability into a sequential prediction problem. Then, the task is to predict a sequence of binary values for labels. Contrary to the aforementioned NN architecture which ignores label structures, we study recurrent neural networks (RNNs) so as to make use of sequential structures on label chains. The proposed RNNs are advantageous over CC approaches when dealing with a large number of labels due to parameter sharing effects in RNNs and their abilities to learn from long sequences. Our experimental results also confirm that their superior performance on very large label spaces. In addition to NNs that learn from label sequences, we present two novel NN-based methods that learn a joint space of instances and labels efficiently while exploiting label structures. The proposed joint space learning methods project both instances and labels into a lower dimensional space in a way that minimizes the distance between an instance and its relevant labels in that space. While the goal of both joint space learning methods is same, they use different additional information on label spaces during training: One approach makes use of hierarchical structures of labels and can be useful when such label structures are given by human experts. The other uses latent label spaces learned from textual label descriptions so that we can apply it to more general MLC problems where no explicit label structures are available. Notwithstanding the difference between the two approaches, both approaches allow us to make predictions with respect to labels that have not been seen during training

    Geographic information extraction from texts

    Get PDF
    A large volume of unstructured texts, containing valuable geographic information, is available online. This information – provided implicitly or explicitly – is useful not only for scientific studies (e.g., spatial humanities) but also for many practical applications (e.g., geographic information retrieval). Although large progress has been achieved in geographic information extraction from texts, there are still unsolved challenges and issues, ranging from methods, systems, and data, to applications and privacy. Therefore, this workshop will provide a timely opportunity to discuss the recent advances, new ideas, and concepts but also identify research gaps in geographic information extraction
    corecore