2,748 research outputs found

    GPU acceleration of brain image proccessing

    Get PDF
    Durante los últimos años se ha venido demostrando el alto poder computacional que ofrecen las GPUs a la hora de resolver determinados problemas. Al mismo tiempo, existen campos en los que no es posible beneficiarse completamente de las mejoras conseguidas por los investigadores, debido principalmente a que los tiempos de ejecución de las aplicaciones llegan a ser extremadamente largos. Este es por ejemplo el caso del registro de imágenes en medicina. A pesar de que se han conseguido aceleraciones sobre el registro de imágenes, su uso en la práctica clínica es aún limitado. Entre otras cosas, esto se debe al rendimiento conseguido. Por lo tanto se plantea como objetivo de este proyecto, conseguir mejorar los tiempos de ejecución de una aplicación dedicada al resgitro de imágenes en medicina, con el fin de ayudar a aliviar este problema

    GPU-based ultra-fast direct aperture optimization for online adaptive radiation therapy

    Full text link
    Online adaptive radiation therapy (ART) has great promise to significantly reduce normal tissue toxicity and/or improve tumor control through real-time treatment adaptations based on the current patient anatomy. However, the major technical obstacle for clinical realization of online ART, namely the inability to achieve real-time efficiency in treatment re-planning, has yet to be solved. To overcome this challenge, this paper presents our work on the implementation of an intensity modulated radiation therapy (IMRT) direct aperture optimization (DAO) algorithm on graphics processing unit (GPU) based on our previous work on CPU. We formulate the DAO problem as a large-scale convex programming problem, and use an exact method called column generation approach to deal with its extremely large dimensionality on GPU. Five 9-field prostate and five 5-field head-and-neck IMRT clinical cases with 5\times5 mm2 beamlet size and 2.5\times2.5\times2.5 mm3 voxel size were used to evaluate our algorithm on GPU. It takes only 0.7~2.5 seconds for our implementation to generate optimal treatment plans using 50 MLC apertures on an NVIDIA Tesla C1060 GPU card. Our work has therefore solved a major problem in developing ultra-fast (re-)planning technologies for online ART

    Efficient Bayesian-based Multi-View Deconvolution

    Full text link
    Light sheet fluorescence microscopy is able to image large specimen with high resolution by imaging the sam- ples from multiple angles. Multi-view deconvolution can significantly improve the resolution and contrast of the images, but its application has been limited due to the large size of the datasets. Here we present a Bayesian- based derivation of multi-view deconvolution that drastically improves the convergence time and provide a fast implementation utilizing graphics hardware.Comment: 48 pages, 20 figures, 1 table, under review at Nature Method

    GPU-based Iterative Cone Beam CT Reconstruction Using Tight Frame Regularization

    Full text link
    X-ray imaging dose from serial cone-beam CT (CBCT) scans raises a clinical concern in most image guided radiation therapy procedures. It is the goal of this paper to develop a fast GPU-based algorithm to reconstruct high quality CBCT images from undersampled and noisy projection data so as to lower the imaging dose. For this purpose, we have developed an iterative tight frame (TF) based CBCT reconstruction algorithm. A condition that a real CBCT image has a sparse representation under a TF basis is imposed in the iteration process as regularization to the solution. To speed up the computation, a multi-grid method is employed. Our GPU implementation has achieved high computational efficiency and a CBCT image of resolution 512\times512\times70 can be reconstructed in ~5 min. We have tested our algorithm on a digital NCAT phantom and a physical Catphan phantom. It is found that our TF-based algorithm is able to reconstrct CBCT in the context of undersampling and low mAs levels. We have also quantitatively analyzed the reconstructed CBCT image quality in terms of modulation-transfer-function and contrast-to-noise ratio under various scanning conditions. The results confirm the high CBCT image quality obtained from our TF algorithm. Moreover, our algorithm has also been validated in a real clinical context using a head-and-neck patient case. Comparisons of the developed TF algorithm and the current state-of-the-art TV algorithm have also been made in various cases studied in terms of reconstructed image quality and computation efficiency.Comment: 24 pages, 8 figures, accepted by Phys. Med. Bio

    Development of a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport

    Full text link
    Monte Carlo simulation is the most accurate method for absorbed dose calculations in radiotherapy. Its efficiency still requires improvement for routine clinical applications, especially for online adaptive radiotherapy. In this paper, we report our recent development on a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport. We have implemented the Dose Planning Method (DPM) Monte Carlo dose calculation package (Sempau et al, Phys. Med. Biol., 45(2000)2263-2291) on GPU architecture under CUDA platform. The implementation has been tested with respect to the original sequential DPM code on CPU in phantoms with water-lung-water or water-bone-water slab geometry. A 20 MeV mono-energetic electron point source or a 6 MV photon point source is used in our validation. The results demonstrate adequate accuracy of our GPU implementation for both electron and photon beams in radiotherapy energy range. Speed up factors of about 5.0 ~ 6.6 times have been observed, using an NVIDIA Tesla C1060 GPU card against a 2.27GHz Intel Xeon CPU processor.Comment: 13 pages, 3 figures, and 1 table. Paper revised. Figures update
    corecore