246 research outputs found

    New rate adaptation method for JPEG2000-based SNR Scalable Video Coding with Integer Linear Programming models

    Get PDF
    Abstract—In the last few years scalable video coding emerged as a promising technology for efficient distribution of videos through heterogeneous networks. In a heterogeneous environment, the video content needs to be adapted in order to meet different end terminal capability requirements (user adaptation) or fluctuations of the available bandwidth (network adaptation). Consequently, the adaptation problem is a critical issue in scalable video coding design. In this paper we introduce a new adaptation method for a proposed JPEG2000-based SNR scalable codec, that formulates and solves the adaptation problem as an Integer Linear Programming problem

    RBF-Based QP Estimation Model for VBR Control in H.264/SVC

    Get PDF
    In this paper we propose a novel variable bit rate (VBR) controller for real-time H.264/scalable video coding (SVC) applications. The proposed VBR controller relies on the fact that consecutive pictures within the same scene often exhibit similar degrees of complexity, and consequently should be encoded using similar quantization parameter (QP) values for the sake of quality consistency. In oder to prevent unnecessary QP fluctuations, the proposed VBR controller allows for just an incremental variation of QP with respect to that of the previous picture, focusing on the design of an effective method for estimating this QP variation. The implementation in H.264/SVC requires to locate a rate controller at each dependency layer (spatial or coarse grain scalability). In particular, the QP increment estimation at each layer is computed by means of a radial basis function (RBF) network that is specially designed for this purpose. Furthermore, the RBF network design process was conceived to provide an effective solution for a wide range of practical real-time VBR applications for scalable video content delivery. In order to assess the proposed VBR controller, two real-time application scenarios were simulated: mobile live streaming and IPTV broadcast. It was compared to constant QP encoding and a recently proposed constant bit rate (CBR) controller for H.264/SVC. The experimental results show that the proposed method achieves remarkably consistent quality, outperforming the reference CBR controller in the two scenarios for all the spatio-temporal resolutions considered.Proyecto CCG10-UC3M/TIC-5570 de la Comunidad Autónoma de Madrid y Universidad Carlos III de MadridPublicad

    Temporal scalability comparison of the H.264/SVC and distributed video codec

    Get PDF

    Low-complexity VBR controller for spatial-CGS and temporal scalable video coding

    Get PDF
    This paper presents a rate control (RC) algorithm for the scalable extension of the H.264/AVC video coding standard. The proposed rate controller is designed for real-time video streaming with buffer constraint. Since a large buffer delay and bit rate variation are allowed in this kind of applications, our proposal reduces the quantization parameter (QP) fluctuation to provide consistent visual quality bit streams to receivers with a variety of spatio-temporal resolutions and processing capabilities. The low computational cost is another characteristic of the described method, since a simple lookup table is used to regulate the QP variation on a frame basis

    In-layer multi-buffer framework for rate-controlled scalable video coding

    Get PDF
    Temporal scalability is supported in scalable video coding (SVC) by means of hierarchical prediction structures, where the higher layers can be ignored for frame rate reduction. Nevertheless, this kind of scalability is not totally exploited by the rate control (RC) algorithms since the hypothetical reference decoder (HRD) requirement is only satisfied for the highest frame rate sub-stream of every dependency (spatial or coarse grain scalability) layer. In this paper we propose a novel RC approach that aims to deliver several HRD-compliant temporal resolutions within a particular dependency layer. Instead of using the common SVC encoder configuration consisting of a dependency layer per each temporal resolution, a compact configuration that does not require additional dependency layers for providing different HRD-compliant temporal resolutions is proposed. Specifically, the proposed framework for rate-controlled SVC uses a set of virtual buffers within a dependency layer so that their levels can be simultaneously controlled for overflow and underflow prevention while minimizing the reconstructed video distortion of the corresponding sub-streams. This in-layer multi-buffer approach has been built on top of a baseline H.264/SVC RC algorithm for variable bit rate applications. The experimental results show that our proposal achieves a good performance in terms of mean quality, quality consistency, and buffer control using a reduced number of layers.This work has been partially supported by the National Grant TEC2011-26807 of the Spanish Ministry of Science and Innovation.Publicad

    RBF-Based QP Estimation Model for VBR Control in H.264/SVC

    Full text link

    A parallel H.264/SVC encoder for high definition video conferencing

    Get PDF
    In this paper we present a video encoder specially developed and configured for high definition (HD) video conferencing. This video encoder brings together the following three requirements: H.264/Scalable Video Coding (SVC), parallel encoding on multicore platforms, and parallel-friendly rate control. With the first requirement, a minimum quality of service to every end-user receiver over Internet Protocol networks is guaranteed. With the second one, real-time execution is accomplished and, for this purpose, slice-level parallelism, for the main encoding loop, and block-level parallelism, for the upsampling and interpolation filtering processes, are combined. With the third one, a proper HD video content delivery under certain bit rate and end-to-end delay constraints is ensured. The experimental results prove that the proposed H.264/SVC video encoder is able to operate in real time over a wide range of target bit rates at the expense of reasonable losses in rate-distortion efficiency due to the frame partitioning into slices
    corecore