10,474 research outputs found

    GIS and urban design

    Get PDF
    Although urban planning has used computer models and information systems sincethe 1950s and architectural practice has recently restructured to the use of computeraideddesign (CAD) and computer drafting software, urban design has hardly beentouched by the digital world. This is about to change as very fine scale spatial datarelevant to such design becomes routinely available, as 2dimensional GIS(geographic information systems) become linked to 3dimensional CAD packages,and as other kinds of photorealistic media are increasingly being fused with thesesoftware. In this chapter, we present the role of GIS in urban design, outlining whatcurrent desktop software is capable of and showing how various new techniques canbe developed which make such software highly suitable as basis for urban design.We first outline the nature of urban design and then present ideas about how varioussoftware might form a tool kit to aid its process. We then look in turn at: utilisingstandard mapping capabilities within GIS relevant to urban design; buildingfunctional extensions to GIS which measure local scale accessibility; providingsketch planning capability in GIS and linking 2-d to 3-d visualisations using low costnet-enabled CAD browsers. We finally conclude with some speculations on thefuture of GIS for urban design across networks whereby a wide range of participantsmight engage in the design process digitally but remotely

    Smart Geographic object: Toward a new understanding of GIS Technology in Ubiquitous Computing

    Get PDF
    One of the fundamental aspects of ubiquitous computing is the instrumentation of the real world by smart devices. This instrumentation constitutes an opportunity to rethink the interactions between human beings and their environment on the one hand, and between the components of this environment on the other. In this paper we discuss what this understanding of ubiquitous computing can bring to geographic science and particularly to GIS technology. Our main idea is the instrumentation of the geographic environment through the instrumentation of geographic objects composing it. And then investigate how this instrumentation can meet the current limitations of GIS technology, and offers a new stage of rapprochement between the earth and its abstraction. As result, the current research work proposes a new concept we named Smart Geographic Object SGO. The latter is a convergence point between the smart objects and geographic objects, two concepts appertaining respectively to

    Multi-dimensional modelling for the national mapping agency: a discussion of initial ideas, considerations, and challenges

    Get PDF
    The Ordnance Survey, the National Mapping Agency (NMA) for Great Britain, has recently begun to research the possible extension of its 2-dimensional geographic information into a multi-dimensional environment. Such a move creates a number of data creation and storage issues which the NMA must consider. Many of these issues are highly relevant to all NMA’s and their customers alike, and are presented and explored here. This paper offers a discussion of initial considerations which NMA’s face in the creation of multi-dimensional datasets. Such issues include assessing which objects should be mapped in 3 dimensions by a National Mapping Agency, what should be sensibly represented dynamically, and whether resolution of multi-dimensional models should change over space. This paper also offers some preliminary suggestions for the optimal creation method for any future enhanced national height model for the Ordnance Survey. This discussion includes examples of problem areas and issues in both the extraction of 3-D data and in the topological reconstruction of such. 3-D feature extraction is not a new problem. However, the degree of automation which may be achieved and the suitability of current techniques for NMA’s remains a largely unchartered research area, which this research aims to tackle. The issues presented in this paper require immediate research, and if solved adequately would mark a cartographic paradigm shift in the communication of geographic information – and could signify the beginning of the way in which NMA’s both present and interact with their customers in the future

    Integration Of Travel Time Zone For Optimal Siting Of Emergency Facilities

    Get PDF
    Conventional facility location models only define a facility’s service area simply as a circular coverage. Such definition is not appropriate for emergency facilities like fire stations and ambulances, as the services are influenced by road accessibility. To improve service area definition in conventional models, this study developed the model that utilizes the capability of GIS to define service areas as travel time zones generated through road network analysis. The objective of the model is to maximize total service area of a fixed number of facilities. Hence it is called the Maximal Service Area Problem (MSAP). The MSAP is a discrete model where a specified number of facilities that achieve the best objective function value of the model are selected out of a finite set of candidate sites. A method involving multi criteria analysis was introduced to determine candidate sites in a per zone basis. Particular geometric figures commonly used for tessellations, like hexagon and square, were utilized to divide the study area into zones of equal size. The candidate sites were then chosen from the sites that have the highest value of the site suitability index within each zone, combined with the sites of existing facilities. Fire stations in Jakarta Selatan were chosen for simulation. Two algorithms, Greedy Adding (Add) and Greedy Adding with Travel Time Evaluation (GAT), were applied to solve the optimization problem of the MSAP. The planar space of demand region was divided into regular points to simplify calculation of area of coverage. The number of points intersecting with the set of service area polygons (z) was used as the surrogate information to measure the actual area of coverage (A). This way has made the optimization process faster. In a fine resolution of demand points, percentages of coverage based on z and A values were not much different. Hence, the z values were sufficient to measure solution qualities yielded by the algorithms. Integration of the site suitability evaluation and tessellations has been proved workable to obtain scattered candidate sites that allow good solutions to be achieved in the optimization process. Of four simulations conducted, both Add and GAT yielded better coverage than the existing coverage with the same number of fire stations within the same travel time. Add managed to reach the best 82.81% coverage and GAT did 81.68%, whereas the existing only reaches 73.69%

    Visual communication in urban planning and urban design

    Get PDF
    This report documents the current status of visual communication in urban design and planning. Visual communication is examined through discussion of standalone and network media, specifically concentrating on visualisation on the World Wide Web(WWW).Firstly, we examine the use of Solid and Geometric Modelling for visualising urban planning and urban design. This report documents and compares examples of the use of Virtual Reality Modelling Language (VRML) and proprietary WWW based Virtual Reality modelling software. Examples include the modelling of Bath and Glasgow using both VRML 1.0 and 2.0. A review is carried out on the use of Virtual Worldsand their role in visualising urban form within multi-user environments. The use of Virtual Worlds is developed into a case study of the possibilities and limitations of Virtual Internet Design Arenas (ViDAs), an initiative undertaken at the Centre for Advanced Spatial Analysis, University College London. The use of Virtual Worlds and their development towards ViDAs is seen as one of the most important developments in visual communication for urban planning and urban design since the development plan.Secondly, photorealistic media in the process of communicating plans is examined.The process of creating photorealistic media is documented, examples of the Virtual Streetscape and Wired Whitehall Virtual Urban Interface System are provided. The conclusion is drawn that although the use of photo-realistic media on the WWW provides a way to visually communicate planning information, its use is limited. The merging of photorealistic media and solid geometric modelling is reviewed in the creation of Augmented Reality. Augmented Reality is seen to provide an important step forward in the ability to quickly and easily visualise urban planning and urban design information.Thirdly, the role of visual communication of planning data through GIS is examined interms of desktop, three dimensional and Internet based GIS systems. The evolution to Internet GIS is seen as a critical component in the development of virtual cities which will allow urban planners and urban designers to visualise and model the complexity of the built environment in networked virtual reality.Finally a viewpoint is put forward of the Virtual City, linking Internet GIS with photorealistic multi-user Virtual Worlds. At present there are constraints on how far virtual cities can be developed, but a view is provided on how these networked virtual worlds are developing to aid visual communication in urban planning and urban design

    Proceedings of Workshop on New developments in Space Syntax software

    Get PDF

    Integration of 3 dimensional parametric building model with geographic information systems in educational facilities planning and management

    Get PDF
    The efficient management of buildings and grounds of colleges and universities require an increased amount of information that is current, well organized and easy to access. This information is first generated at the planning stage of the facility before it is even designed. A seamless database containing current and accurate information about the facility and a tool that allows decision-makers to graphically relate the database with the physical location of the information provides a system to better integrate the decision making process from planning to actual operations and maintenance of the facility. This thesis presents an operational environment for facilities managers that integrates the 3 dimensional parametric building modeling with geographic information systems, both related to a common database, and explores the possible benefits and costs of using this integrated system
    corecore