9 research outputs found

    GASA-JOSH: a Hybrid Evolutionary-Annealing Approach for Job-Shop Scheduling Problem

    Full text link
    The job-shop scheduling problem is well known for its complexity as an NP-hard problem. We have considered JSSPs with an objective of minimizing makespan. In this paper, we develope a hybrid approach for solving JSSPs called GASA-JOSH. In GASA-JOSH, the population is divided in non-cooperative groups. Each group must refer to a method pool and choose genetic algorithm or simulated annealing to solve the problem. The best result of each group is maintained in a solution set, and then the best solution to the whole population is chosen among the elements of the solution set and reported as outcome. The proposed approach have been compared with other algorithms for job-shop scheduling and evaluated with satisfactory results on a large set of JSSPs derived from classical job-shop scheduling benchmarks. We have solved 23 benchmark problems and compared results obtained with a number of algorithms established in the literature

    GASA-JOSH: A Hybrid Evolutionary-Annealing Approach for Job-Shop Scheduling Problem

    Get PDF
    The job-shop scheduling problem is well known for its complexity as an NP-hard problem. We have considered JSSPs with an objective of minimizing makespan. In this paper, we develope a hybrid approach for solving JSSPs called GASA-JOSH. In GASA-JOSH, the population is divided in non-cooperative groups. Each group must refer to a method pool and choose genetic algorithm or simulated annealing to solve the problem. The best result of each group is maintained in a solution set, and then the best solution to the whole population is chosen among the elements of the solution set and reported as outcome. The proposed approach have been compared with other algorithms for job-shop scheduling and evaluated with satisfactory results on a large set of JSSPs derived from classical job-shop scheduling benchmarks. We have solved 23 benchmark problems and compared results obtained with a number of algorithms established in the literature

    Investigation of reconfiguration effect on makespan with social network method for flexible job shop scheduling problem

    Get PDF
    This paper presents a novel social network analysis based method (SNAM) to evaluate the reconfiguration effect i.e., identification of key machines and their influence on the system performance in the context of Flexible job shop scheduling problem (FJSSP). This research formulates a mathematical model along with the constraints by incorporating the total completion time of jobs as an objective function. The proposed SNAM has been applied to generate the collaboration networks by transforming the input data and presenting them in the form of an affiliation matrix to the network analysis software. Thereafter, to analyze the collaboration networks various SNA measures that have been calculated and different functional properties are evaluated. Finally, to investigate the reconfiguration effect on makespan integration of process planning and scheduling (IPPS) has been implemented with adopted effective game theory based hybrid deoxyribonucleic acid (DNA) algorithm. The validation of the proposed approach and its effectiveness is conducted through comparisons with benchmark instances and results confirm the efficiency of the proposed approach.This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio

    Hybrid multiobjective genetic algorithm for integrated dynamic scheduling and routing of jobs and automated guided vehicles in flexible manufacturing systems

    Get PDF
    The dynamic continues trend of adoption and improvement inventive automated technologies is one of the main competing strategies of many manufacturing industries. Effective integrated operations management of Automated Guided Vehicle (AGV) system in Flexible Manufacturing System (FMS) environment results in the overall system performance. Routing AGVs was proved to be NP-Complete and scheduling of jobs was also proved to be NP hard problems. The running time of any deterministic algorithms solving these types of problems increases very rapidly with the size of the problem, which can be many years with any computational resources available presently. Solving AGVs conflict free routing, dispatching and simultaneous scheduling of the jobs and AGVs in FMS in an integrated manner is identified as the only means of safeguarding the feasibility of the solution to each sub-problem. Genetic algorithm has recorded of huge success in solving NP-Complete optimization problems with similar nature to this problem. The objectives of this research are to develop an algorithm for integrated scheduling and conflict-free routing of jobs and AGVs in FMS environment using a hybrid genetic algorithm, ensure the algorithm validity and improvement on the performance of the developed algorithm. The algorithm generates an integrated scheduling and detail paths route while optimizing makespan, AGV travel time, mean flow time and penalty cost due to jobs tardiness and delay as a result of conflict avoidance. The integrated algorithms use two genetic representations for the individual solution entire sub-chromosomes. The first three sub-chromosomes use random keys to represent jobs sequencing, operations allocation on machines and AGV dispatching, while the remaining sub-chromosomes are representing particular routing paths to be used by each dispatched AGV. The multiobjective fitness function use adaptive weight approach to assign weights to each objective for every generation based on objective improvement performance. Fuzzy expert system is used to control genetic operators using the overall population performance history. The algorithm used weight mapping crossover (WMX) and Insertion Mutation (IM) as genetic operators for sub-chromosomes represented with priority-based representation. Parameterized uniform crossover (PUX) and migration are used as genetic operators for sub-chromosomes represented using random-key based encoding. Computational experiments were conducted on the developed algorithm coded in Matlab to test the effectiveness of the algorithm. First scenario uses static consideration, the second scenario uses dynamic consideration with machine failure recovery. Sensitivity analysis and convergence analysis was also conducted. The results show the effectiveness of the proposed algorithm in generating the integrated scheduling, AGVs dispatching and conflict-free routing. The comparison of the result of the developed integrated algorithm using two benchmark FMS scheduling algorithms datasets is conducted. The comparison shows the improvement of 1.1% and 16% in makespan of the first and the second benchmark production dataset respectively. The major novelty of the algorithm is an integrated approach to the individual sub-problems which ensures the legality, and feasibility of all solutions generated for various sub-problems which in the literature are considered separately

    GA-based discrete dynamic programming approach for scheduling in FMS environments

    No full text

    Optimization for process planning and scheduling in parts manufacturing

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore