
 1

Multi Objective Genetic Algorithm for multimode job shop
scheduling problem

Giada La Scalia (giada.lascalia@unipa.it)
Dipartimento di Ingegneria Chimica, Informatica, Gestionale, Meccanica, (DICGIM) Università

di Palermo, Facoltà di Ingegneria, Viale delle scienze Ed. 8, 90128 Palermo, Italy

Rosa Micale
Dipartimento di Ingegneria Chimica, Informatica, Gestionale, Meccanica, (DICGIM) Università

di Palermo, Facoltà di Ingegneria, Viale delle scienze Ed. 8, 90128 Palermo, Italy

Giuseppe Aiello
Dipartimento di Ingegneria Chimica, Informatica, Gestionale, Meccanica, (DICGIM) Università

di Palermo, Facoltà di Ingegneria, Viale delle scienze Ed. 8, 90128 Palermo, Italy

Antonello Giallanza
Dipartimento di Ingegneria Chimica, Informatica, Gestionale, Meccanica, (DICGIM) Università

di Palermo, Facoltà di Ingegneria, Viale delle scienze Ed. 8, 90128 Palermo, Italy

Abstract

Multimode Job Shop Scheduling Problem (MJSSP) aims at finding the start times and execution
modes for the operations of different jobs that optimize a given set of objective functions while
verifying precedence and resource constraints. In this paper, we focus on this problem and develop
a Multi Objective Genetic Algorithm (MOGA) to solve it. Its main contributions are the mode
assignment procedure in the chromosome generation and the use of three fitness functions. Its
performance is demonstrated by computational results obtained on a set of standard instances and
against the best currently available algorithms.

Keywords: Multimode Job Shop Scheduling Problem, Multi Objective Genetic Algorithm.

Introduction
Scheduling is one of the most important issues in the planning and operation of manufacturing

systems (Chen, Ihlow, & Lehmann, 1999), and it has gained much attention increasingly in recent
years (Ho, Tay, Edmund, & Lai, 2007). The classical job-shop scheduling problem (JSP) is one of
the most difficult problems in this area. It consists of scheduling the operations of a set of jobs on a
set of machines with the objective to optimize one or more criteria. Each machine is continuously
available from time zero, processing one operation at a time. Each job has a specified processing
order on the machines which are fixed and known in advance. Moreover, processing time is also

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Palermo

https://core.ac.uk/display/53291451?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

fixed and known. Each machine may have the ability of performing more than one type of
operations, i.e., for a given operation must be associated with at least one machine. Unlike the
classical JSP where each operation is processed on a predefined machine, each operation in the
MJSSP can be processed on one out of several machines. This makes MJSSP more difficult to solve
due to the consideration of both routing of jobs and scheduling of operations. Moreover, it is a
complex combinatorial optimization problem. The problem of scheduling jobs in MJSSP could be
decomposed into two sub-problems: the routing sub-problem that assigns each operation to a
machine selected out of a set of capable machines, the scheduling sub-problem that consists of
sequencing the assigned operations on all machines in order to obtain a feasible schedule to
optimize the predefined objective functions. In this paper, we propose an effective MOGA to solve
the MJSSP. The rest of the paper is organized as follows. In the first paragraph we present a
literature review with regard to classification of multi-project scheduling and associated scheduling
models and methodologies. Then we introduce a multi-objective optimization formulation for
modelling the scheduling of multimode job shop scheduling, which allows multi-objective
optimization with respect to the minimization of the job duration (makespan), the balanced use of
the resource over time (utilization coefficient) and the minimization of the cost associated with the
job delay (penalty cost). Hence, the design of the multi objective genetic algorithm to solve the
problem is described. Finally, the computational result developed to evaluate the performance of the
MOGA are presented and the conclusions and the future research are reported.

Literature review

Genetic Algorithm (GA) is an effective meta-heuristic to solve combinatorial optimization
problems, and has been successfully adopted to solve the MJSSP. Recently, more and more papers
are talking about this topic. They differ from each other in encoding and decoding schemes, initial
population method, and offspring generation strategy. Several heuristic procedures such as
dispatching rules, local search and meta-heuristics such as tabu search, simulated annealing and
GAs have been developed in recent years for MJSSP. They can be classified into two main
categories: hierarchical approach and integrated approach. The hierarchical approach attempts to
solve the problem by decomposing it into a sequence of sub problems, with reduced difficulty. A
typical decomposition is assign-then-sequence, coming from the trivial observation that once the
assignment is done, the resulting sequencing problem is a JSP. This approach is followed by
Brandimarte 1993, Paulli 1995, Barnes and Chambers 1996, among the others. They all solve the
assignment problem using some dispatching rules, and then solve the resulting JSP using different
tabu search heuristics. Integrated approach is much more difficult to solve, but in general achieves
better results, as reported in Vaessens et al. (1994), Dauzére-Pérés and Paulli (1997) and Hurink et
al. (1994). They all adopt an integrated approach, proposing different tabu search to solve the
problem. Mastrolilli and Gambardella (1996), show computational results proving that their tabu
search performs better than any other heuristic developed so far, both in terms of computation time
and solution quality. Recently, GAs have been successfully adopted to solve MJSSP, as proven by
the growing number of papers on the topic. Chen et al. (1999) used integrated approach to solve the
MJSSP. The genes of the chromosomes respectively describe a concrete allocation of operations to
each machine and the sequence of operations on each machine. Yang (2001) proposed a GA-based
discrete dynamic programming approach. Zhang and Gen (2005) proposed a multistage operation-
based genetic algorithm to deal with the problem from the point view of dynamic programming. Jia
et al. (2003) propose a modified GA able to solve distributed scheduling problems and can be
adapted for MJSSP. Ho and Tay (2004) propose an efficient methodology called GENACE based
on a cultural evolutionary architecture for solving MJSSP with recirculation. Kacem et al. (2002)
use a chromosome representation that combines both routing and sequencing information, and
develop an approach by localization to find promising initial assignments. Finally, Pezzella et al.
(2008) integrate different strategies for generating the initial population, selecting the individuals
for reproduction and reproducing new individuals. They are all integrated approaches, and differ

 3

from each other for different coding scheme, initial population generation, chromosome selection
and offspring generation strategies.

Problem formulation

The multimode job-shop scheduling problem can be formulated as follows. There is a set of M
machines M = {M1, M2, . . ., Mk, . . ., MM} and a set of N jobs J = {J1, J2, . . ., Ji, . . ., JN} in which
each job Ji is formed by a sequence of operations Oij, where j= 1,2,…ni and ni is the number of
operations of the job Ji. Each operation has to be performed one after the other according to the
given sequence and its processing time is machine-dependent. We denote with dijk the processing
time of operation Oij when executed on machine Mk. Pre-emption is not allowed, i.e., each
operation must be completed without interruption once started. Furthermore, machines cannot
perform more than one operation at a time. All jobs and machines are available at time 0. The
problem is to assign each operation to an appropriate machine (routing problem), and to sequence
the operations on the machines (sequencing problem) in order to minimize the objective functions
considered. Problem data can be organized in a table, where rows correspond to operations and
columns correspond to machines. In the example given in Table 1 there are 2 jobs and 5 machines,
where each cell denotes the processing time of that operation on the corresponding machine.

Table 1- Processing time table

Job operation M1 M2 M3 M4 M5
J1 o11 3 4 5

o12 2 3 3
o13 4 4 6
o14 4 5

J2 o21 2 2 4
o22 5
o23 5 6

Establish the model of MJSSP
The advantage of GA with respect to other local search algorithms is due to the fact that more

strategies could be adopted together to find good individuals to add to the mating pool in a GA
framework, both in the initial population phase and in the dynamic generation phase (Pezzella et al.,
2008). In this paper, the proposed GA adopts an improved chromosome representation and a multi
objective approach, in order to consider simultaneously three different functions of fitness.

Chromosome representation

Better efficiency of GA-based search could be achieved by modifying the chromosome
representation and its related operators so as to generate feasible solutions and avoid repair
mechanism. Ho et al. (2007) developed extensive review and investigated insightfully on
chromosome representation of MJSSP. Mesghouni et al. (1997) proposed parallel job representation
for solving the MJSSP. The chromosome is represented by a matrix where each row is an ordered
sequence of each job. Each element of the row contains two terms, the first one is the machine
processing the operation, and the second one is the starting time of this operation. The approach
requires a repair mechanism and the decoding representation is complex. Chen et al. (1999) divided
the chromosome into two parts: A-string and B-string. A-string denotes the routing policy of the
problem, and B-string denotes the sequence of the operations on each machine, however this
method needs to consider the order of operations and require a repair mechanism. Kacem et al.
(2002) represented the chromosome by an assignment table representation. A data structure of the
assignment table must necessarily describe the set of all machines. This increases the overall
computational complexity due to the presence of redundant assignments. Ho et al. (2007) also

 4

divided the chromosome into two strings, one represents the operation order, the other represents
the machine by an array of binary values. This structure can represent the problem clearly and
conveniently, but the binary-coded increases the memory space and the operation is not convenient,
so when the scale of problem is oversized, the memory space and computational time will increase
tremendously (Liu H. et al. 2007). Based on the analysis of the approach from the above literature,
we design an improved chromosome representation that requires no repair mechanism. Our
chromosome representation, in relation to the example reported in table 1, has two segment, as
shown in the figure below.

Figure 1 - Chromosome representation

For the first segment we use a operation priority list representation, in which the solution is
encoded as a precedence list of operations randomly generated. All the operations are interpreted
according to an interactive eligible list based on the precedence graph in order to always obtain
feasible scheduling. The length L of the first segment is equal to the sum of all the operations of the
jobs considered. For the instance in Table 1, one possible encoding of the Operation priority list is
shown in Fig. 1. To represent the second segment we use an array of integer with the same length of
the first segment. Each integer value equals the index of the array of alternative machine set of each
operation. For the problem in Table 1, one possible encoding of the machine selection is also shown
in Fig. 1. For instance, M2 is selected to process operation O11 since the value in the array of
alternative machine set is 2. The value could also equal 1 or 3 since operation O11 can be processed
on the machines M1 and M3.

Multi objective approach

In the proposed approach, three different aspects of MJSS problem are taken into account:
makespan, utilization coefficient and job delay. The following objectives are therefore considered:

1. minimization of makespan,
2. maximization of the utilization coefficient,
3. minimization of the job delay.

The first objective function expresses the total length of the schedule to be minimized:

ଵܨ = min[݉ܽݔ௜݁ܦ௜]

Where Dei is the Makespan of the job Ji (1)
The second objective has been modelled by the maximization of the utilization coefficient:

ଶܨ = max
∑ ∑ ௗ೔ೕೖ

೙೔
ೕసభ

ಿ
೔సభ

ெ∙[௠௔௫೔஽௘೔]
 ∀ ݇ = 1 … (2) ܯ.

Finally, the third aspect taken into account is the minimization of the cost associated with the job
delay:
ଷܨ = min[∑ ;௜݌ܥ)௜ݔܽ݉ 0)ே

௜ୀଵ] (3)

where

௜݌ܥ = ௜݌ ∙ ௜݁ܦ) ௜) (4)݌ܦ−

I segment II segment

o11 o23 o12 o14 o21 o13 o22 2 4 3 4 1 3 2

 5

In equation (4), pi is the penalty unit cost associated to the delay of the job Ji while Cpi is its
penalty cost. Dpi is the delivery time of the job Ji specified by the customer.

Computational results
The GA procedure described in the precedent section has been implemented and tested on the

problem instances from literature (http://www.idsia.ch/monaldo). The best results are selected after
ten runs from different initial populations. We have considered the problem instances of
Brandimarte, in which the data set consists of 10 problems with number of jobs ranging from 10 to
20, number of machines ranging from 4 to 15 and number of operations for each job ranging from 5
to 15. It must be pointed out that comparing different approaches for benchmarking purposes not
only means employing the same input parameters, but also trying to uniform the search space.
Provided that perfectly comparable conditions are almost impossible to obtain when two solution
approaches differ substantially, the effort has been to reproduce the most similar testing conditions,
in order to obtain fairly comparable results. For such reason the reference case and the solution
proposed employ a single objective formulation considering the makespan only. Subsequently the
solutions referred to the multi-objective context previously described have additionally been
determined. The most significant genetic parameters are given in the table below (table 2).

Table 2 - Genetic Parameters

Most significant Genetic
Parameters

Mutation probability 2%
Population size 5.000

Number of generations 1.000
Crossover probability 45%

Table 3 compares our GA to the algorithms proposed by Pezzella et al. 2008, Chen et al. 1999,
Ho and Tay 2004 and Jia et al. 2003 on 10 MJSSP problem instances from Brandimarte 1993. The
first column reports the instance name; the second and third columns report the number of jobs and
the number of machines for each instance, respectively. The fourth column reports our best
makespan over ten runs of GA. The remaining columns report the best results of the four algorithms
we compare with, together with the relative deviation with respect to our algorithm. The relative
deviation is defined as:
dev = [(MK − MKGA)/MK] × 100%,

where MKGA is the makespan obtained by our algorithm and MK is the makespan of the
algorithm we compare to.

Table 3 - Comparison with other GAs on 10 MJSSP instances from Brandimarte

Brandimarte n M GA Pezzella Dev(%) Chen Dev(%) Ho Dev(%) Jia Dev(%)

MK01 10 6 41.0 40.0 2.4 40.0 2.4 41.0 0.0 40.0 2.4

MK02 10 6 27.0 26.0 3.7 29.0 -7.4 29.0 -7.4 28.0 -3.7

MK03 15 8 204.0 204.0 0.0 204.0 0.0 204.0 0.0 204.0 0.0

MK04 15 8 62.0 60.0 3.2 63.0 -1.6 67.0 -8.1 61.0 1.6

MK05 15 4 170.0 173.0 -1.8 181.0 -6.5 176.0 -3.5 176.0 -3.5

MK06 10 15 73.0 64.0 12.3 60.0 17.8 68.0 6.8 62.0 15.1

MK07 20 5 140.0 139.0 0.7 148.0 -5.7 148.0 -5.7 145.0 -3.6

MK08 20 10 524.0 523.0 0.2 523.0 0.2 523.0 0.2 523.0 0.2

 6

MK09 20 10 335 311.0 7.2 308.0 8.1 328.0 2.1 310.0 7.5

MK10 20 15 232 212.0 8.6 212.0 8.6 231.0 0.4 213.0 8.2

Result shows that our algorithm outperforms the other three GAs in some cases.
The first solution given in table 4, refers to the makespan function only, while the second

solution reported refers to the results obtained when the other objective functions has been
enforced. In both cases the proposed algorithm relates to the MK2 instance and outperforms the
reference results, with 7,4% and 3,57 % makespan reduction in the best cases. Computation has
been performed employing a general purpose workstation, in less than ten minutes (the
determination of a reliable value for the computation time would require specific machine-time
analysis which is outside the scope of this paper).

Table 4 - Comparisons of the results.

 Proposed GA Proposed GA
(multi-objective)

Makespan 27 28
Utilization coefficient // 0,97

Job Delay // 2

The first solution given in figure 2, hence refers to the makespan function only, while the solution
reported in figure 3, refers to the results obtained when all the fitness functions have been enforced.

Figure 2 - Gantt chart corresponding to the optimal solutions mono objective conditions.

Figure 3 - Gantt chart corresponding to the optimal solutions multi objective conditions.

 7

Adding the objective functions related to the penalty for the delay and the utilization coefficient
(Fig. 3), the corresponding scheduling has changed substantially and the makespan, still shows an
improvement compared to the reference case. Additionally, the comparison between figure 2 and
figure 3 shows that the second scheduling has a better distribution of the workload in terms of
minor fragmentation.

Conclusions and future research

In this paper we have developed a multi objective genetic algorithm (MOGA) for the Multimode
Job Shop Scheduling Problem (MJSSP). A computational study shows that our algorithm gives
results comparable with the best algorithm known so far. As a consequence, the GA framework is
effective for developing efficient algorithms for MJSSP, when different assignment procedure in
the chromosome generation and the use of more fitness functions, are adopted. The proposed
approach is capable of finding a set of Pareto-optimal solutions that optimizes the objective
functions simultaneously throughout the entire evolutionary process, giving the decision maker a
restricted number of solutions among which he can chose those that he considers the best.

Further improvements of the proposed methodology will include the employment of a structured
multi-criteria decision procedure in order to approach the decision process with a more
comprehensive procedure, including the aspects related to the intrinsic uncertainty and referring to
the typical methodologies of the approximate reasoning, such as the fuzzy theory.

References

Barnes JW, Chambers JB. Flexible Job Shop Scheduling by tabu search. Graduate program in operations research and
industrial engineering. Technical Report ORP 9609, University of Texas, Austin; 1996.
http://www.cs.utexas.edu/users/jbc/.

Brandimarte P. Routing and scheduling in a flexible job shop by tabu search. Annals of Operations Research
1993;41:157–83.

Chen, H., Ihlow, J., & Lehmann, C. (1999). “A genetic algorithm for flexible job-shop scheduling”. In IEEE
international conference on robotics and automation, Detroit 1999 (Vol. 2, pp. 1120–1125).

Dauzére-Pérés S, Paulli J.An integrated approach for modeling and solving the general multiprocessor job-shop
scheduling problem using tabu search. Annals of Operations Research 1997;70:281–306.

Ho, N. B., Tay, J. C., Edmund, M., & Lai, K. (2007). “An effective architecture for learning and evolving flexible job
shop schedules”. European Journal of Operational Research, 179, 316–333.

Ho NB, Tay JC. GENACE: an efficient cultural algorithm for solving the Flexible Job-Shop Problem. IEEE
international conference on robotics and automation 2004;1759–66.

Hurink J, Jurish B, Thole M. Tabu search for the job shop scheduling problem with multi-purpose machines. OR-
Spektrum 1994;15:205–15.

Jia HZ, Nee AYC, Fuh JYH, Zhang YF. A modified genetic algorithm for distributed scheduling problems.
International Journal of Intelligent Manufacturing 2003;14:351–62.

Kacem I, Hammadi S, Borne P.Approach by localization and multiobjective evolutionary optimization for flexible job-
shop scheduling problems. IEEE Transactions on Systems, Man, and Cybernetics, Part C 2002;32(1):1–13.

Liu, H., Abraham, A. and Grosan, C., (2007) A novel Variable Neighborhood Particle Swarm Optimization for multi-
objective Flexible Job-Shop Scheduling Problems., , ICDIM 138- 145

Mastrolilli M, Gambardella LM. Effective neighbourhood functions for the flexible job shop problem. Journal of
Scheduling 1996;3:3–20.

Mesghouni, K., Hammadi, S., & Borne, P. (1997). Evolution Programs For Job-Shop Scheduling. In: Proceedings of the
IEEE International Conference On Computational Cybernetics And Simulation (pp. 720-725)

Paulli J. A hierarchical approach for the FMS scheduling problem. European Journal of Operational Research
1995;86(1):32–42.

Pezzella F., Morganti G., Ciaschetti G., A genetic algorithm for the Flexible Job-shop Scheduling Problem, Computers
& Operations Research 35 (2008) 3202 – 3212

Vaessens RJM, Aarts EHL, Lenstra JK. Job Shop Scheduling by local search. COSOR Memorandum 94-05. Eindhoven
University; 1994.

 Yang, J. B. (2001). GA-based discrete dynamic programming approach for scheduling in FMS environments. IEEE
Transaction on Systems, Man, and Cybernetics, Part B, 31(5), 824–835.

Zhang, H. P., & Gen, M. (2005). Multistage-based genetic algorithm for flexible jobshop scheduling problem. Journal
of Complexity International, 48, 409–425.

