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Abstract  
 

Multimode Job Shop Scheduling Problem (MJSSP) aims at finding the start times and execution 
modes for the operations of different jobs that optimize a given set of objective functions while 
verifying precedence and resource constraints. In this paper, we focus on this problem and develop 
a Multi Objective Genetic Algorithm (MOGA) to solve it. Its main contributions are the mode 
assignment procedure in the chromosome generation and the use of three fitness functions. Its 
performance is demonstrated by computational results obtained on a set of standard instances and 
against the best currently available algorithms. 
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Introduction 
Scheduling is one of the most important issues in the planning and operation of manufacturing 

systems (Chen, Ihlow, & Lehmann, 1999), and it has gained much attention increasingly in recent 
years (Ho, Tay, Edmund, & Lai, 2007). The classical job-shop scheduling problem (JSP) is one of 
the most difficult problems in this area. It consists of scheduling the operations of a set of jobs on a 
set of machines with the objective to optimize one or more criteria. Each machine is continuously 
available from time zero, processing one operation at a time. Each job has a specified processing 
order on the machines which are fixed and known in advance. Moreover, processing time is also 
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fixed and known. Each machine may have the ability of performing more than one type of 
operations, i.e., for a given operation must be associated with at least one machine. Unlike the 
classical JSP where each operation is processed on a predefined machine, each operation in the 
MJSSP can be processed on one out of several machines. This makes MJSSP more difficult to solve 
due to the consideration of both routing of jobs and scheduling of operations. Moreover, it is a 
complex combinatorial optimization problem. The problem of scheduling jobs in MJSSP could be 
decomposed into two sub-problems: the routing sub-problem that assigns each operation to a 
machine selected out of a set of capable machines, the scheduling sub-problem that consists of 
sequencing the assigned operations on all machines in order to obtain a feasible schedule to 
optimize the predefined objective functions. In this paper, we propose an effective MOGA to solve 
the MJSSP. The rest of the paper is organized as follows. In the first paragraph we present a 
literature review with regard to classification of multi-project scheduling and associated scheduling 
models and methodologies. Then we introduce a multi-objective optimization formulation for 
modelling the scheduling of multimode job shop scheduling, which allows multi-objective 
optimization with respect to the minimization of the job duration (makespan), the balanced use of 
the resource over time (utilization coefficient) and the minimization of the cost associated with the 
job delay (penalty cost). Hence, the design of the multi objective genetic algorithm to solve the 
problem is described. Finally, the computational result developed to evaluate the performance of the 
MOGA are presented and the conclusions and the future research are reported. 

 
Literature review 

Genetic Algorithm (GA) is an effective meta-heuristic to solve combinatorial optimization 
problems, and has been successfully adopted to solve the MJSSP. Recently, more and more papers 
are talking about this topic. They differ from each other in encoding and decoding schemes, initial 
population method, and offspring generation strategy. Several heuristic procedures such as 
dispatching rules, local search and meta-heuristics such as tabu search, simulated annealing and 
GAs have been developed in recent years for MJSSP. They can be classified into two main 
categories: hierarchical approach and integrated approach. The hierarchical approach attempts to 
solve the problem by decomposing it into a sequence of sub problems, with reduced difficulty. A 
typical decomposition is assign-then-sequence, coming from the trivial observation that once the 
assignment is done, the resulting sequencing problem is a JSP. This approach is followed by 
Brandimarte 1993, Paulli 1995, Barnes and Chambers 1996, among the others. They all solve the 
assignment problem using some dispatching rules, and then solve the resulting JSP using different 
tabu search heuristics. Integrated approach is much more difficult to solve, but in general achieves 
better results, as reported in Vaessens et al. (1994), Dauzére-Pérés and Paulli (1997) and Hurink et 
al. (1994). They all adopt an integrated approach, proposing different tabu search to solve the 
problem. Mastrolilli and Gambardella (1996), show computational results proving that their tabu 
search performs better than any other heuristic developed so far, both in terms of computation time 
and solution quality. Recently, GAs have been successfully adopted to solve MJSSP, as proven by 
the growing number of papers on the topic. Chen et al. (1999) used integrated approach to solve the 
MJSSP. The genes of the chromosomes respectively describe a concrete allocation of operations to 
each machine and the sequence of operations on each machine. Yang (2001) proposed a GA-based 
discrete dynamic programming approach. Zhang and Gen (2005) proposed a multistage operation-
based genetic algorithm to deal with the problem from the point view of dynamic programming. Jia 
et al. (2003) propose a modified GA able to solve distributed scheduling problems and can be 
adapted for MJSSP. Ho and Tay (2004) propose an efficient methodology called GENACE based 
on a cultural evolutionary architecture for solving MJSSP with recirculation. Kacem et al. (2002) 
use a chromosome representation that combines both routing and sequencing information, and 
develop an approach by localization to find promising initial assignments. Finally, Pezzella et al. 
(2008) integrate different strategies for generating the initial population, selecting the individuals 
for reproduction and reproducing new individuals. They are all integrated approaches, and differ 
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from each other for different coding scheme, initial population generation, chromosome selection 
and offspring generation strategies. 

 
Problem formulation 

The multimode job-shop scheduling problem can be formulated as follows. There is a set of M 
machines M = {M1, M2, . . ., Mk, . . ., MM} and a set of N jobs J = {J1, J2, . . ., Ji, . . ., JN} in which 
each job Ji is formed by a sequence of operations Oij, where j= 1,2,…ni and ni is the number of 
operations of the job Ji. Each operation has to be performed one after the other according to the 
given sequence and its processing time is machine-dependent. We denote with dijk the processing 
time of operation Oij when executed on machine Mk. Pre-emption is not allowed, i.e., each 
operation must be completed without interruption once started. Furthermore, machines cannot 
perform more than one operation at a time. All jobs and machines are available at time 0. The 
problem is to assign each operation to an appropriate machine (routing problem), and to sequence 
the operations on the machines (sequencing problem) in order to minimize the objective functions 
considered. Problem data can be organized in a table, where rows correspond to operations and 
columns correspond to machines. In the example given in Table 1 there are 2 jobs and 5 machines, 
where each cell denotes the processing time of that operation on the corresponding machine.  

 
Table 1- Processing time table 

Job operation M1 M2 M3 M4 M5 
J1 o11 3 4 5   

o12  2 3 3  
o13 4  4  6 
o14    4 5 

J2 o21 2  2 4  
o22  5    
o23    5 6 

 

Establish the model of MJSSP 
The advantage of GA with respect to other local search algorithms is due to the fact that more 

strategies could be adopted together to find good individuals to add to the mating pool in a GA 
framework, both in the initial population phase and in the dynamic generation phase (Pezzella et al., 
2008). In this paper, the proposed GA adopts an improved chromosome representation and a multi 
objective approach, in order to consider simultaneously three different functions of fitness. 
 
Chromosome representation 

Better efficiency of GA-based search could be achieved by modifying the chromosome 
representation and its related operators so as to generate feasible solutions and avoid repair 
mechanism. Ho et al. (2007) developed extensive review and investigated insightfully on 
chromosome representation of MJSSP. Mesghouni et al. (1997) proposed parallel job representation 
for solving the MJSSP. The chromosome is represented by a matrix where each row is an ordered 
sequence of each job. Each element of the row contains two terms, the first one is the machine 
processing the operation, and the second one is the starting time of this operation. The approach 
requires a repair mechanism and the decoding representation is complex. Chen et al. (1999) divided 
the chromosome into two parts: A-string and B-string. A-string denotes the routing policy of the 
problem, and B-string denotes the sequence of the operations on each machine, however this 
method needs to consider the order of operations and require a repair mechanism. Kacem et al. 
(2002) represented the chromosome by an assignment table representation. A data structure of the 
assignment table must necessarily describe the set of all machines. This increases the overall 
computational complexity due to the presence of redundant assignments. Ho et al. (2007) also 
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divided the chromosome into two strings, one represents the operation order, the other represents 
the machine by an array of binary values. This structure can represent the problem clearly and 
conveniently, but the binary-coded increases the memory space and the operation is not convenient, 
so when the scale of problem is oversized, the memory space and computational time will increase 
tremendously (Liu H. et al. 2007). Based on the analysis of the approach from the above literature, 
we design an improved chromosome representation that requires no repair mechanism. Our 
chromosome representation, in relation to the example reported in table 1, has two segment, as 
shown in the figure below. 
 

 
 
 

Figure 1 - Chromosome representation 
 

For the first segment we use a operation priority list representation, in which the solution is 
encoded as a precedence list of operations randomly generated. All the operations are interpreted 
according to an interactive eligible list based on the precedence graph in order to always obtain 
feasible scheduling. The length L of the first segment is equal to the sum of all the operations of the 
jobs considered. For the instance in Table 1, one possible encoding of the Operation priority list is 
shown in Fig. 1. To represent the second segment we use an array of integer with the same length of 
the first segment. Each integer value equals the index of the array of alternative machine set of each 
operation. For the problem in Table 1, one possible encoding of the machine selection is also shown 
in Fig. 1. For instance, M2 is selected to process operation O11 since the value in the array of 
alternative machine set is 2. The value could also equal 1 or 3 since operation O11 can be processed 
on the machines M1 and M3.  
 

Multi objective approach 

In the proposed approach, three different aspects of MJSS problem are taken into account: 
makespan, utilization coefficient and job delay. The following objectives are therefore considered: 

1. minimization of makespan, 
2. maximization of the utilization coefficient, 
3. minimization of the job delay. 
 
The first objective function expresses the total length of the schedule to be minimized: 

ଵܨ = min[݉ܽݔ௜݁ܦ௜] 

Where Dei is the Makespan of the job Ji         (1) 
The second objective has been modelled by the maximization of the utilization coefficient: 

ଶܨ = max
∑ ∑ ௗ೔ೕೖ

೙೔
ೕసభ

ಿ
೔సభ

ெ∙[௠௔௫೔஽௘೔]
   ∀ ݇ = 1 …  (2)           ܯ.

Finally, the third aspect taken into account is the minimization of the cost associated with the job 
delay: 
ଷܨ = min[∑ ;௜݌ܥ)௜ݔܽ݉ 0)ே

௜ୀଵ ]         (3) 

where 

௜݌ܥ = ௜݌  ∙ ௜݁ܦ)  ௜)          (4)݌ܦ−

I segment II segment 

o11 o23 o12 o14 o21 o13 o22 2 4 3 4 1 3 2 
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In equation (4), pi is the penalty unit cost associated to the delay of the job Ji while Cpi is its 
penalty cost. Dpi is the delivery time of the job Ji specified by the customer. 
 

Computational results 
The GA procedure described in the precedent section has been implemented and tested on the 

problem instances from literature (http://www.idsia.ch/monaldo). The best results are selected after 
ten runs from different initial populations. We have considered the problem instances of 
Brandimarte, in which the data set consists of 10 problems with number of jobs ranging from 10 to 
20, number of machines ranging from 4 to 15 and number of operations for each job ranging from 5 
to 15. It must be pointed out that comparing different approaches for benchmarking purposes not 
only means employing the same input parameters, but also trying to uniform the search space. 
Provided that perfectly comparable conditions are almost impossible to obtain when two solution 
approaches differ substantially, the effort has been to reproduce the most similar testing conditions, 
in order to obtain fairly comparable results. For such reason the reference case and the solution 
proposed employ a single objective formulation considering the makespan only. Subsequently the 
solutions referred to the multi-objective context previously described have additionally been 
determined. The most significant genetic parameters are given in the table below (table 2). 

 
Table 2 - Genetic Parameters 

Most significant Genetic 
Parameters 

Mutation probability 2% 
Population size 5.000 

Number of generations 1.000 
Crossover probability 45% 

 

Table 3 compares our GA to the algorithms proposed by Pezzella et al. 2008, Chen et al. 1999, 
Ho and Tay 2004 and Jia et al. 2003 on 10 MJSSP problem instances from Brandimarte 1993. The 
first column reports the instance name; the second and third columns report the number of jobs and 
the number of machines for each instance, respectively. The fourth column reports our best 
makespan over ten runs of GA. The remaining columns report the best results of the four algorithms 
we compare with, together with the relative deviation with respect to our algorithm. The relative 
deviation is defined as: 
dev = [(MK − MKGA)/MK] × 100%, 

where MKGA is the makespan obtained by our algorithm and MK is the makespan of the 
algorithm we compare to.  

 
Table 3 - Comparison with other GAs on 10 MJSSP instances from Brandimarte 

Brandimarte n M GA Pezzella Dev(%) Chen Dev(%) Ho Dev(%) Jia Dev(%) 

MK01 10 6 41.0 40.0 2.4 40.0 2.4 41.0 0.0 40.0 2.4 

MK02 10 6 27.0 26.0 3.7 29.0 -7.4 29.0 -7.4 28.0 -3.7 

MK03 15 8 204.0 204.0 0.0 204.0 0.0 204.0 0.0 204.0 0.0 

MK04 15 8 62.0 60.0 3.2 63.0 -1.6 67.0 -8.1 61.0 1.6 

MK05 15 4 170.0 173.0 -1.8 181.0 -6.5 176.0 -3.5 176.0 -3.5 

MK06 10 15 73.0 64.0 12.3 60.0 17.8 68.0 6.8 62.0 15.1 

MK07 20 5 140.0 139.0 0.7 148.0 -5.7 148.0 -5.7 145.0 -3.6 

MK08 20 10 524.0 523.0 0.2 523.0 0.2 523.0 0.2 523.0 0.2 
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MK09 20 10 335 311.0 7.2 308.0 8.1 328.0 2.1 310.0 7.5 

MK10 20 15 232 212.0 8.6 212.0 8.6 231.0 0.4 213.0 8.2 

 

Result shows that our algorithm outperforms the other three GAs in some cases. 
The first solution given in table 4, refers to the makespan function only, while the second 

solution reported refers to the results obtained when the other objective functions has been 
enforced. In both cases the proposed algorithm relates to the MK2 instance and outperforms the 
reference results, with 7,4% and 3,57 % makespan reduction in the best cases. Computation has 
been performed employing a general purpose workstation, in less than ten minutes (the 
determination of a reliable value for the computation time would require specific machine-time 
analysis which is outside the scope of this paper).  

 
Table 4 - Comparisons of the results. 

 Proposed GA Proposed GA 
(multi-objective) 

Makespan 27 28 
Utilization coefficient // 0,97 

Job Delay // 2 
 
The first solution given in figure 2, hence refers to the makespan function only, while the solution 
reported in figure 3, refers to the results obtained when all the fitness functions have been enforced. 

 

 
Figure 2 -  Gantt chart  corresponding to the optimal solutions mono objective conditions. 

 

Figure 3 - Gantt chart  corresponding to the optimal solutions multi objective conditions. 
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Adding the objective functions related to the penalty for the delay and the utilization coefficient 
(Fig. 3), the corresponding scheduling has changed substantially and the makespan, still shows an 
improvement compared to the reference case. Additionally,  the comparison between figure 2 and 
figure 3 shows that the second scheduling has a better distribution of the workload in terms of 
minor fragmentation. 
 
Conclusions and future research 

In this paper we have developed a multi objective genetic algorithm (MOGA) for the Multimode 
Job Shop Scheduling Problem (MJSSP). A computational study shows that our algorithm gives 
results comparable with the best algorithm known so far. As a consequence, the GA framework is 
effective for developing efficient algorithms for MJSSP, when different assignment procedure in 
the chromosome generation and the use of more fitness functions, are adopted. The proposed 
approach is capable of finding a set of Pareto-optimal solutions that optimizes the objective 
functions simultaneously throughout the entire evolutionary process, giving the decision maker a 
restricted number of solutions among which he can chose those that he considers the best.  

Further improvements of the proposed methodology will include the employment of a structured 
multi-criteria decision procedure in order to approach the decision process with a more 
comprehensive procedure, including the aspects related to the intrinsic uncertainty and referring to 
the typical  methodologies of the approximate reasoning, such as the fuzzy theory. 
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