3 research outputs found

    Neural-Dynamic Based Synchronous-Optimization Scheme of Dual Redundant Robot Manipulators

    Get PDF
    In order to track complex-path tasks in three dimensional space without joint-drifts, a neural-dynamic based synchronous-optimization (NDSO) scheme of dual redundant robot manipulators is proposed and developed. To do so, an acceleration-level repetitive motion planning optimization criterion is derived by the neural-dynamic method twice. Position and velocity feedbacks are taken into account to decrease the errors. Considering the joint-angle, joint-velocity, and joint-acceleration limits, the redundancy resolution problem of the left and right arms are formulated as two quadratic programming problems subject to equality constraints and three bound constraints. The two quadratic programming schemes of the left and right arms are then integrated into a standard quadratic programming problem constrained by an equality constraint and a bound constraint. As a real-time solver, a linear variational inequalities-based primal-dual neural network (LVI-PDNN) is used to solve the quadratic programming problem. Finally, the simulation section contains experiments of the execution of three complex tasks including a couple task, the comparison with pseudo-inverse method and robustness verification. Simulation results verify the efficacy and accuracy of the proposed NDSO scheme

    Enhanced robotic hand-eye coordination inspired from human-like behavioral patterns

    Get PDF
    Robotic hand-eye coordination is recognized as an important skill to deal with complex real environments. Conventional robotic hand-eye coordination methods merely transfer stimulus signals from robotic visual space to hand actuator space. This paper introduces a reverse method: Build another channel that transfers stimulus signals from robotic hand space to visual space. Based on the reverse channel, a human-like behavior pattern: “Stop-to-Fixate”, is imparted to the robot, thereby giving the robot an enhanced reaching ability. A visual processing system inspired by the human retina structure is used to compress visual information so as to reduce the robot’s learning complexity. In addition, two constructive neural networks establish the two sensory delivery channels. The experimental results demonstrate that the robotic system gradually obtains a reaching ability. In particular, when the robotic hand touches an unseen object, the reverse channel successfully drives the visual system to notice the unseen object

    AI based Robot Safe Learning and Control

    Get PDF
    Introduction This open access book mainly focuses on the safe control of robot manipulators. The control schemes are mainly developed based on dynamic neural network, which is an important theoretical branch of deep reinforcement learning. In order to enhance the safety performance of robot systems, the control strategies include adaptive tracking control for robots with model uncertainties, compliance control in uncertain environments, obstacle avoidance in dynamic workspace. The idea for this book on solving safe control of robot arms was conceived during the industrial applications and the research discussion in the laboratory. Most of the materials in this book are derived from the authors’ papers published in journals, such as IEEE Transactions on Industrial Electronics, neurocomputing, etc. This book can be used as a reference book for researcher and designer of the robotic systems and AI based controllers, and can also be used as a reference book for senior undergraduate and graduate students in colleges and universities
    corecore