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In order to track complex-path tasks in three dimensional space without joint-drifts,

a neural-dynamic based synchronous-optimization (NDSO) scheme of dual redundant

robot manipulators is proposed and developed. To do so, an acceleration-level

repetitive motion planning optimization criterion is derived by the neural-dynamic

method twice. Position and velocity feedbacks are taken into account to decrease

the errors. Considering the joint-angle, joint-velocity, and joint-acceleration limits, the

redundancy resolution problem of the left and right arms are formulated as two quadratic

programming problems subject to equality constraints and three bound constraints. The

two quadratic programming schemes of the left and right arms are then integrated into

a standard quadratic programming problem constrained by an equality constraint and a

bound constraint. As a real-time solver, a linear variational inequalities-based primal-dual

neural network (LVI-PDNN) is used to solve the quadratic programming problem. Finally,

the simulation section contains experiments of the execution of three complex tasks

including a couple task, the comparison with pseudo-inverse method and robustness

verification. Simulation results verify the efficacy and accuracy of the proposed NDSO

scheme.

Keywords: dual-redundant-manipulators, redundant robot, complex tasks, motion planning, acceleration-level,

neural dynamic method

1. INTRODUCTION

Redundancy resolution problem is an important issue in the control of redundant robot
manipulators. The redundancy of the robot manipulators endows us with extra degrees-of-freedom
to finish some subtasks in addition to the end-effector main task (Jin and Li, 2016; Reynoso-
Mora et al., 2016; Guo et al., 2017; Huang et al., 2017). Control of dual-redundant-manipulators
is more complex because they have twice degrees-of-freedom than a single-redundant manipulator
does. With more and redundant degrees-of-freedom, dual-redundant-manipulators can not only
complete themain task of the end-effectors, but also finish various subtasks, such as joint-limitation
avoidance, obstacle avoidance, singularity avoidance, and dual-arms cooperations (Zhang et al.,
2014; Liu et al., 2015; Jin et al., 2017; Chikhaoui et al., 2018).

For each manipulator of the dual-redundant-robot-manipulators, since the number n of
degrees-of-freedom of joints is greater than the dimensionm of end-effectors’ position and posture,
solutions to the inverse kinematic problem of each manipulator as same as dual-manipulators are
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infinite (i.e., the multiple-solution problem). In order to solve
such a multiple-solution problem, a number of methods have
been proposed (Chevallereau and Khalil, 1988; Jin and Zhang,
2014; Toshani and Farrokhi, 2014; Luo et al., 2017). The
conventional method is the pseudo-inverse formulation θ̇ =
J+ṙ + (I − J+J)zv or θ̈ = J+(r̈ − J̇θ̇) + (I − J+J)za, which
contains a specific minimum-norm solution plus a homogeneous
solution (Lin and Zhang, 2013). The pseudo-inverse method
has a simple form and has been applied to dual-redundant-
manipulators (Zheng and Luh, 1986), but it has to compute
the matrix inverse which may have high computational cost
(Ho et al., 2005), algorithm singularities and have difficulty in
containing zv, za ∈ Rn into inequality form. That is to say, it
cannot solve inequality constrain problems (Cheng et al., 1994).
What’s worse, the determining themagnitude of zv and za is based
on trial-and-error approach and is over-dependent on subjective
judgement and experience (Zhang et al., 2004). Although some
improved pseudo-inversemethods have been developed in recent
years, such as joint torque optimization (Flacco and De Luca,
2015; Wang et al., 2015; Xiao et al., 2016), but it still cannot solve
the inequality problems.

A repetitive motion is a basic requirement of redundant-
robot-manipulators in practical applications if they are expected
to execute cyclic tasks. A repetitive motion is that when the
end-effector tracks a closed path in Cartesian space, all the joint
trajectories should be closed. That is to say, the final states
of joints must coincide with the initial ones when the end-
effector completes a closed end-effector path. If this issue is not
considered into the motion planning scheme of dual-redundant-
manipulators, the joint-drift phenomenon would happen. In
order to realize repetitive motions, additional self-motion
strategy is necessary to readjust the joints of dual-manipulators
to the initial states at the end of each cycle. Evidently, this is
much inefficient and is not acceptable in a factory automation
assembly line. Klein firstly studied this problem in a single
redundant-robot-manipulator, and his research showed that the
joint-drift that occurred in the pseudo-inverse control scheme is
not unpredictable (Klein and Kee, 1989). In the last two decades,
in order to solve the joint-drift problem, many quadratic-
programming-based repetitive motion planning schemes have
been proposed and solved by neural networks but most of
them are about the single redundant robot manipulator (Zhang
et al., 2008, 2018; Zhang and Zhang, 2012, 2013b). The control
methodology of dual-redundant manipulators is imperative, as
there are more and more complex end-effector tasks, such as
unscrewing caps (Felip andMorales, 2015), grasping and moving
of an object (Shin and Kim, 2015; Dong et al., 2017). These
tasks can not be completed by a single manipulator and need
dual-robot-manipulators. In recent years, some researchers have
proposed impedance and admittance control methods to dual-
arms coordination. For example, Lee et al. (2014) and Jr and
Roberts (2015) proposed a novel relative impedance control
based on the relative Jacobian expression. These works more
focus on dual-arms cooperation and allocating task through
force/torque, and the force/torque sensors are necessary. In fact,
some tasks only need dual-manipulators synchronous working
and cooperation. For instance, moving a heavy box. To finish

these tasks, some researchers exploited quadratic-programming-
based repetitive motion planning scheme for dual-redundant-
manipulators and then used neural network as a quadratic
programming solver. In our previous work, a neural dynamic
method based repetitive motion planning scheme was proposed
for humanoid robot arms (Zhang et al., 2015), but it is on
velocity-level and cannot consider the joint-acceleration limits.
In addition, the velocity-level repetitive motion planning scheme
can not be directly applied to acceleration controlled robots. Jin
and Zhang proposed a repetitive motion planning scheme at
acceleration level (Jin and Zhang, 2014). However, the scheme
is only performed on dual-manipulators with simple planar
three links, and the end-effector tasks are very simple. It is

worth pointing out that very few acceleration-level repetitive

motion planning schemes take position-error feedback into
consideration to make the position-error convergent as time
involves.

The studying motivations of this paper can be summarized as:
1) A repetitivemotion is a basic requirement of redundant-robot-
manipulators in practical applications. 2) Most researches on the

repetitive motion planning are based on a single-manipulator
with less degrees-of-freedom, and very few researches considered
the synchronous-optimization scheme of dual redundant robot
manipulators. 3) The traditional resolution scheme at the
velocity level cannot consider the acceleration limit avoidance,

which may lead to acceleration limitation exceeded problem. In
order to resolve the redundancy problem of dual-redundant-
robot-manipulators with 14 degrees-of-freedom, a neural-
dynamic based synchronous-optimization scheme of dual

redundant robot manipulators (NDSO) is proposed in this
paper. Different from the existing work (Jin and Zhang,
2014), the proposed NDSO scheme can be performed on
dual-redundant-manipulators with 14 degrees-of-freedom and

working in three-dimensional space. In addition, the dual-
redundant-manipulators can track some complex paths (such as
geometric curves and numbers) and complete coupled tracking
task. Furthermore, the NDSO scheme has excellent robustness
under the perturbation of systematic error.

The remainder of the paper is organized into four sections. In
section 2, the neural-dynamic based synchronous-optimization

subschemes (Sub-NDSO) of the left and right manipulators are
formulated. In section 3, the Sub-NDSO of the left and right
manipulators are unified into a standard quadratic programming
problem, which is equivalent to a piecewise-linear projection
equation, and then solved by a linear variational inequalities-
based primal-dual neural network (LVI-PDNN). Section 4 shows

the simulation result that the NDSO scheme performed on dual-

redundant-manipulators to track three complex end-effector
tasks in three-dimensional space. Comparison experiments and

robustness verification experiment with perturbed LVI-PDNN
are also conducted and the related results are showed in this
section. Section 5 concludes this paper with final remarks.

The main contributions of the paper are as follows.

(1) A neural-dynamic based synchronous-optimization scheme
of dual redundant robot manipulators (NDSO) is proposed
to solve the joint-drift phenomena at the joint-acceleration
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level. The advantage of the NDSO scheme is that it can not
only complete the traditional end-effector tasks but also some
couple tasks. In addition, the physical limit constraints allow
the scheme to apply to actual situations because it guarantees
the robot joints not to exceed their physical limits. In addition,
it is easier than velocity-level scheme to conduct such a scheme
on an acceleration/torque controlled manipulator.

(2) The NDSO scheme works for dual-robot-manipulator
system, which has twice degrees-of-freedom than the
same model single-robot-manipulator and thus has better
coordination and flexibility compared with a single robot
manipulator. Evidently, the dual-redundant-manipulator with
the NDSO scheme can complete more complex and heavy
tasks. It is convenient to make adjustment to the original
scheme through changing the definition of matrixes in order
to achieve better results because the scheme is based on a
standard quadratic programming form.

(3) Three complex end-effector tasks, i.e., a pentagram tracking,
a number “47” writing and a couple task, are completed
by three-dimensional dual-redundant-manipulators, which
validate the efficiency and accuracy of the proposed NDSO
scheme.

(4) The simulation experiment verifies the robustness of the
NDSO scheme with the perturbation of the systematic error.
That means the proposed scheme will have strong capacity of
anti-disturbance considering practical scenarios.

Before ending this section, the system structure of the scheme
can be seen from Figure 1. First of all, the performance indices
of the left and right arms are obtained by using neural dynamic
method twice. Next, considering the position and velocity
error, joint-angle, joint-velocity and joint-acceleration limits, the
repetitive motion planning subschemes of left and right arms are
constructed. Furthermore, by combining the repetitive motion
planning subschemes of left and right arms, the NDSO scheme
is obtained, which is further unified into a standard quadratic
programming problem. The quadratic programming problem
(i.e., QP in the figure) is equivalent to a set of linear variational
inequalities problem (i.e., LVI in the figure) and is finally
equivalent to a piecewise linear projection equation (i.e., PLPE
in the figure). Finally, the piecewise linear projection equation
is solved by a linear variational inequalities-based primal-dual
neural network (LVI-PDNN).

2. PROBLEM FORMULATION

In this section, a forward kinematic equation is first presented.
Next, an acceleration-level feedback is designed. Third, an
acceleration-level repetitive motion criterion is deduced by
neural dynamic method two times.

2.1. Preliminaries
For simplicity, we use the subscript L/R to represent the left
and right redundant manipulators. The kinematic equations of
the left or right arm of the dual-redundant-manipulators at
position level, velocity level and acceleration level are formulated

FIGURE 1 | System structure of the neural-dynamic based

synchronous-optimization scheme of dual redundant robot manipulators

(NDSO). It visualizes the logical structure of the paper starting from

background analysis, then the problem formulation and finally the simulation.

respectively as

fL/R(θL/R) = rL/R(t) (1)

JL/R(θL/R)θ̇L/R(t) = ṙL/R(t) (2)

JL/R(θL/R)θ̈L/R(t) = r̈aL/R(t) = r̈L/R(t)− J̇L/R(θL/R)θ̇L/R(t) (3)

where rL/R(t), ṙL/R(t), and r̈L/R(t) ∈ Rm denote the position-and-
orientation vector, velocity vector, and acceleration vector of an
end-effector, θL/R(t), θ̇L/R(t), and θ̈L/R(t) ∈ Rn denote the joint
angle, joint velocity and joint acceleration of the left or right
manipulator, Jacobian matrix JL/R(θL/R) = ∂fL/R(θL/R)/∂θL/R,
matrix J̇L/R(θL/R) is the first order derivation of Jacobian matrix
JL/R(θL/R) with respect to time t. In this paper, since one
manipulator has seven degrees-of-freedom and the task is
performed in a three dimensional space, n = 7 and m = 3.
In Equation (1), θL/R(t) and rL/R(t) are related via a nonlinear
function fL/R(·). If θL/R(t) is known, it is easy to compute rL/R(t)
since fL/R(·) can be uniquely determined by a given redundant
robot manipulator. This process is called a forward kinematic
resolution. On the contrary, it is very difficult to compute

Frontiers in Neurorobotics | www.frontiersin.org 3 November 2018 | Volume 12 | Article 73

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhang et al. NDSO Scheme of Dual Redundant Manipulators

directly θL/R(t) if rL/R(t) is known because it is difficult to
obtain the inverse function f−1

L/R(·) of nonlinear function fL/R(·).
That is to say, an inverse kinematic problem of a redundant
robot manipulator (or termed redundancy problem) is a difficult
problem.

Remark: In practical systems, the control inputs are
sometimes subject to the saturation problem and uncertainties.
Many methods have been proposed to solve the issues such as
(Tran et al., 2015; Eremin and Shelenok, 2017; Sun et al., 2017,
2018). Since we only focus on the redundancy resolution problem
and it is assumed that the control inputs satisfy the condition,
the saturation problem and uncertainties are out of our research
scope, and are ignored here.

2.2. Acceleration-Level Forward Equation
With Feedback
In practical applications, error feedback should be considered in
Equation (3). With the following theorem, the acceleration-level
forward equation with feedback is obtained, i.e.,v

Theorem 1. Considering an end-effector motion of a robot
manipulator, for any scalar parameters ρV > 0 and ρP > 0,
the error-feedback included acceleration-level forward kinematic
equation is

J(θ)θ̈(t) = r̈d(t)− J̇(θ)θ̇(t)+ ρV(ṙd(t)− J(θ)θ̇(t))+ ρP(rd(t)

−f (θ)), (4)

where rd, ṙd, and r̈d denote desired end-effector path, desired end-
effector velocity, and desired end-effector acceleration, respectively;
θ , θ̇ , and θ̈ denote the joint-angular variable, joint-velocity
variable, and joint-acceleration variable; Function f (θ) is a
continuous nonlinear mapping function with known parameters
for a given robot; J(θ) and J̇(θ) are the Jacobian matrix and the
first order derivative of Jacobian matrix; parameters ρV > 0 and
ρP > 0 are the feedback coefficients of velocity and position errors,
respectively. With these error feedbacks, the end-effector position
error would converge exponentially to zero.

Proof 1: Considering the following state-equations of two
dimensional linear system

χ̇(t) = Aχ(t), (5)

y(t) = Qχ(t), (6)

where χ(t) = [χ1(t),χ2(t)]
T is the the state vector consisting of

two state variables as its elements; χ̇(t) = [χ̇1(t), χ̇2(t)]
T is the

time derivative of the state vector χ(t); y(t) = [y1(t)] is an output
vector consisting of two outputs as its elements, and A and Q are
the coefficient matrices.

In order to make the position error converge to zero at the end
of each cycle, an error function Ef (t) is defined as

Ef (t) = rdL/R(t)− f (θL/R) (7)

where rdL/R(t) denotes the desired end-effector path. Its
first-order and second-order derivative with time t (i.e., the

FIGURE 2 | The simulation diagram of the position and velocity feedback.

velocity error Ėf and acceleration error Ëf ) are

Ėf (t) = ṙdL/R(t)− JL/R(θL/R)θ̇L/R(t), (8)

Ëf (t) = r̈dL/R(t)− J̇L/R(θL/R)θ̇L/R(t)− JL/R(θL/R)θ̈L/R(t) (9)

respectively.
For the convenience of analysis, the state variables χ1 and χ2

are set as Ef and Ėf , respectively, i.e.,

χ =
[

Ef
Ėf

]

, χ̇ =
[

Ėf
Ëf

]

. (10)

In addition, by defining

A =
[

0 1
−ρP −ρV

]

and Q =
[

1 0
]

,

with ρV > 0 and ρP > 0, the state-equations (5) and (6) are
equivalent to the following second order differential equation

Ëf = −ρVĖf − ρPEf (11)

where ρV > 0 and ρP > 0 are the feedback coefficients of velocity
and position errors, respectively. Figure 2 shows the simulation
diagram of the position and velocity feedback based on Equation
(11). Substituting (7)–(9) into (11), we obtain

JL/R(θL/R)θ̈L/R(t) = r̈afL/R(t) = r̈dL/R(t)− J̇L/R(θL/R)θ̇L/R(t)

+ρV(ṙdL/R − JL/R(θL/R)θ̇L/R(t))+ ρP(rdL/R(t)− f (θL/R)). (12)

Equation (4) is thus proved.
Next, we will prove the exponential convergence performance

of the position errors Ef (t). According to modern control theory
(Tewari, 2002), characteristic roots ̺1 and ̺2 of the system
matrix A can be obtained by solving the following characteristic
equation

∣

∣

∣
̺I − A

∣

∣

∣
=

∣

∣

∣

[

̺ −1
ρP ̺ + ρV

]

∣

∣

∣
= ̺2 + ρV̺ + ρP = 0, (13)

where I is an identity matrix, | · | is the determinant notation, and
̺ is the characteristic root of Equation (13), which is determined
by the coefficients ρP and ρV of characteristic Equation (13).
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Since the position error Ef (t) and the velocity error Ėf (t) are
the elements of state vector χ(t), discussion of the time-domain
response of the state variables χ(t) is equivalent to discussion
of errors. Based on modern control theory (Tewari, 2002), if the
initial state χ(0) = χ0 is determined, the unique solution of the
state-equation (5) can be represented as

χ(t) = 8(t)χ(0), (14)

where 8(t) = eAt .
Considering A = [0, 1;−ρP,−ρV], based on characteristic

Equation (13), the time-domain response of the state variables
χ(t) (i.e., Equation 14) can be discussed according to the
following three situations.

From the formula of root, we have the characteristic roots of
Equation (13) as

̺1 =
−ρV +

√

ρ2
V − 4ρP

2
, ̺2 =

−ρV −
√

ρ2
V − 4ρP

2
. (15)

(i) When ρ2
V > 4ρP, from Equation (15), we have ρV >

√

(ρ2
V − 4ρP) > 0, thus real characteristic roots ̺1 < 0 and

̺2 < 0. Based on modern control theory (Tewari, 2002), there
exists a nonsingular matrix T satisfying

8(t) = T

[

e̺1t 0
0 e̺2t

]

T−1. (16)

Substituting (16) into (14), we obtain that

‖χ(t)‖2 = ‖8(t)χ(0)‖2 6 ‖8(t)‖F‖χ(0)‖2 6 ‖T‖F‖T−1‖F
√

e2̺1t + e2̺2t‖χ(0)‖2

is globally exponentially convergent to zero since ‖T‖F and
‖T−1‖F are limited. Therefore, the first element of χ(t), i.e.,
position error Ef (t), is globally exponentially convergent to zero.

(ii) When ρ2
V = 4ρP, from Equation (15) we have real equal

characteristic roots ̺1 = ̺2 = ̺e = −ρV/2 < 0. Based on
modern control theory (Tewari, 2002), there exists a nonsingular
matrix T satisfying

8(t) = T

[

e̺et te̺et

0 e̺et

]

T−1. (17)

Substituting (17) into (14), we obtain that

‖χ(t)‖2 = ‖8(t)χ(0)‖2 6 ‖8(t)‖F‖χ(0)‖2 6 ‖T‖F‖T−1‖F
√

t2 + 2e̺et‖χ(0)‖2

is globally exponentially convergent to zero. Therefore, the first
element of χ(t), i.e., position error Ef (t), is globally exponentially
convergent to zero.

(iii) When ρ2
V < 4ρP, from Equation (15) we have two

imaginary characteristic roots and set them as ̺1 = σ + jω and
̺2 = σ − jω with the real part σ < 0. Based on modern control
theory (Tewari, 2002),

8(t) =
[

cosωt sinωt
− sinωt cosωt

]

eσ t . (18)

Substituting (18) into (14), we obtain that

‖χ(t)‖2 = ‖8(t)χ(0)‖2 6 ‖8(t)‖F‖χ(0)‖2 =
√
2eσ t‖χ(0)‖2

is globally exponentially convergent to zero. Therefore, the first
element of χ(t), i.e., position error Ef (t), is globally exponentially
convergent to zero.

In conclusion, it is proved that the position error Ef (t) is
globally convergent to zero with the kind of error feedback in
Equation (11) where ρV and ρP are both set positive.

2.3. NDSO Subscheme of Left/Right Arm
In order to remedy the joint-angle drift problem, a neural-
dynamic based synchronous-optimization subscheme (Sub-
NDSO) of left/right arm (i.e., the following theorem) is proposed.

Theorem 2. For a left or right arm of dual-redundant-
manipulators, given a closed end-effector path, i.e.,
rL/R(T) = rL/R(0) where T denotes a task execution period,
if Equations (19)–(23) are satisfied, the left or right arm of
dual-redundant-manipulators achieves repetitive motion, and
the joint-drift θL/R(t) − θL/R(0) would converge exponentially
to zero. In addition, all the joint-angles, joint-velocities and
joint-accelerations are constrained within their limits, i.e.,

minimize
1

2
‖θ̈L/R(t)+ bL/R(t)‖22 (19)

subject to JL/R(θL/R)θ̈L/R(t) = r̈afL/R(t) (20)

θ−L/R 6 θL/R(t) 6 θ+L/R (21)

θ̇−L/R 6 θ̇L/R(t) 6 θ̇+L/R (22)

θ̈−L/R 6 θ̈L/R(t) 6 θ̈+L/R (23)

with bL/R(t) = (α + β)θ̇L/R(t)+ αβ(θL/R(t)− θL/R(0)),

r̈afL/R(t) = r̈dL/R(t)− J̇L/R(θL/R)θ̇L/R(t)

+ρv(ṙdL/R(t)− JL/R(θL/R)θ̇L/R(t))+ ρp(rdL/R(t)

−f (θL/R))

where ‖ · ‖2 denotes the two-norm of a vector; θL/R, θ̇L/R, and
θ̈L/R denote the joint angle, joint velocity, and joint acceleration
of the left or right arms of dual-redundant-manipulators; rdL/R,
ṙdL/R, and r̈dL/R denote desired end-effector position, desired end-
effector velocity, and desired end-effector acceleration of the left or
right arm of dual-redundant-manipulators; J(θ) and J̇(θ) are the
Jacobian matrix and the first order derivative of Jacobian matrix;
α > 0 and β > 0 are used to scale the joint displacement; θ±L/R,
θ̇±L/R and θ̈±L/R denote the upper and lower limits of the joint angles,
joint velocities and joint accelerations of the left/right manipulator,
respectively.

Proof 2: First, a vector-valued error function, i.e., the deviation
between the joint instant angle θL/R(t) and the initial joint angle
θL/R(0) of the left/right manipulator, is defined as

e1L/R(t) = θL/R(t)− θL/R(0). (24)

The joint-angle drift is zero if and only if the value of the error
function e1L/R(t) = 0. In order to reduce and eventually eliminate
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the joint displacement, by the neural-dynamic method, we can
obtain

ė1L/R(t) = −αe1L/R(t) = −α[θL/R(t)− θL/R(0)], (25)

where design parameter α is used to adjust the convergence rate
of e1L/R(t) to zero. By taking the derivative of Equation (24) with
time t, ė1L/R(t) = θ̇L/R(t) is obtained. Substituting it into Equation
(25), the following equation is obtained, i.e.,

θ̇L/R(t)+ α(θL/R(t)− θL/R(0)) = 0. (26)

Second, in order to obtain the acceleration-level repetitive
motion criterion, the joint acceleration should be included in the
criterion. That is to say, there should be an equation equivalent
to (26), which includes joint acceleration. To do so, the neural
dynamic method is applied to Equation (26) again. Similarly, a
vector-valued joint-displacement function is defined as

e2L/R(t) = θ̇L/R(t)+ α(θL/R(t)− θL/R(0)). (27)

According to neural dynamic design method (Cai and Zhang,
2012), i.e.,

ė2L/R(t) = −βe2L/R(t) (28)

where design parameter β > 0, we can get

θ̈L/R(t)+ αθ̇L/R(t) = −β(θ̇L/R(t)+ α(θL/R(t)− θL/R(0))). (29)

Equation (29) is rewritten as

θ̈L/R(t)+ (α + β)θ̇L/R(t)+ αβ(θL/R(t)− θL/R(0)) = 0. (30)

Considering the motion of the robot manipulator, it is better to
minimize the performance ‖θ̈L/R(t)+(α+β)θ̇L/R(t)+αβ(θL/R(t)−
θL/R(0))‖22/2 rather than use (30) directly, i.e.,

minimize
1

2
‖θ̈L/R(t)+ bL/R(t)‖22, (31)

where bL/R(t) = (α + β)θ̇L/R(t) + αβ(θL/R(t) − θL/R(0)), and
‖ · ‖2 denotes the two-norm of a vector. If Equation (31) is
used as the optimization criterion, the joint angle θL/R(t) tends
to converge to θL/R(0). At the end of the task execution period,
θL/R(T) = θL/R(0). Equation (19) is thus proved.

In practical applications, the joint physical limits, i.e., joint-
angle limits, joint-velocity limits and joint-acceleration limits,
should be considered into the scheme, and thus an NDSO
subschemes (termed as Sub-NDSO) is obtained as

minimize
1

2
‖θ̈L/R(t)+ bL/R(t)‖22 (32)

subject to JL/R(θL/R)θ̈L/R(t) = r̈aL/R(t) (33)

θ−L/R 6 θL/R(t) 6 θ+L/R (34)

θ̇−L/R 6 θ̇L/R(t) 6 θ̇+L/R (35)

θ̈−L/R 6 θ̈L/R(t) 6 θ̈+L/R (36)

with bL/R(t) = (α + β)θ̇L/R(t)+ αβ(θL/R(t)− θL/R(0))

r̈aL/R(t) = r̈dL/R(t)− J̇L/R(θL/R)θ̇L/R(t)

where α > 0 and β > 0 are used to scale the joint displacement.

According to the acceleration-level feedback error design
method in Theorem 1, r̈aL/R in Equation (33) can be replaced
by r̈afL/R(t) = r̈dL/R(t) − J̇L/R(θL/R)θ̇L/R(t) + ρv(ṙdL/R(t) −
JL/R(θL/R)θ̇L/R(t))+ ρp(rdL/R(t)− f (θL/R)). Equations (19)–(23) is
thus proved. That is to say, with Equations (19)–(23), the left or
right arm of dual-redundant-manipulators can achieve repetitive
motion, meanwhile it can avoid joint-physical limits during the
execution of the task.

Next, the exponential convergence rate of joint-drift θL/R(t)−
θL/R(0) will be proved. In the light of differential equation
theory (Hartman and Philip, 1982), the ith element of e2L/R(t) in
Equation (28) is

e2L/Ri(t) = e2L/Ri(0)e
−βt . (37)

When t approaches to infinity, each element would approach
exponentially zero, i.e.,

lim
t→∞

e2L/Ri(t) = lim
t→∞

e2L/Ri(0)e
−βt = 0. (38)

The proof of Theorem 2 is completed.

2.4. NDSO Scheme
In this section, based on the neural-dynamic based synchronous-
optimization subschemes (Sub-NDSO) of the left arm and
right arm proposed in Theorem 2, a neural-dynamic based
synchronous-optimization scheme of dual redundant robot
manipulators (NDSO) is proposed and developed.

Theorem 3. For a dual-redundant-manipulators system,
including left manipulator and right manipulator, given a closed
end-effector path, i.e., r(T) = r(0) where T denotes a task
execution period, if Equations (39)–(43) are satisfied, the dual-
redundant-manipulators will achieve repetitive motion, and the
joint-drift θ(t) − θ(0) would converge exponentially to zero. In
addition, all the joint angles, joint velocities and joint accelerations
of the dual-redundant-manipulators are constrained within their
limits, i.e.,

minimize
1

2
θ̈T(t)θ̈(t)+ bT(t)θ̈(t) (39)

subject to J(θ)θ̈(t) = r̈af(t) (40)

θ− 6 θ(t) 6 θ+ (41)

θ̇− 6 θ̇(t) 6 θ̇+ (42)

θ̈− 6 θ̈(t) 6 θ̈+ (43)

with b(t) = (α + β)θ̇(t)+ αβ(θ(t)− θ(0)),

r̈af(t) = r̈d(t)− J̇(θ)θ̇(t)+ ρv(ṙd(t)− J(θ)θ̇(t))

+ρp(rd(t)− f (θ))

where θ(t) = [θL(t), θR(t)]
T, θ̇(t) = [θ̇L(t), θ̇R(t)]

T, and
θ̈(t) = [θ̈L(t), θ̈R(t)]

T denote the joint angle, joint velocity,
and joint acceleration of the dual-redundant-manipulators;
rd(t) = [rdL(t), rdR(t)]

T, ṙd(t) = [ṙdL(t), ṙdR(t)]
T, and r̈d(t) =

[r̈dL(t), r̈dR(t)]
T denote the position vector, velocity vector, and
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acceleration vector of the end-effector of the dual-redundant-
manipulators; Scalar parameters α > 0 and β > 0 are used to
scale the joint displacements; θ± = [θ±L , θ±R ]T, θ̇± = [θ̇±L , θ̇±R ]T

and θ̈± = [θ̈±L , θ̈±R ]T denote the upper and lower limits of
the joint angles, joint velocities and joint accelerations of the
dual-redundant-manipulator, respectively. The combined Jacobian
matrix and the first order derivative of the combined Jacobian
matrix of the dual-redundant-manipulators are

J(θ) =
[

JL(θL) 0

0 JR(θR)

]

, J̇(θ) =
[

J̇L(θL) 0

0 J̇R(θR)

]

. (44)

Proof 3: Firstly, the optimization criterion (32) can be simplified
as

1

2
‖θ̈L/R(t)+ bL/R(t)‖22

=
1

2

(

θ̈L/R(t)+ bL/R(t)
)T(

θ̈L/R(t)+ bL/R(t)
)

=
1

2

(

θ̈TL/R(t)θ̈L/R(t)+ θ̈TL/R(t)bL/R(t)+ bTL/R(t)θ̈L/R(t)

+bTL/R(t)bL/R(t)
)

=
1

2
θ̈TL/R(t)θ̈L/R(t)+ bTL/R(t)θ̈L/R(t)+

1

2
bTL/R(t)bL/R(t). (45)

Since the redundant resolution problem is solved at the
joint-acceleration level and θ̈L/R is the decision variable,
bTL/R(t)bL/R(t)/2 in Equation (45) can be regarded as a

constant. Therefore, minimizing ‖θ̈L/R(t) + bL/R(t)‖22/2 =
θ̈TL/R(t)θ̈L/R(t)/2 + bTL/R(t)θ̈L/R(t) + bTL/R(t)bL/R(t)/2 is equivalent

to minimizing θ̈TL/R(t)θ̈L/R(t)/2 + bTL/R(t)θ̈L/R(t). Combining the

TABLE 1 | Joint physical limits used in simulations.

# θ
−
L θ

+

L θ
−
R θ

+

R θ̇
−
L/R θ̇

+

L/R θ̈
−
L/R θ̈

+

L/R

(rad) (rad) (rad) (rad) (rad/s) (rad/s) (rad/s2) (rad/s2)

1 –1 1 –5 0 –1.5 1.5 –6 6

2 –2 2 –2 0 –1.5 1.5 –6 6

3 –1 1 –1 1 –1.5 1.5 –6 6

4 1 3 1 3 –1.5 1.5 –6 6

5 –1 1 –1 1 –1.5 1.5 –6 6

6 –2 0 –2 0 –1.5 1.5 –6 6

7 –1 1 –1 1 –1.5 1.5 –6 6

TABLE 2 | Four sets of equations used in the three groups of contrast

experiments.

1 2 3 4

d 0 ∈ R2n b(t) ∈ R2n b(t) ∈ R2n b(t) ∈ R2n

x− ζ− −̟ζ− ζ− ζ−

x+ ζ+ ̟ζ+ ζ+ ζ+

ρp 1 1 0 1

ρv 200 200 0 200

joint variables of left and right manipulators into one combined
vector, the optimization criterion can be written as

minimize θ̈T(t)θ̈(t)/2+ bT(t)θ̈(t) (46)

where θ̈(t) = [θ̈L(t), θ̈R(t)]
T and b(t) = [bL(t), bR(t)]

T.
Secondly, acceleration level forward kinematic Equation (20)

of left and right manipulators can be written as a combined
forward kinematic equation as

[

JL(θ) 0

0 JR(θ)

]

·
[

θ̈L(t)

θ̈R(t)

]

=
[

r̈afL(t)
r̈afR(t)

]

(47)

where

r̈afL(t) = r̈dL(t)− J̇L(θL)θ̇L(t)

+ ρv(ṙdL(t)− JL(θL)θ̇L(t))+ ρp(rdL(t)− f (θL)), (48)

r̈afR(t) = r̈dR(t)− J̇R(θR)θ̇R(t)

+ ρv(ṙdR(t)− JR(θR)θ̇R(t))+ ρp(rdR(t)− f (θR)). (49)

Combining the upper and lower joint-limits of left and right
arms of dual-redundant-manipulators, we can get combined
joint-angular, joint-velocity, joint-acceleration limits respectively
as

θ±(t) = [θ±L (t), θ±R (t)]T, (50)

θ̇±(t) = [θ̇±L (t), θ̇±R (t)]T, (51)

θ̈±(t) = [θ̈±L (t), θ̈±R (t)]T. (52)

Taking into consideration of optimization criterion (46),
feedback considered acceleration-level kinematic equation (47),
and joint-limits (50)–(52), NDSO scheme (40)–(43) is obtained.
The proof of Theorem 3 is completed.

3. QUADRATIC PROGRAMMING
UNIFICATION & SOLVER

In this section, the proposed NDSO scheme (39)–(43) is unified
into a standard quadratic programming problem, which is
equivalent to linear variational inequality problem and is further
equivalent to a piecewise linear projection equation. Finally,

FIGURE 3 | Comparisons between the scheme without considering repetitive

motion and the NDSO scheme when tracking a pentagram-path. (A) Final

states do not coincide with the initial states when using the scheme without

considering repetitive motion. (B) Final states coincide with initial states when

using NDSO scheme considering repetitive motion.
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FIGURE 4 | Joint angles, joint velocities, joint accelerations during the dual-redundant manipulators tracking a pentagram path when using the scheme with

considering repetitive motion planning and feedback criteria but no physical-limits criterion. (A) Joint angle of left arm θL. (B) Joint angle of right arm θR. (C) Joint

velocity of left arm θ̇L. (D) Joint velocity of right arm θ̇R. (E) Joint acceleration of left arm θ̈L. (F) Joint acceleration of right arm θ̈R.

FIGURE 5 | Joint angles, joint velocities, joint accelerations during the dual-redundant manipulators tracking a pentagram path when using the NDSO scheme with

considering repetitive motion planning and physical-limits and feedback criterion. (A) Joint angle of left arm θL. (B) Joint angle of right arm θR. (C) Joint velocity of left

arm θ̇L. (D) Joint velocity of right arm θ̇R. (E) Joint acceleration of left arm θ̈L. (F) Joint acceleration of right arm θ̈R.
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FIGURE 6 | Position errors during the period of pentagram-path tracking

synthesized by NDSO scheme without considering position and velocity

feedback. (A) Position error of left arm ǫL; (B) Position error of right arm ǫR.

FIGURE 7 | Position errors during the period of pentagram-path tracking

synthesized by NDSO scheme with considering position and velocity

feedback. (A) Position error of left arm ǫL; (B) Position error of right arm ǫR.

the piecewise linear projection equation is solved by a linear
variational inequalities-based primal-dual neural network (LVI-
PDNN).

3.1. Joint-Limits Conversion
In order to resolve the redundancy problem at the acceleration-
level and satisfy the format requirement of standard quadratic
programming, physical limits (41)–(43) at different levels should
be converted into one bound constraint with joint-acceleration
θ̈(t). Specifically, the ith elements of bounds ζ− and ζ+ are
defined respectively as

ζ−
i (t) = max{θ̈−i (t), λv(θ̇

−
i − θ̇i(t)), λp((θ

−
i + ϑi)− θi(t))},

ζ+
i (t) = min{θ̈+i (t), λv(θ̇

+
i − θ̇i(t)), λp((θ

+
i − ϑi)− θi(t))}.

Actually, there exist the inertia movement during the
deceleration period caused by the mechanical inertia of the
dual-redundant-manipulators in practice. Thus critical areas
for joint position variables are considered into physical limits’
representation so that there will appear a deceleration earlier
when they enter the areas but not reach the joint position limit
yet. ϑi > 0 is a small constant and used to define the critical areas
[θ−i , θ−i + ϑi] and [θ+i − ϑi, θ

+
i ]. In the simulation section of

the paper, ϑi > 0 is set 0.01. The coefficient λv > 0 and λp > 0
denote the decreasing amplitude (Zhang et al., 2008).

TABLE 3 | Joint drifts when dual-redundant-manipulators tracking a

pentagram-path synthesized by NDSO scheme with considering repetitive

motions, joint limits, and feedback.

Joint displacements (rad) Joint displacements (degree)

LEFT ARM

θL1(4)− θL1(0) +3.68924× 10−3 +0.21138

θL2(4)− θL2(0) +1.12535× 10−4 +0.00645

θL3(4)− θL3(0) −8.00902× 10−4 −0.04589

θL4(4)− θL4(0) +6.05971× 10−5 +0.00347

θL5(4)− θL5(0) −6.14706× 10−3 −0.35220

θL6(4)− θL6(0) −1.44414× 10−3 −0.08274

θL7(4)− θL7(0) 0.00000 0.00000

RIGHT ARM

θR1(4)− θR1(0) −3.68924× 10−3 −0.21138

θR2(4)− θR2(0) +1.12535× 10−4 +0.00645

θR3(4)− θR3(0) +8.00902× 10−4 +0.04589

θR4(4)− θR4(0) +6.05971× 10−5 +0.00347

θR5(4)− θR5(0) +6.14706× 10−3 +0.35220

θR6(4)− θR6(0) −1.44414× 10−3 −0.08274

θR7(4)− θR7(0) 0.00000 0.00000

Therefore, constraints (39)–(43) can be rewritten as

minimize
1

2
θ̈(t)TWθ̈(t)+ bT(t)θ̈(t) (53)

subject to J(θ)θ̈(t) = r̈af(t) (54)

ζ−(t) 6 θ̈(t) 6 ζ+(t) (55)

The scheme (53)–(55) can be further unified into the following
standard quadratic programming

minimize
1

2
xTGx+ dTx (56)

subject to Cx = h (57)

x− 6 x 6 x+ (58)

where

x = θ̈(t) =
[

θ̈L(t)

θ̈R(t)

]

∈ R2n, G = W =
[

1 0

0 1

]

∈ R2n×2n,

d = b(t) =
[

bL(t)
bR(t)

]

∈ R2n, h = r̈af(t) =
[

r̈afL(t)
r̈afR(t)

]

∈ R2m,

C = J =
[

JL(θL) 0

0 JR(θR)

]

∈ R2m×2n, x± = ζ±(t) ∈ R2n.

3.2. Quadratic Programming Solver
According to Zhang et al. (2008), finding the solutions to
quadratic programming problem (56)–(58) is equivalent to
finding out a primal-dual equilibrium vector u∗ = [x∗; η∗]T ∈
� : = {u = [xT, ηT]T ∈ R2n+2m|u− 6 u 6 u+} to the following
linear variational inequality

(u− u∗)T(Mu∗ + q) > 0,∀u ∈ �, (59)
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FIGURE 8 | Tracking trajectories, joint angles, joint velocities, and joint accelerations during the period of number “47” writing synthesized by the proposed NDSO

scheme (39)–(43) which considers repetitive motion planning, joint limits, and feedbacks. (A) 3-D simulation tracking trajectories. (B) Left arm joint angle θL. (C) Right

arm joint angle θR. (D) Left arm joint velocity θ̇L. (E) Right arm joint velocity θ̇R. (F) Left arm joint acceleration θ̈L. (G) Right arm joint acceleration θ̈R. (H) Position error

of left arm ǫL. (I) Position error of right arm ǫR.

where the augmented primal-dual decision variable u ∈
R(2n+2m), and its bounds u± ∈ R(2n+2m) are respectively defined
as

u =
[

x
η

]

, u+ =
[

x+

1ν̟

]

, u− =
[

x−

−1ν̟

]

,

with η ∈ R2m being the corresponding dual decision vectors
of Equation (57), 1ν = [1, · · · , 1]T denoting an appropriately-
dimensioned vector composed of ones, and ̟ = 1010 ∈ R
replacing the +∞ for simulation and implementation purposes.

The matrixM ∈ R(2n+2m)×(2n+2m) and the vector q ∈ R2n+2m are
defined respectively as

M =
[

G −CT

C 0

]

, q =
[

d
−h

]

.

The above inequality problem (59) can be solved by the following
piecewise-linear projection equation (Zhang and Zhang, 2013a)
as

P�(u− (Mu+ q))− u = 0 (60)
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TABLE 4 | Joint drifts during the period of number “47” writing synthesized by the

proposed NDSO scheme (39)–(43) which considers repetitive motion planning,

joint limits, and feedback.

Joint displacements (rad) Joint displacements (degree)

LEFT ARM

θL1(2)− θL1(0) +1.78619× 10−3 +0.10234

θL2(2)− θL2(0) +1.40074× 10−4 +0.00803

θL3(2)− θL3(0) −3.31570× 10−4 −0.01900

θL4(2)− θL4(0) +7.76503× 10−5 +0.00445

θL5(2)− θL5(0) −2.15183× 10−3 −0.12329

θL6(2)− θL6(0) −1.79191× 10−3 −0.10267

θL7(2)− θL7(0) 0.00000 0.00000

RIGHT ARM

θR1(2)− θR1(0) −1.30848× 10−3 −0.07497

θR2(2)− θR2(0) +4.72086× 10−5 +0.00270

θR3(2)− θR3(0) +2.97110× 10−4 +0.01702

θR4(2)− θR4(0) +2.60082× 10−5 +0.00149

θR5(2)− θR5(0) +2.39140× 10−3 +0.13702

θR6(2)− θR6(0) −6.03425× 10−4 −0.03457

θR7(2)− θR7(0) 0.00000 0.00000

where P�(·) ∈ R2n+2m → � ⊂ R2n+2m is a projection operator
defined from R2n+2m onto �, and the ith element of P�(u) is











u−i , if ui < u−i

ui, if u−i < ui < u+i ,∀i ∈ {1, 2, · · · , 2n+ 2m}
u+i , if ui > u+i

According to previous design experience on recurrent neural
networks (Zhang and Zhang, 2013a), a linear-variational-
inequality-based primal-dual neural network (abbreviated as
LVI-PDNN) is employed to solve the piecewise-linear projection
Equation (60) as well as the quadratic programming problem
(56)–(58), i.e.,

u̇ = γ (I +MT)(P�(u− (Mu+ q))− u), (61)

where I is an identity matrix, and parameter γ ∈ R is a positive
design parameter designed to scale the convergence rate of neural
network. From Zhang and Zhang (2013a), the state vector u(t)
of the primal-dual neural network in Equation (61) is globally
convergent to an equilibrium point u∗. Furthermore, the first 2n
elements of u∗ constitute the solutions to the original quadratic
programming problem (56)–(58).

Considering the systematic error generally including the
differentiation error and the implementation error, the perturbed
LVI-PDNN is formulated as

u̇ = γ (I +MT + 1D)(P�(u− (Mu+ q))− u)+ 1S, (62)

where 1D ∈ R(2n+2m)×(2n+2m) and 1S ∈ R2n+2m denote the
differentiation error matrix and the implementation error vector
respectively. Equation (62) will be used in the experiment on
robustness verification.

4. COMPUTER SIMULATIONS

In this section, the dual PA10 robot manipulators synthesized by
the presented NDSO scheme are expected to track three closed
complex trajectories, i.e., a pentagram, number “47” writing
and end-effector-coupled pentagram. Each manipulator has 7
degrees-of-freedom, and the dual-manipulators have 14 degrees-
of-freedom in total. All joint physical limits are shown in Table 1.
The design parameter α and β are set 4, and the design parameter
γ = 105 in the ensuing simulations.

4.1. Pentagram Path-Tracking
In this section, the dual PA10 robot manipulators are expected
to cooperatively track a pentagram-path. Initial joint angles
of the left arm are θL(0) = [0;−π/4; 0;π/2; 0;−π/6; 0]
rad, and initial joint angles of the right arm are θR(0) =
[−π;−π/4; 0;π/2; 0;−π/6; 0] rad. The task execution period
is 4 s. For comparisons, four sets of equations in which
the variables d, x−, x+, ρp, ρv in Equation (56)–(58) are set
different values are showed in Table 2. Then the four sets
of equations make up three groups of contrast experiments
which are performed to prove the efficiency of repetitive motion
criterion, physical limits criterion and feedback criterion. Firstly,
comparison results between the scheme considering physical-
limits, feedback criteria but no repetitive motion criterion
(experiment 1) and the NDSO scheme considering the repetitive
motion, physical limits and feedback criteria (experiment 4)
performed on dual PA10 robot manipulators are illustrated
in Figures 3A,B, respectively. Figure 3A shows that the final
states of the end-effectors of the left and right arms of the
dual-redundant-manipulators do not coincide with the initial
states, which means that the end-effectors of the dual-redundant-
manipulators can not return to the initial states when the task
is completed. That is to say, the joint drift phenomenon has
happened. It is noticed that this phenomenon is not expected in
practical applications because it is necessary to add extra self-
motion to readjust the manipulator’s configuration at the end
of each task execution period in the cyclic motions. Evidently,
this approach is inefficient. To remedy this joint-drift problem,
the repetitive motion planning criterion is developed, and the
corresponding result is shown in Figure 3B. Evidently, the final
states of the dual-redundant-manipulators coincide well with
their initial states. Comparing Figures 3A,B, we can see that the
NDSO scheme nearly eliminates the joint-drift phenomena since
it considers the repetitive motion criterion, and the efficiency of
repetitive motion criterion is verified.

Secondly, comparisons between the scheme with considering
the repetitive motion planning and feedback criterion but
without considering limits (experiment 2) and the NDSO
scheme with considering the limits criterion (experiment 4)
are illustrated in Figures 4, 5, respectively. The joint angles are
shown in Figures 4C,D, 5C,D. We can see that the final states of
joints coincide with the initial ones and thus the efficiency of the
repetitive motion planning criterion are illustrated. The velocities
are shown in Figures 4C,D, 5C,D. It can be seen from the figures
that the velocities start from zero and end at zero, which is fit
with the actual situations. However, Figures 4E,F show that θ̈L3
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FIGURE 9 | Tracking trajectories, joint angles, joint velocities, and joint accelerations during the period of end-effector-coupled pentagram-path tracking synthesized

by the proposed NDSO scheme (39)–(43) which considers repetitive motion planning, joint limits, and feedbacks. (A) 3-D simulation tracking trajectories. (B) Left arm

joint angle θL. (C) Right arm joint angle θR. (D) Left arm joint velocity θ̇L. (E) Right arm joint velocity θ̇R. (F) Left arm joint acceleration θ̈L. (G) Right arm joint

acceleration θ̈R. (H) Position error of left arm ǫL. (I) Position error of right arm ǫR.

and θ̈R3 exceed their upper or lower acceleration limits in 0–4s.
Thismay lead to the damage to the dual-redundant-manipulators
and is less desirable for practical applications. By comparison,
joint accelerations θ̈L3 and θ̈R3 in Figures 4E,F reach but never
exceed their acceleration limits. This comparison result verifies
the efficiency of the physical limits are very useful in applications.

Thirdly, comparisons between the NDSO scheme without
considering feedback (experiment 3) and the NDSO scheme
proposed in this paper with considering feedback (experiment
4) are illustrated in Figures 6, 7, respectively. In the NDSO
scheme, the feedback parameters ρP and ρV are set as 1 and 200,
respectively. It can be seen from Figure 6 that the end-effector

position errors of left and right arms are less than 6.0 × 10−4

m. However, the position errors become bigger and bigger as the
task execution, i.e., the trend of the position errors are diverging.
This would lead to bigger accumulated errors if the scheme is
applied to perform cyclic tasks. Contrastively, the position errors
in Figures 7A,B show that position errors are very tiny and
become smaller and smaller since the proposed NDSO scheme
is applied.

Last but not least, the joint drifts are measured when
the position, velocity and acceleration feedback are taken
into consideration in the NDSO scheme. Table 3 lists small
joint drifts which are all less than 6.2 × 10−3 rads when
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FIGURE 10 | Joint accelerations and position errors of the left arm during the period of end-effector-coupled pentagram-path tracking synthesized by pseudo-inverse

scheme (63) and NDSO scheme (53)–(55). (A) Left arm joint acceleration θ̈L of pseudo-inverse scheme. (B) Position error of left arm ǫL of pseudo-inverse scheme. (C)

Left arm joint acceleration θ̈L of NDSO scheme. (D) Position error of left arm ǫL of NDSO scheme.

FIGURE 11 | The form of the joint-velocity-limit margins and joint-velocity moving region where ι− is minus and ι+ is positive.

the dual-redundant-manipulators track a pentagram-path
synthesized by NDSO scheme.

In a word, the above three comparison experiments on
tracking a pentagram-path illustrate well the effectiveness, safety
and accuracy of the proposed NDSO scheme (39)–(43) and the
LVI-PDNN to solve the joint-drift problem.

4.2. Number Writing
In order to further verify the effectiveness, accuracy and
generalization of the proposed NDSO scheme (39)–(43), another
new end-effector task, i.e., number “47” writing, is expected

to finished by the same dual PA10 robot manipulators which
is synthesized by the NDSO scheme. In the simulations, ρP
and ρV in Equations (48) and (49) are set as 1 and 100
respectively. Initial joint angles of the left arm are θL(0) =
[0;−π/4; 0;π/2; 0;−π/6; 0] rad, and initial joint angles of the
right arm are θR(0) = [−π;−π/4; 0;π/2; 0;−π/6; 0] rad. The
task execution period is 2s.

The tracking trajectories, joint angles, joint velocities, joint
accelerations and end-effector position errors are shown in
Figure 8, and the joint drifts between the final state and the
initial states of the left and right arms are listed in Table 4. As
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TABLE 5 | θ̇±L and θ̇±R (rad/s) used in Robustness experiments.

Joint L1 Joint L2 Joint L3 Joint L4 Joint L5 Joint L6 Joint L7

LEFT ARM

θ̇+ 1.5 1.5 1.5 1.5 1.5 1.5 1.5

θ̇− −0.5 −1.5 −1.5 −1.5 -0.5 -0.5 −1.5

RIGHT ARM

θ̇+ 0.5 1.5 1.5 1.5 0.4 1.5 1.5

θ̇− −1.5 −1.5 −1.5 −1.5 −1.5 -0.4 −1.5

TABLE 6 | Joint drifts when dual-redundant-manipulators tracking a

pentagram-path synthesized by NDSO scheme considering differentiation errors

and implementation errors.

Joint displacements (rad) Joint displacements (degree)

LEFT ARM

θL1(4)− θL1(0) +3.89070× 10−3 +0.22292

θL2(4)− θL2(0) +1.86462× 10−4 +0.01068

θL3(4)− θL3(0) −8.38750× 10−4 −0.04806

θL4(4)− θL4(0) −3.11366× 10−5 −0.00178

θL5(4)− θL5(0) −5.90065× 10−3 −0.33808

θL6(4)− θL6(0) −1.51023× 10−3 −0.08653

θL7(4)− θL7(0) −6.41855× 10−6 −0.00037

RIGHT ARM

θR1(4)− θR1(0) −3.54920× 10−3 −0.20335

θR2(4)− θR2(0) −1.56336× 10−5 −0.00090

θR3(4)− θR3(0) +7.25769× 10−4 +0.04158

θR4(4)− θR4(0) +2.49020× 10−4 +0.01427

θR5(4)− θR5(0) +5.66373× 10−3 +0.32451

θR6(4)− θR6(0) −8.71307× 10−4 −0.04992

θR7(4)− θR7(0) +1.68829× 10−5 +0.00097

can be seen from Figure 8A, the end-effector task, i.e., number
“47” writing is finished by the dual-redundant-manipulators
synthesized by NDSO scheme (39)–(43) very well. In addition, as
is shown in Figures 8B–E, all joint angles and joint velocities are
within their joint limits, and the initial and final joint velocities
and joint accelerations are both zero. From Figures 8F,G, we can
see that the joint accelerations θ̈L2 and during the range 0.3s–0.5s,
θ̈L3 during the range 1.6s–2s, θ̈R3 and θ̈R5 during the range 0.3s–
1.3s increase sharply and are constrained by the upper and lower
acceleration limits. This means that all the joint variables are in
safe motion ranges. End-effector position errors ǫ of the dual-
redundant-manipulators are shown in Figures 8H,I, which are
very small (6 3× 10−4 m). It is worth pointing out that the end-
effector position errors tend to convergence as the task execution
due to the position and velocity feedbacks considered in the
NDSO scheme. Table 4 shows that the small joint displacements
of NDSO scheme are all less than 2.4× 10−3 rads.

This number writing simulations further verify the
effectiveness of the proposed NDSO scheme.

4.3. Coupled Task Tracking Example
In order to further verify the well-coordinated performance
between dual-redundant-manipulators of the proposed NDSO

scheme (39)–(43), a complex end-effector-coupled task, i.e., the
left arm is drawing an outside pentagram while the right arm
is drawing an inside one synchronously by the dual PA10 robot
manipulators. Initial joint angles of the left arm are θL(0) =
[0;−π/6; 0; 3π/4; 0;−π/4; 0] rad, and initial joint angles of the
right arm are θR(0) = [−π;−π/6; 0; 3π/4; 0;−π/4; 0] rad. The
relation of the left and right end-effector tasks is











r̈RX = r̈LX

r̈RY = 0.5× r̈LY,∀t ∈ {0,T}
r̈RZ = 0.5× r̈LZ

In the simulations, ρP and ρV in Equations (48) and (49)
are set as 1 and 200 respectively. The task execution period
is 4s. The tracking trajectories, joint angles, joint velocities,
joint accelerations and end-effector position errors are shown
in Figure 9. From Figure 9A we can see that the coupled end-
effector task is completed by the dual-redundant-manipulators
synthesized by NDSO scheme. What’s more, the final states
perfectly coincide the initial states. In addition, in Figures 9B–E,
all joint angles and joint velocities are within their joint limits,
and the initial and final joint velocities and joint accelerations
are both zero. From Figures 9F,G, we can see that the joint
accelerations θ̈L2 and θ̈L6 during 1–3s, change sharply but both
are constrained by their acceleration limits. This means that
all the joint variables are in the safe motion ranges. The end-
effector position errors ǫ shown in Figures 9H,I are very small
(6 6× 10−4 m) and convergent.

In summary, the above three end-effector tasks and
comparisons, i.e., pentagram-path tracking, number “47”
writing, and the coupled task tracking example, demonstrate
that complex end-effector tasks can be well performed by the
presented NDSO scheme (39)–(43). From the simulations, it is
known that the NDSO scheme can achieve the repetitive motion
effectively and accurately. In addition, the position errors of the
end-effectors can converge to nearly zero at the end of each cycle
due to taking feedback into consideration.

4.4. Compared With Pseudo-Inverse
Method
In order to further illustrate the advantages of the proposed
NDSO scheme, both of the traditional pseudo-inverse
method and the proposed NDSO are used to perform on a
dual-redundant-manipulators to track the previous coupled
pentagram paths. Initial joint angles of the left and right arms are
set the same as before. The formulation of the pseudo-inverse
method is

θ̈ = J+r̈af(t)− [I − J+J]b(t) (63)

where θ̈ , r̈af(t), J and b(t) have the same definition in the NDSO
scheme. J+ means the pseudo-inverse matrix of Jacobian matrix
J and I is an identity matrix inm+ n dimensions.

The comparative simulations are shown in Figure 10. Due
to space limitation, only the joint acceleration and the position
errors of left manipulators between the proposed NDSO scheme
and the pseudo-inverse method are shown here. Specifically,

Frontiers in Neurorobotics | www.frontiersin.org 14 November 2018 | Volume 12 | Article 73

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhang et al. NDSO Scheme of Dual Redundant Manipulators

FIGURE 12 | Joint accelerations and position errors during the period of pentagram-path tracking task synthesized by NDSO scheme considering differentiation errors

and implementation errors. (A) Left arm joint acceleration θ̈L; (B) Right arm joint acceleration θ̈R; (C) Position error of left arm ǫL; (D) Position error of right arm ǫR.

Figures 10A,B show the simulation result of the pseudo-inverse
method, and Figures 10C,D show the simulation result of the
proposed NDSO method. From Figure 10A, we can see that
the joint acceleration θ̈L2 exceeds its limits about 1.3s and 2.6s,
and the end-effector position errors of the left arm shown in
Figure 10C ǫXL are divergent as time goes on. That is to say, the
end-effector of the dual-redundant-manipulators synthesized by
the pseudo-inverse method can track the desired path but may
lead to exceeding limit problem and the positioning errors will
accumulate.

This comparison result further illustrate the efficiency and
excellent advantages of the proposed NDSO scheme.

4.5. Robustness Verification
In this subsection, systematic errors are taken into consideration
and the perturbed LVI-PDNN in Equation (62) is used
to solve the path-tracking problem of the dual redundant
manipulators. The pentagram path-tracking task in 4.1 is adopted
to compare the joint displacements without perturbation in
Table 3. During the simulations, error-matrix 1D and error-
vector 1S are generated randomly. The element 1i of them is
formulated as

1i = 0.1 ∗ νa(νcsin(νbt)+ (1− νc)cos(νbt)) (64)

where νa is a random integer in [−5, 5], νb is a random integer
in [1, 5] and νc is a random integer in [0, 1]. All of them
are distributed evenly. νa and νb control the amplitude and
frequency of the element respectively. νc controls the form of
the perturbation function to be sine function (νc = 1) or to
be cosine function (νc = 0). The initial joint angles of dual
arms are set as same in 4.1. The parameters d, x−, x+, ρp, ρv are
set according to the 4th set of equations in Table 2. Inspired
by Zhang and Zhang (2013b), we consider joint-velocity-
limit margins ι shown in Figure 11 in our experiments. The
updated θ̇±L (t) and θ̇±R (t) in (51) are shown in Table 5, where
the margins considered joint-velocity-limits are highlighted
in bold.

The joint drifts of dual arms are shown in Table 6,
which shows that the joint displacement of every joint
almost has no change compared with the result in Table 3.
The joint accelerations and position errors during the
period of pentagram-path tracking task are recorded in
Figures 12A–D. The curves in Figures 12A–D show that

the joint accelerations are all constrained within the limits
(i.e., ±6rad/s2). Besides, the position errors have been
controlled within a very small range which is lower than
1 × 10−3 (m). Although there exists time-varying systematic
perturbation, the position errors are still convergent at the
end of the task execution. In summary, the proposed NDSO
method performs well under the perturbation and has strong
robustness.

5. CONCLUSION

In this paper, a neural-dynamic based synchronous-optimization
scheme of dual redundant robot manipulators scheme (NDSO)
of dual-redundant-manipulators for tracking complex paths has
been proposed to solve the joint-drift problem. The scheme can
not only finish the end-effector task collaboratively with the dual-
redundant-manipulators, but also achieve repetitive motion,
avoid physical limits and position-error convergence. First, the
left and right manipulator subschemes are formulated and then
are combined to one quadratic program scheme, i.e., the NDSO
scheme. Next, the scheme is unified into a standard quadratic
programming problem. Finally, the quadratic programming
problem is solved by a linear-variational-inequality primal-
dual neural networks. Three complex end-effector tasks and
comparisons, i.e., pentagram-path tracking, number writing,
and coupled tasks have verified the effectiveness, accuracy,
repeatability, safety, generality and robustness of the proposed
NDSO scheme. To the best of authors’ knowledge, it is the first
time to propose such a NDSO scheme with so many optimization
criteria and can solve the joint-drift problems in three three-
dimensional workspace. The future work is to exploit higher
efficient resolving algorithms to further improve the performance
of the scheme and consider the control input saturation problem
and uncertainties.
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