3,265 research outputs found

    Sonic City: Prototyping a wearable experience

    Get PDF
    Sonic City is a project exploring mobile interaction and wearable technology for everyday music creation. A wearable system has been developed that creates electronic music in real-time based on sensing bodily and environmental factors - thus, a personal soundscape is co-produced by physical movement, local activity, and urban ambiance simply by walking through the city. Applying multi-disciplinary methods, we have developed the wearable from a scenario-driven, aesthetic and lifestyle perspective. A garment has been crafted for 'trying on' interaction and wearabilty options with users on-site in the city. With this prototype, we have been able to expore and rapidly iterate context and content, social and human factors of the wearable application

    Underdogs and superheroes: Designing for new players in public space

    Get PDF
    We are exploring methods for participatory and public involvement of new 'players' in the design space. Underdogs & Superheroes involves a game-based methodology ā€“ a series of creative activities or games ā€“ in order to engage people experientially, creatively, and personally throughout the design process. We have found that games help engage usersā€™ imaginations by representing reality without limiting expectations to what's possible here and now; engaging experiential and personal perspectives (the 'whole' person); and opening the creative process to hands-on user participation through low/no-tech materials and a widely-understood approach. The methods are currently being applied in the project Underdogs & Superheroes, which aims to evolve technological interventions for personal and community presence in local public spaces

    The boundary cap: a source of neural crest stem cells that generate multiple sensory neuron subtypes

    Get PDF
    The boundary cap (BC) is a transient neural crest-derived group of cells located at the dorsal root entry zone (DREZ) that have been shown to differentiate into sensory neurons and glia in vivo. We find that when placed in culture, BC cells self-renew, show multipotency in clonal cultures and express neural crest stem cell (NCSCs) markers. Unlike sciatic nerve NCSCs, the BC-NCSC (bNCSCs) generates sensory neurons upon differentiation. The bNCSCs constitute a common source of cells for functionally diverse types of neurons, as a single bNCSC can give rise to several types of nociceptive and thermoreceptive sensory neurons. Our data suggests that BC cells comprise a source of multipotent sensory specified stem cells that persist throughout embryogenesis

    A pattern-based approach to a cell tracking ontology

    No full text
    Time-lapse microscopy has thoroughly transformed our understanding of biological motion and developmental dynamics from single cells to entire organisms. The increasing amount of cell tracking data demands the creation of tools to make extracted data searchable and interoperable between experiment and data types. In order to address that problem, the current paper reports on the progress in building the Cell Tracking Ontology (CTO): An ontology framework for describing, querying and integrating data from complementary experimental techniques in the domain of cell tracking experiments. CTO is based on a basic knowledge structure: the cellular genealogy serving as a backbone model to integrate specific biological ontologies into tracking data. As a first step we integrate the Phenotype and Trait Ontology (PATO) as one of the most relevant ontologies to annotate cell tracking experiments. The CTO requires both the integration of data on various levels of generality as well as the proper structuring of collected information. Therefore, in order to provide a sound foundation of the ontology, we have built on the rich body of work on top-level ontologies and established three generic ontology design patterns addressing three modeling challenges for properly representing cellular genealogies, i.e. representing entities existing in time, undergoing changes over time and their organization into more complex structures such as situations

    Sample Preparation for in vitro Analysis of Iodine in Thyroid Tissue using X-ray Fluorescence

    Get PDF
    Iodine is enriched and stored in the thyroid gland. Due to several factors, the size of the thyroid iodine pool varies both between individuals and within individuals over time. Excess iodine as well as iodine deficiency may promote thyroid cancer. Therefore, knowledge of iodine content and distribution within thyroid cancer tissue is of interest. X-ray fluorescence analysis (XRF) and secondary ion mass spectrometry (SIMS) are two methods that can be used to assess iodine content in thyroid tissue. With both techniques, choice of sample preparation affects the results. Aldehyde fixatives are required for SIMS analysis while a freezing method might be satisfactory for XRF analysis. The aims of the present study were primarily to evaluate a simple freezing technique for preserving samples for XRF analysis and also to use XRF to evaluate the efficacy of using aldehyde fixatives to prepare samples for SIMS analysis. Ten porcine thyroids were sectioned into four pieces that were either frozen or fixed in formaldehyde, glutaraldehyde, or a modified Karnovsky fixative. The frozen samples were assessed for iodine content with XRF after 1 and 2 months, and the fixed samples were analyzed for iodine content after 1 week. Freezing of untreated tissue yielded no significant iodine loss, whereas fixation with aldehydes yielded an iodine loss of 14ā€“30%, with Karnovsky producing the least loss

    Enhanced reality live role playing

    Get PDF
    Live role-playing is a form of improvisational theatre played for the experience of the performers and without an audience. These games form a challenging application domain for ubiquitous technology. We discuss the design options for enhanced reality live role-playing and the role of technology in live role-playing games

    Models predicting the growth response to growth hormone treatment in short children independent of GH status, birth size and gestational age

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mathematical models can be used to predict individual growth responses to growth hormone (GH) therapy. The aim of this study was to construct and validate high-precision models to predict the growth response to GH treatment of short children, independent of their GH status, birth size and gestational age. As the GH doses are included, these models can be used to individualize treatment.</p> <p>Methods</p> <p>Growth data from 415 short prepubertal children were used to construct models for predicting the growth response during the first years of GH therapy. The performance of the models was validated with data from a separate cohort of 112 children using the same inclusion criteria.</p> <p>Results</p> <p>Using only auxological data, the model had a standard error of the residuals (SD<sub>res</sub>), of 0.23 SDS. The model was improved when endocrine data (GH<sub>max </sub>profile, IGF-I and leptin) collected before starting GH treatment were included. Inclusion of these data resulted in a decrease of the SD<sub>res </sub>to 0.15 SDS (corresponding to 1.1 cm in a 3-year-old child and 1.6 cm in a 7-year old). Validation of these models with a separate cohort, showed similar SD<sub>res </sub>for both types of models. Preterm children were not included in the Model group, but predictions for this group were within the expected range.</p> <p>Conclusion</p> <p>These prediction models can with high accuracy be used to identify short children who will benefit from GH treatment. They are clinically useful as they are constructed using data from short children with a broad range of GH secretory status, birth size and gestational age.</p

    The experience of learning in "The Cube" : Queensland University of Technology's giant interactive multimedia environment

    Get PDF
    In this paper we report findings of the first phase of an investigation, which explored the experience of learning amongst high-level managers, project leaders and visitors in QUT's "Cube". "The Cube" is a giant, interactive, multi-media display; an award-winning configuration that hosts several interactive projects. The research team worked with three groups of participants to understand the relationship between a) the learning experiences that were intended in the establishment phase; b) the learning experiences that were enacted through the design and implementation of specific projects; and c) the lived experiences of learning of visitors interacting with the system. We adopted phenomenography as a research approach, to understand variation in peopleā€™s understandings and lived experiences of learning in this environment. The project was conducted within the first twelve months of The Cube being open to visitors
    • ā€¦
    corecore