5 research outputs found

    A robust maximum power point tracking control for PV panel using adaptive PI controller based on fuzzy logic

    Get PDF
    Most methods of maximum power point tracking (MPPT) for photovoltaic (PV) focus only on tracking performance while robustness against disturbances hasrarely been addressed. This paper proposes a new MPPT control method that provides robustness against direct current (DC) link voltage disturbance as well as good tracking performance. The method uses indirect MPPT control topology which incorporates two controllers. For the external controller, we use an adaptive proportional-integral (PI) control which is real-time tuned by fuzzy logic (FL). New membership functions and rule base are proposed using only one fuzzy input variable and 10 fuzzy rules. The internal controller is a PI controller. The PV panelis connected to a boost DC-DC converter. The proposed MPPT control iscompared with the fuzzy logic controller (FLC). Performance is evaluated under DC link voltage disturbance, steady-state condition, and rapid solar radiation changes. Simulation results indicate that the proposed method provides 41.2 % better robustness against DC link voltage disturbance as compared to the direct FLC. Experimental results under natural climate conditions with real solar radiation  validate that the proposed method works well in regulating the MPP at steady-state solar irradiance as well as in tracking the MPP towards rapid solar irradiance changes. It yields the PV power tracking speed of 95.75 W/s

    Survey on Photo-Voltaic Powered Interleaved Converter System

    Get PDF
    Renewable energy is the best solution to meet the growing demand for energy in the country. The solar energy is considered as the most promising energy by the researchers due to its abundant availability, eco-friendly nature, long lasting nature, wide range of application and above all it is a maintenance free system. The energy absorbed by the earth can satisfy 15000 times of today’s total energy demand and its hundred times more than that our conventional energy like coal and other fossil fuels. Though, there are overwhelming advantages in solar energy, It has few drawbacks as well such as its low conversion ratio, inconsistent supply of energy due to variation in the sun light, less efficiency due to ripples in the converter, time dependent and, above all, high capitation cost. These aforementioned flaws have been addressed by the researchers in order to extract maximum energy and attain hundred percentage benefits of this heavenly resource. So, this chapter presents a comprehensive investigation based on photo voltaic (PV) system requirements with the following constraints such as system efficiency, system gain, dynamic response, switching losses are investigated. The overview exhibits and identifies the requirements of a best PV power generation system

    Impact of coordination of intertie transformer tap changers on active power losses assessed by Big Bang Big Crunch algorithm

    Get PDF
    Abstract: Power utilities worldwide face significant technical power losses. There are two categories of power losses: technical and non-technical losses. Technical losses occur on the transmission and distribution lines, transformer windings, and capacitors. These include active power losses which are caused by resistive components and reactive power losses which are caused by reactive components. Transformer tap changers play a key role in the minimization of power losses. Many researchers have already investigated the effect of transformer tap changers on power systems. However, none of their publications have assessed the impact of transformer tap changers on power flows in the context of interties to minimize active power losses using BBBC algorithm. The aim of this study is to assess the impact of intertie transformer tap changers on active power losses using BBBC algorithm...M.Phil. (Electrical Engineering in Power and Energy Systems

    Advanced Statistical Modeling, Forecasting, and Fault Detection in Renewable Energy Systems

    Get PDF
    Fault detection, control, and forecasting have a vital role in renewable energy systems (Photovoltaics (PV) and wind turbines (WTs)) to improve their productivity, ef?ciency, and safety, and to avoid expensive maintenance. For instance, the main crucial and challenging issue in solar and wind energy production is the volatility of intermittent power generation due mainly to weather conditions. This fact usually limits the integration of PV systems and WTs into the power grid. Hence, accurately forecasting power generation in PV and WTs is of great importance for daily/hourly efficient management of power grid production, delivery, and storage, as well as for decision-making on the energy market. Also, accurate and prompt fault detection and diagnosis strategies are required to improve efficiencies of renewable energy systems, avoid the high cost of maintenance, and reduce risks of fire hazards, which could affect both personnel and installed equipment. This book intends to provide the reader with advanced statistical modeling, forecasting, and fault detection techniques in renewable energy systems
    corecore