139 research outputs found

    Maximizing Network Lifetime using Fuzzy Based Secure Data Aggregation Protocol (FSDAP) in a Wireless Sensor Networks

    Get PDF
    Secure Data Aggregation in Wireless Senor Networks (WSNs) is a challenging issue. The various protocols has been suggested in the recent past such as EDIT[13], ADA[8], TSDA[9], SEDAN[10]. These protocols effectively meet the constraints of WSNs. In this paper, we have proposed a Fuzzy Based Secure Data Aggregation protocol (FSDAP) which is an efficient localized protocol. The FSDAP protocol is designed with three phases. The first phase selects Aggregator Node using ANS algorithm. An ANS algorithm involves two steps to elect an Aggregator Node in the clustered network. In first step, the cluster head is selected based on the Euclidean distance and in second step, the cluster head is selected based on the fuzzy product and fuzzy value (α). Then, in second phase, a selected AN eliminates data redundancy sensed by all sensor nodes within the cluster. Finally, in third phase, the FSDAP protocol effectively detects malicious node and provides secure data transmission path. Thus, the proposed protocol, FSDAP utilizes the node’s resource parameter uniformly, which in turn improves Network Lifetime, maximizes Throughput Rate, maximizes Packet Delivery Ratio and minimizes End-to-End Delay. The FSDAP is simulated using the NS2 simulator and compared with centroid algorithms Fuzzy C-Means and K-Means algorithm and a secure aggregation protocol implemented using SAR (Secure Aware Ad hoc Routing). The time complexity of FSDAP protocol is O(m2n)

    MSGR: A Mode-Switched Grid-Based Sustainable Routing Protocol for Wireless Sensor Networks

    Full text link
    © 2013 IEEE. A Wireless Sensor Network (WSN) consists of enormous amount of sensor nodes. These sensor nodes sense the changes in physical parameters from the sensing range and forward the information to the sink nodes or the base station. Since sensor nodes are driven with limited power batteries, prolonging the network lifetime is difficult and very expensive, especially for hostile locations. Therefore, routing protocols for WSN must strategically distribute the dissipation of energy, so as to increase the overall lifetime of the system. Current research trends from areas, such as from Internet of Things and fog computing use sensors as the source of data. Therefore, energy-efficient data routing in WSN is still a challenging task for real-Time applications. Hierarchical grid-based routing is an energy-efficient method for routing of data packets. This method divides the sensing area into grids and is advantageous in wireless sensor networks to enhance network lifetime. The network is partitioned into virtual equal-sized grids. The proposed mode-switched grid-based routing protocol for WSN selects one node per grid as the grid head. The routing path to the sink is established using grid heads. Grid heads are switched between active and sleep modes alternately. Therefore, not all grid heads take part in the routing process at the same time. This saves energy in grid heads and improves the network lifetime. The proposed method builds a routing path using each active grid head which leads to the sink. For handling the mobile sink movement, the routing path changes only for some grid head nodes which are nearer to the grid, in which the mobile sink is currently positioned. Data packets generated at any source node are routed directly through the data disseminating grid head nodes on the routing path to the sink

    Location Error Minimization with the Help of Run Time Coordinates Estimation Method

    Get PDF
    The energy is the limited resource of communication in Wireless Sensor Network (WSN). The nodes proper functions in WSN are depend on the battery power. The each node in network are mobile and having different mobility speed. The topology in WSN is forming completely dynamic and change according to time instance. The signal strength of node/s is varying according to power capacity of nodes. The less energy of sensor nodes is shows weak signal strength that means having weak Received Signal Strength (RSS). If the signal strength of nodes are reduced that means the nodes have insufficient energy. In this research we proposed the Location based RSS scheme to improve energy utilization.  In this research we compare the performance of protocols like existing AIES-RSS and proposed Location based RSS. The performance of proposed scheme is better than AIES-RSS and the performance of proposed scheme is provides better routing performance in WSN as compare to AIES-RSS. If the RSS of any node in network is weak that means the nodes energy level is down. If the node/s having sufficient amount of energy then their signal strength is high. The Location records of sensor nodes are provides the information of location that’s why routing efficiency is improves and also the energy consumption is reduced. The proposed method is improves the energy utilization and also the residual energy cost is maximum after complete simulation. The proposed scheme is provides the strong connection by that the packet dropping and overhead is minimized. Keywords:- RSS, Routing, Location, AIES-RSS, Energy, proposed RSS, WSN

    A Survey and Future Directions on Clustering: From WSNs to IoT and Modern Networking Paradigms

    Get PDF
    Many Internet of Things (IoT) networks are created as an overlay over traditional ad-hoc networks such as Zigbee. Moreover, IoT networks can resemble ad-hoc networks over networks that support device-to-device (D2D) communication, e.g., D2D-enabled cellular networks and WiFi-Direct. In these ad-hoc types of IoT networks, efficient topology management is a crucial requirement, and in particular in massive scale deployments. Traditionally, clustering has been recognized as a common approach for topology management in ad-hoc networks, e.g., in Wireless Sensor Networks (WSNs). Topology management in WSNs and ad-hoc IoT networks has many design commonalities as both need to transfer data to the destination hop by hop. Thus, WSN clustering techniques can presumably be applied for topology management in ad-hoc IoT networks. This requires a comprehensive study on WSN clustering techniques and investigating their applicability to ad-hoc IoT networks. In this article, we conduct a survey of this field based on the objectives for clustering, such as reducing energy consumption and load balancing, as well as the network properties relevant for efficient clustering in IoT, such as network heterogeneity and mobility. Beyond that, we investigate the advantages and challenges of clustering when IoT is integrated with modern computing and communication technologies such as Blockchain, Fog/Edge computing, and 5G. This survey provides useful insights into research on IoT clustering, allows broader understanding of its design challenges for IoT networks, and sheds light on its future applications in modern technologies integrated with IoT.acceptedVersio

    Clustering objectives in wireless sensor networks: A survey and research direction analysis

    Get PDF
    Wireless Sensor Networks (WSNs) typically include thousands of resource-constrained sensors to monitor their surroundings, collect data, and transfer it to remote servers for further processing. Although WSNs are considered highly flexible ad-hoc networks, network management has been a fundamental challenge in these types of net- works given the deployment size and the associated quality concerns such as resource management, scalability, and reliability. Topology management is considered a viable technique to address these concerns. Clustering is the most well-known topology management method in WSNs, grouping nodes to manage them and/or executing various tasks in a distributed manner, such as resource management. Although clustering techniques are mainly known to improve energy consumption, there are various quality-driven objectives that can be realized through clustering. In this paper, we review comprehensively existing WSN clustering techniques, their objectives and the network properties supported by those techniques. After refining more than 500 clustering techniques, we extract about 215 of them as the most important ones, which we further review, catergorize and classify based on clustering objectives and also the network properties such as mobility and heterogeneity. In addition, statistics are provided based on the chosen metrics, providing highly useful insights into the design of clustering techniques in WSNs.publishedVersio

    Consensus-Based Data Management within Fog Computing For the Internet of Things

    Get PDF
    The Internet of Things (IoT) infrastructure forms a gigantic network of interconnected and interacting devices. This infrastructure involves a new generation of service delivery models, more advanced data management and policy schemes, sophisticated data analytics tools, and effective decision making applications. IoT technology brings automation to a new level wherein nodes can communicate and make autonomous decisions in the absence of human interventions. IoT enabled solutions generate and process enormous volumes of heterogeneous data exchanged among billions of nodes. This results in Big Data congestion, data management, storage issues and various inefficiencies. Fog Computing aims at solving the issues with data management as it includes intelligent computational components and storage closer to the data sources. Often, an IoT-enabled infrastructure is shared among many users with various requirements. Sharing resources, sharing operational costs and collective decision making (consensus) among many stakeholders is frequently neglected. This research addresses an essential requirement for adaptive, autonomous and consensus-based Fog computational solutions which are able to support distributed and in-network schemes and policies. These network schemes and policies need to meet the requirements of many users. In this work, innovative consensus-based computational solutions are investigated. These proposed solutions aim to correlate and organise data for effective management and decision making in Fog. Instead of individual decision making, the algorithms aim to aggregate several decisions into a consensus decision representing a collective agreement, benefiting from the individuals variant knowledge and meeting multiple stakeholders requirements. In order to validate the proposed solutions, hybrid research methodology is involved that includes the design of a test-bed and the execution of several experiments. In order to investigate the effectiveness of the paradigm, three experiments were designed and validated. Real-life sensor data and synthetic statistical data was collected, processed and analysed. Bayesian Machine Learning models and Analytics were used to consolidate the design and evaluate the performance of the algorithms. In the Fog environment, the first scenario tests the Aggregation by Distribution algorithm. The solution contribute in achieving a notable efficiency of data delivery obtained with a minimal loss in precision. The second scenario validates the merits of the approach in predicting the activities of high mobility IoT applications. The third scenario tests the applications related to smart home IoT. All proposed Consensus algorithms use statistical analysis to support effective decision making in Fog and enable data aggregation for optimal storage, data transmission, processing and analytics. The final results of all experiments showed that all the implemented consensus approaches surpass the individual ones in different performance terms. Formal results also showed that the paradigm is a good fit in many IoT environments and can be suitable for different scenarios when applying data analysis to correlate data with the design. Finally, the design demonstrates that Fog Computing can compete with Cloud Computing in terms of accuracy with an added preference of locality

    Emerging Communications for Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are deployed in a rapidly increasing number of arenas, with uses ranging from healthcare monitoring to industrial and environmental safety, as well as new ubiquitous computing devices that are becoming ever more pervasive in our interconnected society. This book presents a range of exciting developments in software communication technologies including some novel applications, such as in high altitude systems, ground heat exchangers and body sensor networks. Authors from leading institutions on four continents present their latest findings in the spirit of exchanging information and stimulating discussion in the WSN community worldwide

    Edge/Fog Computing Technologies for IoT Infrastructure

    Get PDF
    The prevalence of smart devices and cloud computing has led to an explosion in the amount of data generated by IoT devices. Moreover, emerging IoT applications, such as augmented and virtual reality (AR/VR), intelligent transportation systems, and smart factories require ultra-low latency for data communication and processing. Fog/edge computing is a new computing paradigm where fully distributed fog/edge nodes located nearby end devices provide computing resources. By analyzing, filtering, and processing at local fog/edge resources instead of transferring tremendous data to the centralized cloud servers, fog/edge computing can reduce the processing delay and network traffic significantly. With these advantages, fog/edge computing is expected to be one of the key enabling technologies for building the IoT infrastructure. Aiming to explore the recent research and development on fog/edge computing technologies for building an IoT infrastructure, this book collected 10 articles. The selected articles cover diverse topics such as resource management, service provisioning, task offloading and scheduling, container orchestration, and security on edge/fog computing infrastructure, which can help to grasp recent trends, as well as state-of-the-art algorithms of fog/edge computing technologies
    • …
    corecore