26,317 research outputs found

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Modeling urban evolution by identifying spatiotemporal patterns and applying methods of artificial intelligence.Case study: Athens, Greece.

    Get PDF
    While during the past decades, urban areas experience constant slow population growth, the spatial patterns they form, by means of their limits and borders, are rapidly changing in a complex way. Furthermore, urban areas continue to expand to the expense of "rural” intensifying urban sprawl. The main aim of this paper is the definition of the evolution of urban areas and more specifically, the specification of an urban model, which deals simultaneously with the modification of population and building use patterns. Classical theories define city geographic border, with the Aristotelian division of 0 or 1 and are called fiat geographic boundaries. But the edge of a city and the urbanization "degree" is something not easily distinguishable. Actually, the line that city ends and rural starts is vague. In this respect a synthetic spatio - temporal methodology is described which, through the adaptation of different computational methods aims to assist planners and decision makers to gain an insight in urban - rural transition. Fuzzy Logic and Neural Networks are recruited to provide a precise image of spatial entities, further exploited in a twofold way. First for analysis and interpretation of up - to - date urban evolution and second, for the formulation of a robust spatial simulation model, the theoretical background of which is that the spatial contiguity between members of the same or different groups is one of the key factors in their evolution. The paper finally presents the results of the model application in the prefecture of Attica in Greece, unveiling the role of the Athens Metropolitan Area to its current and future evolution, by illustrating maps of urban growth dynamics.urban growth; urban dynamics; neural networks; fuzzy logic; Greece; Athens

    Fuzzy Feedback Scheduling of Resource-Constrained Embedded Control Systems

    Full text link
    The quality of control (QoC) of a resource-constrained embedded control system may be jeopardized in dynamic environments with variable workload. This gives rise to the increasing demand of co-design of control and scheduling. To deal with uncertainties in resource availability, a fuzzy feedback scheduling (FFS) scheme is proposed in this paper. Within the framework of feedback scheduling, the sampling periods of control loops are dynamically adjusted using the fuzzy control technique. The feedback scheduler provides QoC guarantees in dynamic environments through maintaining the CPU utilization at a desired level. The framework and design methodology of the proposed FFS scheme are described in detail. A simplified mobile robot target tracking system is investigated as a case study to demonstrate the effectiveness of the proposed FFS scheme. The scheme is independent of task execution times, robust to measurement noises, and easy to implement, while incurring only a small overhead.Comment: To appear in International Journal of Innovative Computing, Information and Contro

    Towards a Framework for Managing Inconsistencies in Systems of Systems

    Get PDF
    The growth in the complexity of software systems has led to a proliferation of systems that have been created independently to provide specific functions, such as activity tracking, household energy management or personal nutrition assistance. The runtime composition of these individual systems into Systems of Systems (SoSs) enables support for more sophisticated functionality that cannot be provided by individual constituent systems on their own. However, in order to realize the benefits of these functionalities it is necessary to address a number of challenges associated with SoSs, including, but not limited to, operational and managerial independence, geographic distribution of participating systems, evolutionary development, and emergent conflicting behavior that can occur due interactions between the requirements of the participating systems. In this paper, we present a framework for conflict management in SoSs. The management of conflicting requirements involves four steps, namely (a) overlap detection, (b) conflict identification, (c) conflict diagnosis, and (d) conflict resolution based on the use of a utility function. The framework uses a Monitor-Analyze-Plan- Execute- Knowledge (MAPE-K) architectural pattern. In order to illustrate the work, we use an example SoS ecosystem designed to support food security at different levels of granularity

    Requirements for an Adaptive Multimedia Presentation System with Contextual Supplemental Support Media

    Get PDF
    Investigations into the requirements for a practical adaptive multimedia presentation system have led the writers to propose the use of a video segmentation process that provides contextual supplementary updates produced by users. Supplements consisting of tailored segments are dynamically inserted into previously stored material in response to questions from users. A proposal for the use of this technique is presented in the context of personalisation within a Virtual Learning Environment. During the investigation, a brief survey of advanced adaptive approaches revealed that adaptation may be enhanced by use of manually generated metadata, automated or semi-automated use of metadata by stored context dependent ontology hierarchies that describe the semantics of the learning domain. The use of neural networks or fuzzy logic filtering is a technique for future investigation. A prototype demonstrator is under construction
    • 

    corecore