1,357 research outputs found

    Finite and infinite support in nominal algebra and logic: nominal completeness theorems for free

    Full text link
    By operations on models we show how to relate completeness with respect to permissive-nominal models to completeness with respect to nominal models with finite support. Models with finite support are a special case of permissive-nominal models, so the construction hinges on generating from an instance of the latter, some instance of the former in which sufficiently many inequalities are preserved between elements. We do this using an infinite generalisation of nominal atoms-abstraction. The results are of interest in their own right, but also, we factor the mathematics so as to maximise the chances that it could be used off-the-shelf for other nominal reasoning systems too. Models with infinite support can be easier to work with, so it is useful to have a semi-automatic theorem to transfer results from classes of infinitely-supported nominal models to the more restricted class of models with finite support. In conclusion, we consider different permissive-nominal syntaxes and nominal models and discuss how they relate to the results proved here

    First-order Goedel logics

    Full text link
    First-order Goedel logics are a family of infinite-valued logics where the sets of truth values V are closed subsets of [0, 1] containing both 0 and 1. Different such sets V in general determine different Goedel logics G_V (sets of those formulas which evaluate to 1 in every interpretation into V). It is shown that G_V is axiomatizable iff V is finite, V is uncountable with 0 isolated in V, or every neighborhood of 0 in V is uncountable. Complete axiomatizations for each of these cases are given. The r.e. prenex, negation-free, and existential fragments of all first-order Goedel logics are also characterized.Comment: 37 page

    An analysis of the logic of Riesz Spaces with strong unit

    Full text link
    We study \L ukasiewicz logic enriched with a scalar multiplication with scalars taken in [0,1][0,1]. Its algebraic models, called {\em Riesz MV-algebras}, are, up to isomorphism, unit intervals of Riesz spaces with a strong unit endowed with an appropriate structure. When only rational scalars are considered, one gets the class of {\em DMV-algebras} and a corresponding logical system. Our research follows two objectives. The first one is to deepen the connections between functional analysis and the logic of Riesz MV-algebras. The second one is to study the finitely presented MV-algebras, DMV-algebras and Riesz MV-algebras, connecting them from logical, algebraic and geometric perspective
    • …
    corecore