1,594 research outputs found

    A system for learning statistical motion patterns

    Get PDF
    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy k-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction

    A system for learning statistical motion patterns

    Get PDF
    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy k-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction

    Dictionary-based lip reading classification

    Get PDF
    Visual lip reading recognition is an essential stage in many multimedia systems such as “Audio Visual Speech Recognition” [6], “Mobile Phone Visual System for deaf people”, “Sign Language Recognition System”, etc. The use of lip visual features to help audio or hand recognition is appropriate because this information is robust to acoustic noise. In this paper, we describe our work towards developing a robust technique for lip reading classification that extracts the lips in a colour image by using EMPCA feature extraction and k-nearest-neighbor classification. In order to reduce the dimensionality of the feature space the lip motion is characterized by three templates that are modelled based on different mouth shapes: closed template, semi-closed template, and wideopen template. Our goal is to classify each image sequence based on the distribution of the three templates and group the words into different clusters. The words that form the database were grouped into three different clusters as follows: group1(‘I’, ‘high’, ‘lie’, ‘hard’, ‘card’, ‘bye’), group2(‘you, ‘owe’, ‘word’), group3(‘bird’)

    Unsupervised Multi Class Segmentation of 3D Images with Intensity Inhomogeneities

    Full text link
    Intensity inhomogeneities in images constitute a considerable challenge in image segmentation. In this paper we propose a novel biconvex variational model to tackle this task. We combine a total variation approach for multi class segmentation with a multiplicative model to handle the inhomogeneities. Our method assumes that the image intensity is the product of a smoothly varying part and a component which resembles important image structures such as edges. Therefore, we penalize in addition to the total variation of the label assignment matrix a quadratic difference term to cope with the smoothly varying factor. A critical point of our biconvex functional is computed by a modified proximal alternating linearized minimization method (PALM). We show that the assumptions for the convergence of the algorithm are fulfilled by our model. Various numerical examples demonstrate the very good performance of our method. Particular attention is paid to the segmentation of 3D FIB tomographical images which was indeed the motivation of our work

    A Hierarchical Segmentation Algorithm for Face Analysis. Application to Lipreading

    No full text
    International audienceA hierarchical algorithm for face analysis is presented in this paper. A color video sequence of speaker's face is acquired, under natural lighting conditions and without any particular make-up. The application aims at providing geometrical features of the face for scalable video transmission when no specific model of the speaker face is assumed. First, a logarithmic hue transform is performed from RGB to HI (hue, intensity) color space. Next, a Markov random field modeling regularizes motion and hue information within a spatiotemporal neighborhood. The hierarchical segmentation labels the different areas of the face. Results are shown on the lower part of the face and compared with standard color segmentation algorithm (fuzzy c-means). A speaker's lip shape with inner and outer borders is extracted from the final labeling and used to initialize an active contours stage

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Face Detection And Lip Localization

    Get PDF
    Integration of audio and video signals for automatic speech recognition has become an important field of study. The Audio-Visual Speech Recognition (AVSR) system is known to have accuracy higher than audio-only or visual-only system. The research focused on the visual front end and has been centered around lip segmentation. Experiments performed for lip feature extraction were mainly done in constrained environment with controlled background noise. In this thesis we focus our attention to a database collected in the environment of a moving car which hampered the quality of the imagery. We first introduce the concept of illumination compensation, where we try to reduce the dependency of light from over- or under-exposed images. As a precursor to lip segmentation, we focus on a robust face detection technique which reaches an accuracy of 95%. We have detailed and compared three different face detection techniques and found a successful way of concatenating them in order to increase the overall accuracy. One of the detection techniques used was the object detection algorithm proposed by Viola-Jones. We have experimented with different color spaces using the Viola-Jones algorithm and have reached interesting conclusions. Following face detection we implement a lip localization algorithm based on the vertical gradients of hybrid equations of color. Despite the challenging background and image quality, success rate of 88% was achieved for lip segmentation

    A Directed FCM Approach for Analysis of Stained Tissues

    Get PDF
    The use of digital imagery has increased phenomenally especially in the clinical field. These images are obtained from different modalities such as X-ray and MRI. Digital imaging of the more traditional imagery such as stained tissues has opened up new means of investigation. Hence a need to build a system to analyze the stained tissues and extract the salient information has risen. A Directed FCM Approach for Analysis of Stained Tissues introduces a modified FCM to analyze the tissues. The analysis can be controlled by the user by selecting the number of clusters, size of the clusters and the centers for the clusters. The results of this analysis are reported as the percent of changes in a specific square area
    corecore