6,861 research outputs found

    Fuzzy Regression for Perceptual Image Quality Assessment

    Get PDF
    Subjective image quality assessment (IQA) is fundamentally important in various image processing applications such as image/video compression and image reconstruction, since it directly indicates the actual human perception of an image. However, fuzziness due to human judgment is neglected in current methodologies for predicting subjective IQA, where the fuzziness indicates assessment uncertainty. In this article, we propose a fuzzy regression method that accounts for fuzziness introduced through human judgment and the limitations of widely-used psychometric quality scales. We demonstrate how fuzzy regression models provide fuzziness information regarding subjective IQA. We benchmark the fuzzy regression method against the commonly used explicit modeling method for subjective IQA namely statistical regression by considering three real situations involving subjective image quality experiments where: (a) the number of participants is insufficient; (b) an insufficient amount of data is used for modelling; and (c) variant fuzziness is caused by human judgment. Results indicate that fuzzy regression models achieve more effective data fitting and better generalization capability when predicting subjective IQA under different types and levels of image distortion

    Deblurring Filter Design Based on Fuzzy Regression Modeling and Perceptual Image Quality Assessment

    Get PDF
    Images captured by digital cameras are generally not perfect as image blurring is usually generated by camera motion through long hand-held exposure. Deblurring filters can be used to improve image quality by removing image blur. Prior to develop a deblurring filter, a simulator for image quality assessment is essential to optimize filter parameters. Although subjective image quality assessment (subjective IQA) is commonly used for evaluating the visual effect of digital images for a wide range of image processing applications, it is inconvenient to be implemented in real-time. Generally, statistical regression is used to generate a functional map to correlate the subjective IQA and the objective image quality metrics. However, it cannot address the uncertainty caused by human judgment during the subjective IQA. This paper first proposes a fuzzy regression method to develop the functional map that overcomes the limitation of statistical regression that cannot account for uncertainty introduced through human judgment. Based on the fuzzy regression models, the deblurring filter parameters can be optimized. Experimental results show that the satisfactory deblurring can be achieved on blurred images captured by a smartphone camera

    A Flexible Fuzzy Regression Method for Addressing Nonlinear Uncertainty on Aesthetic Quality Assessments

    Get PDF
    Development of new products or services requires knowledge and understanding of aesthetic qualities that correlate to perceptual pleasure. As it is not practical to develop a survey to assess aesthetic quality for all objective features of a new product or service, it is necessary to develop a model to predict aesthetic qualities. In this paper, a fuzzy regression method is proposed to predict aesthetic quality from a given set of objective features and to account for uncertainty in human assessment. The proposed method overcomes the shortcoming of statistical regression, which can predict only quality magnitudes but cannot predict quality uncertainty. The proposed method also attempts to improve traditional fuzzy regressions, which simulate a single characteristic with which the estimated uncertainty can only increase with the increasing magnitudes of objective features. The proposed fuzzy regression method uses genetic programming to develop nonlinear structures of the models, and model coefficients are determined by optimizing the fuzzy criteria. Hence, the developed model can be used to fit the nonlinearities of sample magnitudes and uncertainties. The effectiveness and the performance of the proposed method are evaluated by the case study of perceptual images, which are involved with different sampling natures and with different amounts of samples. This case study attempts to address different characteristics of human assessments. The outcomes demonstrate that more robust models can be developed by the proposed fuzzy regression method compared with the recently developed fuzzy regression methods, when the model characteristics and fuzzy criteria are taken into account

    Varying Spread Fuzzy Regression for Affective Quality Estimation

    Get PDF
    Design of preferred products requires affective quality information which relates to human emotional satisfaction. However, it is expensive and time consuming to conduct a full survey to investigate affective qualities regarding all objective features of a product. Therefore, developing a prediction model is essential in order to understand affective qualities on a product. This paper proposes a novel fuzzy regression method in order to predict affective quality and estimate fuzziness in human assessment, when objective features are given. The proposed fuzzy regression also improves on traditional fuzzy regression that simulate only a single characteristic with the resulting limitation that the amount of fuzziness is linear correlated with the independent and dependent variables. The proposed method uses a varying spread to simulate nonlinear and nonsymmetrical fuzziness caused by affective quality assessment. The effectiveness of the proposed method is evaluated by two very different case studies, affective design of an electric iron and image quality assessment, which involve different amounts of data, varying fuzziness, and discrete and continuous data. The results obtained by the proposed method are compared with those obtained by the state of art and the recently developed fuzzy regression methods. The results show that the proposed method can generate better prediction models in terms of three fuzzy criteria, which address both predictions of magnitudes and fuzziness

    Video Quality Prediction for Video over Wireless Access Networks (UMTS and WLAN)

    Get PDF
    Transmission of video content over wireless access networks (in particular, Wireless Local Area Networks (WLAN) and Third Generation Universal Mobile Telecommunication System (3G UMTS)) is growing exponentially and gaining popularity, and is predicted to expose new revenue streams for mobile network operators. However, the success of these video applications over wireless access networks very much depend on meeting the user’s Quality of Service (QoS) requirements. Thus, it is highly desirable to be able to predict and, if appropriate, to control video quality to meet user’s QoS requirements. Video quality is affected by distortions caused by the encoder and the wireless access network. The impact of these distortions is content dependent, but this feature has not been widely used in existing video quality prediction models. The main aim of the project is the development of novel and efficient models for video quality prediction in a non-intrusive way for low bitrate and resolution videos and to demonstrate their application in QoS-driven adaptation schemes for mobile video streaming applications. This led to five main contributions of the thesis as follows:(1) A thorough understanding of the relationships between video quality, wireless access network (UMTS and WLAN) parameters (e.g. packet/block loss, mean burst length and link bandwidth), encoder parameters (e.g. sender bitrate, frame rate) and content type is provided. An understanding of the relationships and interactions between them and their impact on video quality is important as it provides a basis for the development of non-intrusive video quality prediction models.(2) A new content classification method was proposed based on statistical tools as content type was found to be the most important parameter. (3) Efficient regression-based and artificial neural network-based learning models were developed for video quality prediction over WLAN and UMTS access networks. The models are light weight (can be implemented in real time monitoring), provide a measure for user perceived quality, without time consuming subjective tests. The models have potential applications in several other areas, including QoS control and optimization in network planning and content provisioning for network/service providers.(4) The applications of the proposed regression-based models were investigated in (i) optimization of content provisioning and network resource utilization and (ii) A new fuzzy sender bitrate adaptation scheme was presented at the sender side over WLAN and UMTS access networks. (5) Finally, Internet-based subjective tests that captured distortions caused by the encoder and the wireless access network for different types of contents were designed. The database of subjective results has been made available to research community as there is a lack of subjective video quality assessment databases.Partially sponsored by EU FP7 ADAMANTIUM Project (EU Contract 214751

    Psychophysiology-based QoE assessment : a survey

    Get PDF
    We present a survey of psychophysiology-based assessment for quality of experience (QoE) in advanced multimedia technologies. We provide a classification of methods relevant to QoE and describe related psychological processes, experimental design considerations, and signal analysis techniques. We summarize multimodal techniques and discuss several important aspects of psychophysiology-based QoE assessment, including the synergies with psychophysical assessment and the need for standardized experimental design. This survey is not considered to be exhaustive but serves as a guideline for those interested to further explore this emerging field of research
    • …
    corecore