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 

Abstract — Design of preferred products requires affective quality 
information which relates to human emotional satisfaction. 
However, it is expensive and time consuming to conduct a full 
survey to investigate affective qualities regarding all objective 
features of a product. Therefore, developing a prediction model is 
essential in order to understand affective qualities on a product. 
This paper proposes a novel fuzzy regression method in order to 
predict affective quality and estimate fuzziness in human 
assessment, when objective features are given. The proposed 
fuzzy regression also improves on traditional fuzzy 
regression that simulate only a single characteristic with the 
resulting limitation that the amount of fuzziness is linear 
correlated with the independent and dependent variables. 
The proposed method uses a varying spread to simulate nonlinear 
and nonsymmetrical fuzziness caused by affective quality 
assessment. The effectiveness of the proposed method is evaluated 
by two very different case studies, affective design of an electric 
iron and image quality assessment, which involve different 
amounts of data, varying fuzziness, and discrete and continuous 
data. The results obtained by the proposed method are compared 
with those obtained by the state-of-art and the recently-developed 
fuzzy regression methods. The results show that the proposed 
method can generate better prediction models in terms of three 
fuzzy criteria which address both predictions of magnitudes and 
fuzziness. 
Index Terms —  Fuzzy regression, varying uncertainty, affective 
quality, objective features, affective or perceived design, image 
quality assessment 

I. INTRODUCTION 

Affection quality encompasses the emotional and perceptional 
aesthetics of an object; it has a very significant impact on 
emotional satisfaction and decision-making [1]; and it is an 
essential process when developing pleasurable processes or 
products [2]. An early affective design was initialized by 
Kurosu and Kashimura [3] who developed two automated teller 
machines with identical functions. One automated teller 
machine had more attractive buttons and screens and the other 
had the unattractive ones. Survey responses elicited from users 
indicated that the attractive one was easier to use compared with 
the other. It was concluded that: products with better affective 
qualities work better; better affection increases purchasing 
chances; and it also produces a more harmonious outcome [4].  
 There are two different approaches to evaluate affective 
quality of an object: The first approach uses subjective 
questionnaires or surveying in order to obtain users’ subjective 
perceptions of object aesthetics. However, it is not possible to 

 
Kit Yan Chan is with the Department of Electrical and Computer Engineering, 
Curtin University, Australia; Ulrich Engelke is with Data61, Commonwealth 
Scientific and Industrial Research Organisation (CSIRO), Australia 
(Kit Yan Chan is the corresponding author. Phone: 61-8-9266 9269; fax: 
61-8-9266 7548; e-mail: kit.chan@curtin.edu.au).  

 

conduct a survey for every objective feature of a product. It is 
not feasible to take into account the responses from a single 
survey when designing and optimizing algorithms in order to 
enhance its affective quality. For this reason, there has been an 
increasing interest in automatically predicting the affective 
quality of an object. The second type of approaches is 
developed based on the assumption that users’ perceptions of 
affective qualities are correlated with objective features such as 
the colour, structure, and configuration factors of the objects 
which can be taken into account by machine learning without 
involving human judgement. Objective features can be used to 
predict affective qualities [2]. For instance, subjective aesthetic 
ratings of website design are subsequently correlated with their 
objective features such as symmetry and balance, combination 
of colours and number of elements in the website [5]. Another 
example is image quality assessment [6]. People’s opinions of 
an image are correlated to its objective features such as image 
blur and other distortions. Therefore, prediction models can be 
developed based on objective features in order to determine the 
affective quality of an object. These prediction models are 
generally developed by the statistical regression method as they 
provide explicit information such as variable significances, 
variable interactions and confidence intervals for dependent 
variables [7]. Recent research also shows that statistical 
regression models have been developed for the affective design 
of websites [5], aesthetic dental restorative materials [8], 
aesthetic plastic surgery [9], aesthetic evaluation of structural 
landscaping [10], visual aesthetics of images  [11, 12] or video 
[13], and the  affective design of new products [14-16] or tactile 
textures [17]. 

The statistical regression model correlates the objective 
features and the affective quality using a polynomial with 
constant coefficients. Based on a statistical regression model, 
the affective quality can be estimated as a crisp number, 
whereby the objective features of crisp numbers are given by 
measuring the object. However, human judgement of affective 
quality is subjective and therefore inherently fuzzy. Hence, 
fuzzy regression can be used to address the fuzziness in human 
judgments [18]. The fuzzy regression model is represented by a 
polynomial with fuzzy coefficients. The model can be used to 
correlate objective features in constant numbers to an affective 
quality in a fuzzy number. When the objective features in crisp 
numbers are given, the affective quality in fuzzy numbers can 
be estimated in order to account for the fuzziness caused by 
human judgement. Also, the fuzzy regression approach is more 
effective when only small or even incomplete data sets are 
available for modelling [19], since fuzzy regression does not 
assume that the training data is normal distributed. Research 
literature shows that the fuzzy regression technique has been 
applied to model the relationship between affective quality and 
objective features in order to account for the fuzziness of human 
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feelings regarding car interior design [20], affective design of 
mobile phones [21] and image quality assessment [22]. 

Kao and Chyu detected a deficiency in the application of 
fuzzy regression models to human judgements which are 
subjective [23]. When the values of independent variables 
increase, the fuzziness of the dependent variable estimated by 
the models also increases. These models only simulate a single 
characteristic of which the amount of fuzziness is linearly 
correlated with the independent and dependent variables. 
Therefore, unnecessary fuzziness can be generated when this 
correlation is not linear. In fact, the fuzziness of dependent 
variables may decrease or remain unchanged when increasing 
the values of independent variables, particularly when assessing 
affective qualities. For example, when one evaluates the 
affective quality of images, one has more confidence when 
evaluating images of very good or very poor quality than those 
with medium quality [6]. Hence, more fuzziness exists when 
evaluating medium quality images than those with high or low 
qualities. Some approaches have been proposed to address this 
nonlinear correlation issue [23-25]. Analytical results indicate 
that these approaches are still unable to model the decreasing 
fuzziness trend of the observed dependent variables when the 
values of independent variables increase [26]. Although an 
approach [26] has been developed to address this linear 
correlation issue, this approach estimates the fuzziness of the 
dependent variables when both independent and dependent 
variables are fuzzy values. The approach is not developed for 
affective quality estimation, where the measures for 
independent variables, objective features, and the observations 
for dependent variables, affective qualities, are all crisp values. 
In this paper, we propose a varying spread fuzzy regression, in 
which the estimated fuzziness of dependent variables attempts 
to fit the observed variance of dependent variables. A third  
order polynomial is used to address the fuzziness of the 
dependent variables. It simulates increased, decreased or 
unchanged fuzziness of the affective qualities which are 
observed as differences between objective features. Therefore, 
the models are less likely to generate redundant fuzziness to 
describe unnecessary variances of affective quality assessment. 

The effectiveness of the proposed varying spread fuzzy 
regression method is evaluated using two case studies, namely, 
affective design of an electric iron [27] and image quality 
assessment [28]. These two case studies involve human 
assessments of affective qualities, which are fuzzy. They 
attempt to evaluate the effectiveness of the proposed method in 
predicting the affective qualities of different data types 
including continuous data, and large and small amounts of data. 
The proposed method is compared with four fuzzy regression 
approaches: two state-of-art approaches of fuzzy regression 
[18, 29], the approach for optimizing fuzzy spreads [30, 31] and 
the approach developed for addressing the fuzziness increasing 
issue [26]. Results indicate that better prediction models can be 
generated by the proposed method in terms of three fuzzy 
criteria namely, index of confidence (IC) [32], mean fuzzy 
credibility (MFC) [30] and average fuzzy spread of each 
estimate (AFS) [18]. 

The rest of this paper is organized as follows: Section II 
presents the formulation of the affective quality model which 
correlates objective features and affective quality. It also 
discusses the limitations of the commonly-used statistical 
regression approaches which cannot address the fuzziness in 

affective quality. Section III presents the mechanisms of the 
existing and proposed fuzzy regression methods. It also 
discusses the limitations of the existing regression methods and 
the motivation for the proposed novel fuzzy regression method. 
In Section IV, two cases have been used to evaluate the 
effectiveness of the proposed method. Finally, a conclusion and 
discussion of possible future research are given in Section V. 

II. AFFECTIVE QUALITY 

Affective qualities are generally assessed based on perceptional 
scores from human emotional or perceptual judgement [2], 
where the widely used N-point psychometric scales usually map 
qualitative judgments as subjective scores [33]. People tend to 
judge quality around the integers with some degree of 
uncertainty [34]. One may refer to judgments ‘about’ a 
particular integer X on psychometric scales. For instance, in 
image quality assessment, objective features can be directly 
measured as crisp values based on image distortion metrics [35] 
such as image blur or edge gradients. An image may be scored 
‘about 2’ on a 10-point scale when one feels that the image 
quality is ‘Very Poor’, ‘about 5’ when one feels that the image 
quality is ‘Fair’ and ‘about 9’ when one feels that image quality 
is ‘Very Good’. In the affective design of smartphones, 
objective features can be incorporated based on the design 
attributes of smart phones such as screen sizes, display 
interfaces, menu layers, shapes and colors of  smartphone cases 
[36] all of which are catalytic data represented in crisp numbers. 
The affective qualities of smartphones are usually scored based 
on customer survey responses where high levels of affective 
qualities are scored when one feels the affective quality of 
smartphones is ‘Good’. Otherwise, low levels of affective 
qualities are scored [37]. 
 To predict the affective quality namely y , the affective 

quality model, AQMf in (1), can be used,  

 1 2, ,...,AQM my f x x x              (1)  

where jx  with 1,2,...,j m  is the j-th objective feature 

correlated to y ; m are the number of objective features; and 

AQMf  represents the functional relationship between all jx   to 

y . Given a set of samples of affective qualities of an object, 

    ,
T

y k x k , with 1,2,..., Dk N , AQMf  can be developed as 

a linear regression model, 

0 1 1 2 2 ... m my x x x          ,        (2) 

where   is a random error assumed to be normally distributed 

with zero mean; and j  with 1,2,...,j m  are the m+1 

regression coefficients. j  can be estimated by the least 

squares method (Ch. 7 of [24]), 

    1

0 1  ... 1 1 1 
T TT D D D D

m x x x y  


               (3) 

where 1  is the  1 1m   vector with all entries one; 

     1  2  ... 
TD

Dx x x x N     is the DN samples of the 

objective features;        1 2  ... mx k x k x k x k     is the m 
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objective features of the k-th sample;    1  2   ...Dy y y   

  T

Dy N   are the affective qualities of the DN  samples. 

 Given a regression model (2), one can estimate the affective 
quality, namely ˆty , with respect to a set of objective features on 

the object, namely  1 2, ,...,t t t t
mx x x x , where tx  consists of m 

objective features t
ix  with 1, 2,...,i m ; and ˆty  is in a set of 

crisp number namely Y  and tx  is in a m-dimensional vector 

set namely X . Figure 1a illustrates that AQMf  performs a map 

between X   into  Y  when a regression model is developed for 

AQMf . For example, four vectors of objective features, 1
tx , 2

tx , 

3
tx  and 4

tx , in X  are mapped to four crisp numbers, 1.230, 

3.056, 5.661 and 7.501 in Y  respectively. As perception of 
affective quality is inherently imprecise, crisp numbers may not 
be the most suitable means of representing human perception of 
affective quality. To simulate human perception of affective 

qualities, AQMf  is essential to map  1 2, ,...,t t t t
mx x x x X   into 

a linguistic term ˆ
ty Y  ,  where Y   is a set of linguistic terms 

with uncertainties such as the linguistic perception ‘about cy ’ 

with an integer cy . The map, AQMf , can be illustrated on 

Figure 1b that X  is mapped into Y . Through AQMf , 1
tx , 2

tx , 

3
tx  and 4

tx , in  X  can be mapped to the four linguistic terms, 

‘about 1’, ‘about 3’, ‘about 5’, ‘about 7’ in Y  respectively. 

1
tx

2
tx

3
tx

4
tx

X

1.250

3.056

5.661

7.501

Y

1
tx

2
tx

3
tx

4
tx

X

about 1

Y

about 3

about 5

about 7

 maps between crisp real values in  
to crisp real values in 

AQMf X
Y

 maps between crisp real values in  
to linguistic terms in 

AQMf X
Y

AQMf AQMf

Fig. 1a Mapping to crisp values   Fig. 1b Mapping to linguistic terms 

In fuzzy theory, the linguistic term 'about 'cy  can be 

considered as an ill-known truth-value with uncertainty of 
gradual truth at the crisp value cy  [38]. 'about 'cy  can be 

explained by a fuzzy number,  ,c sy y y , which is engaged 

with a fuzzy membership function,  y y   [34] in (4). A 

triangle function is used in (4),  as it requires less complicated 
fuzzy arithmetical operations compared with Gaussian or 
trapezoidal functions [39]. Given a quantity value y , the 

membership grade of 'about 'cy  can be determined by  y y  . 

 

1                     

1      

0                     otherwise

c

c

c s c s
y s

y y

y y
y y y y y y

y


 
      



     (4) 

In  y y  , a full membership grade of the linguistic term 

'about 'cy  can be granted when cy y  is given. Given 

that c s c sy y y y y    , y  has a membership grade with 

'about 'cy . When y  is not within the range between  c sy y  

and  c sy y , y  has no membership with 'about 'cy . cy  is 

the center of y . sy  is the spread of y , which indicates the 

fuzziness of human evaluation of affective qualities. As an 
illustration, Figure 2 shows three fuzzy numbers, 'about 2 '  

1y =(2,1), 'about 8'  2y =(8.3), and 'about 5'   3y =(5,2), on a 

10-point scale for affective quality evaluation. The fuzziness of 

3y  is less than 2y  but is more than 1y .  

 1= 2, 1y  2= 8, 3y 3= 5, 2y

 
Fig. 2 The affective qualities in fuzzy numbers 

 

III. FUZZY REGRESSION FOR AFFECTIVE QUALITY 
A. Fuzzy regression with linear spreads 
Given a set of objective features,  1 2, ,..., mx x x x , the fuzzy 

regression model with symmetrical coefficient spreads [40], 

      ,C S
Lin Lin LinF x f x f x  in (5a), can be used to determine 

the corresponding affective quality in a fuzzy number 

 ˆ ˆ ˆ,C Sy y y  with  symmetrical spreads. 

       0 1 1
ˆ ,C S

Lin Lin Lin j j m my F x f x f x A A x A x A x          

                       (5a) 
where   0 1 1ˆ Lin j j m my f x a a x a x a x            with C   

or S  .                    (5b) 

  ˆ or C C
Liny f x  and   ˆ or S S

Liny f x  address the quantity and 

uncertainty of evaluating affective quality with respect to x  

respectively; and jA  with 1, 2, ,j m   are the fuzzy 

coefficients which are given by  ,C S
j j jA a a , with the central 

C
ja  and the spread S

ja . All jA  in (5a) correlate x  to ŷ . jA  in 

the fuzzy regression model (5a) are not as sharply defined as the 
regression coefficients j  in the non-fuzzy regression model 

(2) of which all j  are crisp numbers [18]. All S
ja  in jA  

address the deviations between the estimated to the observed 
affective qualities. Hence, S

ja  indicates the amount of fuzziness 

caused by the human judgement [18]. The non-fuzzy regression 
(2) addresses the deviation   which is assumed to be normally 
distributed with zero mean [41]. To satisfy this normal 
distribution assumption, a large set of samples is required to 
develop a non-fuzzy regression model. The processing of large 
data sets is computationally expensive. Hence, there is a 
trade-off between the accuracy of the non-fuzzy regression 
estimate and the cost of data collection  [40].  

 LinF x  in (5a) can be used to estimate,  ˆ ˆ ˆ,C Sy y y , 

engaging with  y y   in (4), where ˆ Cy  and ˆ Sy  can be 

determined based on (5b). The fuzzy regression model achieves 
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two goals [51]: First, the fuzzy regression model attempts to 

satisfy the constraint (6) for each sample     ,
T

y k x k , 

   1  for all 1, 2,...,y Dy k h k N          (6) 

(6) ensures that the model estimates can grant a membership 
grade with more than h, to all  y k , where h is specified by the 

decision maker. Second, the fuzzy regression model attempts to 

minimize the overall estimate of fuzziness   
1

DN
S

Lin
i

Z f x i


  , 

which is the total fuzziness with respect to all  x i . Hence, the 

constrained optimization problem (7a) to (7d) [18] is 

formulated in order to determine  ,C S
j j jA a a   with 

1, 2, ,j m  , in (5a) and (5b): 

  
1

min  
DN

S
Lin

i

Z f x i


  , subject to         (7a) 

        ,  1,2,...,S C
Lin Lin Dh f x i f x i y i i N    ,   (7b) 

        ,  1,2,...,S C
Lin Lin Dh f x i f x i y i i N   ;    (7c) 

S 0ja  , 0,1, ,j m                (7d) 

where   C
Linf x i  and   S

Linf x i  represent the central and 

spread of estimated affective quality   LinF x i   

      ,C S
Lin Linf x i f x i  with respect to  x i  respectively; 

  C
Linf x i  and   S

Linf x i  are given by (8): 

     0
1

m

Lin j j
j

f x i a a x i  



  , with C   or S  .  (8) 

The last constraint (7d) ensures that all S
ja  are non-negative. 

When S
ja  and all elements in  x i  are positive,   S

Linf x i  

can be ensured to be positive. Figure 3a illustrates how the 
fuzzy regression model satisfies the constraints (7b) and (7c), 
and the amount of overall fuzziness Z exists in the model. The 
constraints are illustrated by the h-interval between 

      C S
Lin Linf x i h f x i   and       C S

Lin Linf x i h f x i   

which bounds all samples  y i . Hence, the membership grade 

of each  y i  is larger than h under the fuzzy estimates 

         ,C S
Lin Lin LinF x i f x i f x i  which is generated by the 

fuzzy regression model (5a) with respect to  x i . Z is 

illustrated by the fuzzy interval between  

      C S
Lin Linf x i f x i  and       C S

Lin Linf x i f x i . Given 

a specified set of objective features,  1 2, ,...,t t t t
mx x x x , Figure 

3a shows how the affective quality in fuzzy number 

 ˆ ,t C S
t ty y y , is estimated by the fuzzy regression model, 

where C
ty  is the center and S

ty  is the fuzzy spread. The view 

vision of ˆ ty  is illustrated by Figure 3b. All  y i  are covered 

by the h-interval between  C S
t ty h y   and  C S

t ty h y  . 

The overall fuzziness of the model is indicated by the width 

of the fuzzy interval,  2 S
Linf x , given in (5b) which correlates 

linearly with the objective features  1 2, ,..., mx x x x . 

 2 S
Linf x , increases when the magnitudes of x  increase, and 

thus the estimated overall fuzziness increases when increasing 
the objective features. We consider a simple model with one 
objective feature (i.e.  1x x ) correlated to the affective 

quality ŷ . The spread of the simple model,  S
Linf x , is given in 

(9), where 0
Sa  and 1

Sa  represent the coefficient spreads. It 

shows clearly that  2 S
Linf x , increases when 1x  increases. 

    0 1 1
S S S

Linf x a a x                (9) 

Figure 3a shows that the variances of affective qualities are 
smaller when x  is either small or large. It shows that variances 
of the affective qualities are greater when x  is in the median. 
Hence, little fuzziness exists when the objective features are at 
the two extremes. In real-life situations, the fuzziness of 
observed dependent variables may decrease or remain 
unchanged when the magnitudes of objective features increase 
[26]. More fuzziness exists in the medium objective feature as 
people are more uncertain when evaluating medium affective 
quality. Also, the fuzziness may not be symmetrical as 
generated by the fuzzy regression [42]. Therefore, unnecessary 
fuzziness can be estimated in fuzzy regressions with linear 
spreads (8) when 1x  increases. This is the deficiency of fuzzy 

regressions with linear spreads which may inaccurately 
estimate the fuzziness of evaluating affective quality [26]. 

B. Proposed fuzzy regression with varying spread 

In this paper, a novel fuzzy regression approach involving 
varying spreads is proposed in order to address the nonlinear 
and nonsymmetrical fuzziness of affective qualities, where the 
spreads are developed in cubic polynomial form as illustrated in 
Figure 4. The varying spreads of the proposed fuzzy regression 
model are illustrated in Figure 4. The proposed model in a 
triplet is given as follows: 

         ˆ , ,C L R
VS VS VS VSy F x f x f x f x         (10) 

where  C
VSf x  is the central;  L

VSf x  is the left spread; and 

 R
VSf x  is the right spread. The proposed model in (10) is 

developed based on a two-phase methodology whereby the 
central  C

VSf x  is determined in the first phase and the two 

spreads,  L
VSf x  and  R

VSf x , are determined in the second 

phase. In the first phase,  C
VSf x  is developed in the form as 

(5b) with C  , where the centrals of the fuzzy coefficients, 
C
ia with 1, 2,...,i m , are computed by the ordinary least square 

regression [29]. All  with 1, 2,...,C
ia i m  are determined by: 

  1

0 1 2   ... 1 1 1 
T T TC C C C D D D D

ma a a a x x x y


                (11) 

where 1  is the  1 1m   vector with all one elements. 

 L
VSf x  and  R

VSf x  are formulated by the polynomials with 

three orders [42] respectively as: 
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Fig. 3a Fuzzy regression model for estimating 
affective quality,       ,C S

Lin Lin LinF x f x f x  
Fig. 3b Estimated affective quality in 

fuzzy number  ˆ ,t C S
t ty y y  

Fig. 4 Fuzzy regression model with polynomial 

spreads         , ,C L R
VS VS VS VSF x f x f x f x  

       2 3

,0 ,1 ,2 ,3
1

m
L L L L L

VS j j j j j j j
j

f x a a x a x a x


       ,  (12a) 

and        2 3

,0 ,1 ,2 ,3
1

m
R R R R R

VS j j j j j j j
j

f x a a x a x a x


          

(12b) 
Unlike the spreads formulated in (5b) with S   which 

consists only the linear polynomials, the proposed spreads, 

 L
VSf x  in (12a) and  R

VSf x  in (12b) are involved with three 

order terms for the objective features.  L
VSf x  and  R

VSf x  

attempt to model the fuzziness which is not necessary to be 
linear to x .  L

VSf x  and  R
VSf x  take into account possible 

nonlinearity between x  to fuzziness [42]. It attempts to 
overcome the limitation of the existing fuzzy regression that 
only models one characteristic that the fuzziness is linearly 
related to the objective features.  

The second phase minimizes the overall fuzziness 

   R L
VS VSf x f x  and ensures that the estimates can grant more 

than h membership to all affective quality samples,  y k . We 

determine all 0
La , 0

Ra , ,
L
j ia and ,

R
j ia  with 1, 2., , ,j m  and i   

1, 2,3  in  L
VSf x  and  R

VSf x  by solving the optimization 

problem (13a-e) with respect to the sample set     ,
T

y k x k  

with 1,2,..., Dk N : 

      
1

 min
DN

R L
VS VS

k

Z f x k f x k


        (13a) 

subject to        ;L C
VS VSh f x k f x k y k    

       ;  1,2,...,R C
VS VS Dh f x k f x k y k k N     (13b) 

   0L
VSf x k  ,    0R

VSf x k   1, 2, , Dk N       (13c) 

where   C
VSf x k ,   L

VSf x k  and   R
VSf x k  are the central, 

left spread and right spread with respect to the k-th object 
feature sample,  x k . They are given respectively as: 

           2 3

,1 ,2 ,3 0
1

m

VS j j j j j j
j

f x k a x k a x k a x k a    



      
  0                   a  with R   or L        (13d) 

    0
1

m
C C C

VS j j
j

f x k a a x k


            (13e) 

Given a specified membership grade h, the fuzzy interval of 

the model is denoted as         ,C L C
VS VS VSf x k h f x k f x k   

  R
VSh f x k  , where all samples received a higher than h 

membership grade from the model. The fuzzy interval covers 
all  y k  using the polynomial spreads (13d). Based on the 

polynomial spreads, unnecessary fuzziness is less likely to be 
generated than those generated by the fuzzy regression with 
linear spreads, formulated in (5a) and (5b). Both classical and 
heuristic optimization methods namely VS-FR-SM and 
VS-FR-GA are proposed to generate the fuzzy regression (10) 
by solving the optimization problem (13a-e). Both VS-FR-SM 
and VS-FR-GA attempt to determine the optimal fuzzy spread 
coefficients 0

La , 0
Ra , ,

L
j ia and ,

R
j ia  with 1, 2., , ,j m  and i   

1, 2,3 , after the center coefficients C
ja with  0,1,2., , ,j m  in 

(11) are predetermined using the ordinary least square 
regression. In VS-FR-SM, the simplex method is used to 
determine the fuzzy spread parameters by solving the 
optimization problem consists of the cost function formulated 
in (13a) and the constraints formulated in (13b) to (13e). The 
simplex method is proposed as it has commonly been used on 
developing fuzzy regressions [43]. In VS-FR-GA, the genetic 
algorithm is used to determine the fuzzy spread parameters, as it 
is not susceptible to a lack of convexity of the solution 
landscapes [44] and also it can determine better fuzzy 
coefficients for generating more accurate models, compared 
with the simplex method [45]. The framework of the 
VS-FR-SM and VS-FR-GA are summarized in Figure 5. 

Both VS-FR-SM and VS-FR-GA are implemented using 
Matlab 7.7 in a PC which has a CPU of Intel(R) Core(TM)2 
Duo 2.66GHz and a memory of 8GB. The development of 
novel optimization method is not the main contribution of this 
research. Hence, the default parameters for the simpler method 
are used in the VS-FR-SM. The VS-FR-GA is implemented by 
the ga solver in the global optimization toolbox in Matlab, 
which is effective to handle linear and bound constraints. 
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Fig. 5 Framework of VS-FR-SM and VS-FR-GA 

In the ga solver, the chromosomes are represented as the 
fuzzy spread coefficients 0 ,La  0

Ra , ,
L
j ia and ,

R
j ia  with 1, 2,j   

..., m  and 1, 2,3i  . The ga solver first randomly generates a 
population of chromosomes which are in real numbers. Each 
gene in the chromosome represents a fuzzy spread coefficient. 
Hence, the number of genes in a chromosome is given as 

4 3 12vN m m    . The population is evolved iteratively 

based on the two operations, mutation and crossover. For the 
mutation, a random number is added to a selected gene, where 
the random number is generated with Gaussian distribution 
with mean zero and it needs to satisfy the constraints (13b) to 
(13e), as the ga solver attempts to solve the constrained 
optimization problem. For the crossover, the intermediate 
operation is used. The crossover generates the children by 
averaging the parents with a random weight. For example, two 
parents, 1p  and 2p  are selected to perform the crossover. A 

child is generated as,  1 1 2c p r p p    , where r  is a 

random number between 0 to 1. The ga solver uses the mutation 
and crossover operations to generate feasible solutions which 
satisfy the constraints in (13b) to (13e). After the feasible 
solution is found, the ga solver uses the approach of 
roulette-wheel to select the good chromosomes with respect to 
the cost function formulated by (13a). The ga solver attempts to 
find a better feasible solution with a smaller spread. The ga 
solver goes to the next evolutionary generation until the 
termination condition is met. In the ga solver, the following 
parameters [46] are used: crossover rate=0.8; mutation 
rate 1/ vN ; total generations=1000; population size=200. The 

ga solver keeps evolving the chromosomes until the fitness of 
the chromosomes cannot be improved within 10 generations. 

IV. CASE STUDIES FOR AFFECTIVE QUALITY MODELLING 

Two case studies, the affective design of an electric iron [27] 
and image quality assessment [28], have been conducted in 
order to evaluate the effectiveness of the proposed fuzzy 
regression methods: one using the simplex method 

(VS-FR-SM) and the other using the genetic algorithm 
(VS-FR-GA). These two case studies involve subjective human 
evaluations of affective qualities. They also simulate the 
different characteristics of affective designs. The affective 
design of an electric iron involves categorical data for objective 
features and the image quality assessment involves continuous 
ones. Also, the amount of data involved in the two case studies 
is very different. Only a small data set is used for the affective 
design of the electric iron as only 8 samples are involved. It 
attempts to simulate the practical situation where only small 
samples are available for affective design. A much larger 
amount of data (1725 samples) is involved in the image quality 
assessment case study. Hence, the effectiveness of the proposed 
methods can be evaluated for different data sizes. Table 1 
summarizes the data characteristics of the two case studies. 

The proposed methods are compared with the state-of-art and 
recently-developed fuzzy regression methods. The Tanaka 
fuzzy regression approach, namely TS-FR [18] is considered, 
where TS-FR is the first fuzzy regression approach which is 
formulated by minimizing the fuzzy spreads in linear 
polynomials. Also, the fuzzy regression integrated with 
statistical regression, namely TS-SR-FR, is considered [29], 
that uses the statistical regression to determine the center of the 
model. TS-SR-FR is similar to the proposed VS-FR-SM and 
VS-FR-GA which all use statistical regression to determine the 
center; however, linear spreads are used in TS-SR-FR while 
varying spreads are used in the proposed approaches. This 
comparison demonstrates the effect of using linear spreads and 
varying spreads on the fuzzy regression. To further validate the 
effectiveness, the proposed approaches are compared with a 
recent fuzzy regression method, namely FC-FR [30, 31], which 
determines the fuzzy spreads by maximizing the fuzzy 
credibility of the model.  

In the statistical regression, goodness-of-fitness is usually 
used in order to evaluate how effective the model can fit the 
samples. Goodness-of-fitness indicates the similarity between 
the samples and the estimates generated by the model. Based on 
the goodness-of-fitness, performance of models can be 
indicated. Unlike statistical regression models which only 
consists of a single central, fuzzy regression models consists of 
the central and the interval which consists of the right and left 
spreads. Statistical regression models only attempt to predict 
crisp values for dependent variables. Goodness-of-fitness used 
for evaluating statistical regression model is not the most 
appropriate to evaluate fuzzy regression, as the 
goodness-of-fitness only addresses the central of model and it 
cannot interpret the interval of the fuzzy regression model. 
Difference performance measures are used to evaluate the 
intervals of fuzzy regression models. The following three fuzzy 
criteria are used to evaluate the performance of these fuzzy 
regression approaches: 

Table 1 Data characteristics of the two case studies. 
 electric iron design Image quality assessment 
Number of samples 8 1725 
Data type of objective features Categorical  Continuous 
Number of objective features  5 17 
Number of affective quality assessments 40 256428 
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1. The proposed and the existing fuzzy regression approaches 
attempt to use an interval to cover all the samples where the 
interval is constrained by bounding all samples within the 
interval. All fuzzy regression approaches attempt to minimize 
the interval width in order to cover all the samples. As all 
fuzzy regression approaches attempt to generate a small 
interval, they attempt to generate a model with a small 
average fuzzy spread of each estimate (AFS) [18] which is 
given in (14). The AFS can be used to evaluate the interval 
size. When the interval is small, the model is better.  

     
1 1

ˆAFS
D DN N

R L

k k

h y k h y k y k
 

           (14) 

AFS also evaluates the overall fuzziness generated by the 
model. When AFS is smaller, unnecessary fuzziness is less 
likely to be generated by the fuzzy regression model. 
However, AFS only takes into account the interval of the 
model but it cannot address the central. Despite AFS, the 
following two fuzzy criteria are used to address both the 
interval and the central of the model. 

2. Index of confidence (IC) [32] is similar to the 
goodness-of-fitness R2 in statistical regression which 
measures how close the samples are to the fitted regression 
line. The IC measures how close the sam ples are to the 
central and the interval of the fuzzy regression. The IC is 
given by the degree of variation of the samples  y k  to the 

intervals of the fuzzy estimates       ˆ ˆ ˆ,C Ly k y k y k  

 ˆRy k  with 1, 2,..., Dk N , where  ŷ k  is generated by the 

fuzzy regression model. The IC is given by: 
SSR

IC=
SST

,                 (15a) 

where SST  represents the total variation of  y k  to the left 

spread,  ˆ Ly k , and right spread,  ˆ Ry k , of the fuzzy 

estimate and SSR represents the variation of center  Cy k  of 

the fuzzy estimates to both  ˆ Ly k  and  ˆ Ry k . SST and SSR 

are given by,  

         2 2

1 1

ˆ ˆSST
D DN N

L R

k k

y k y k y k y k
 

      ;   (15b) 

         2 2

1 1

ˆ ˆ ˆ ˆSSR
D DN N

C L C R

k k

y k y k y k y k
 

      (15c) 

When IC is larger, the value of SSR is closer to SST, and the 
estimates generated by the fuzzy regression model are a better 
fit to the samples. Hence, the fuzzy regression model is better 
when its IC is larger. Based on the IC, the central and the 
interval of the model can be taken into account. IC has been 
used for evaluating fuzzy regression models for new product 
development  [27, 47] and management satisfaction [32]. 

3. Mean fuzzy credibility (MFC) [30] has recently been 
developed to evaluate fuzzy regression performance. The 
MFC evaluates the memberships of the collected data with 
respect to the fuzzy regression model and the overall 
fuzziness of the model. The MFC is given as: 

  
  

  
   

ˆ ˆ

1 1

MFC
ˆ

D DN N
y y

R L
k k

y k y k

y k y ky k

 

 

 


 


    (16) 

The denominator indicates the amount of fuzzy spreads which 
represent the fuzziness of the estimates; the numerator 
indicates the fuzzy membership of the samples with respect to 
the model. When the MFC is higher, the denominator is high 
and the numerator is low. The fuzzy regression model can 
generate higher memberships to sample and generate 
estimates with less fuzziness. Unnecessary fuzziness is less 
likely to be generated and better membership can be given by 
the model when a higher MFC is obtained.  MFC has been 
used to evaluate fuzzy regression models for new product 
development [31] and manufacturing processes [30]. 

A. Affective design of electric iron 

In the affective design of an electric iron, its attractiveness is 
considered as the affective quality. We develop the models 
which correlate the attractiveness to the objective features of 
electric irons, where the iron shape, colour and components are 
considered as the objective features which evoke a response to 
the attractiveness of electric irons. Based on the models, the 
attractiveness of the electric iron can be estimated and 
optimized with respect to the objective features [14]. Electric 
irons with good affective quality can attract customers and 
influence their choice of product. 
1) Data description 
Prior to develop models, a survey was conducted based on a 
competitive benchmark for eight electric irons [27]. Figure 6 in 
the appendix shows the objective features of electric irons 
including body color tone 1x , soleplate 2x , handle design 3x , 

spray button 4x , and water level indicator 5x . The 

morphological description of the electric irons shown in Table 2 
shows the five features: 1x  is either warm or cold tone; 2x  is 

either sharp or round tip; 3x  is either embedded,  ‘╗’, ‘╔’, or 

‘T’ shape; 4x  is either flat, curvy or handle shape; and 5x  is 

either transparent or sandblasted.  
These objective features are correlated to the affective 

quality of an electric iron. Table 2 in the appendix shows the 
quantitative values of the affective features which are 
transformed to categorical data. As an example, Electric Iron A 
consists of 1x  with warm tone color, 2x  with sharp tip 

soleplate, 3x  with embedded type handle, 4x  with flat button, 

and 5x  with transparent indicator. 1x  consists of two categories 

and thus it can be transformed as 0.50 and 1.00. 3x  consists of 

four categories and thus it can be transformed as 0.25, 0.50, 
0.75 and 1.00. Similarly, the rest of the objective features can be 
transformed as qualitative values based on the number of 
categories. As eight electric irons are benchmarked, this case 
study is involved with eight samples which are illustrated in 
Table 3 in the appendix. To assess the affective qualities of the 
electric irons, a survey was conducted by five interviewees, 
who have more than 15 years of experience in using electric 
irons and also have experience in purchasing more than 3 
electric irons. These interviewees assessed the attractiveness of 
each electric iron, using scores from 1 to 4. The last row of 
Table 3 shows the average attractiveness of each electric iron, y, 
which is the mean of the five interviewees’ scores. As there are 
eight electric irons and five interviewees, forty affective quality 
assessments have been conducted. 
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In new product development, this is time consuming to 
perform customer surveys. Also the number of products in the 
market is limited. Hence, small number of samples is generally 
available to develop prediction models for product analysis. 
Fuzzy regression is particularly effective to develop models 
when a small number of samples is only available [40]. For 
example, 10 samples were used for developing fuzzy regression 
models for mobile phones design [36]; 5 samples were used for 
developing models for car products [48]; 5 samples were used 
for developing models for dynamite packing machine [49]. 
Although this case study of electric iron design is involved only 
with 8 samples, existing research [27] has been conducted on 
developing fuzzy regression models using the classical Tanaka 
approach (TS-FR) [18]. Therefore, the proposed approach can 
be used to further improve the modelling performance. Through 
this case study, the effectiveness of the proposed approach can 
be evaluated when a small set of samples is given. 
2) Numerical results 
Table 4 shows the fuzzy regression models developed by the 
four existing methods, TS-FR, TS-SR-FR, FC-FR and LW-FR, 
and the proposed methods, VS-FR-SM and VS-FR-SM. These 
fuzzy regression models can be used to estimate the crisp values 
and fuzziness of the attractiveness of the electric iron, when the 
objective features are given. Due to space limitations, we 
illustrate only those models represented by the body color tone 

1x  and the spray button design 4x  which have different number 

of categorical levels. 
Figures 7 illustrates the fuzzy regression models which 

correlate 1x  to the attractiveness y, where Figures 7a, 7b, 7c, 

7d, 7e and 7f show the models generated by TS-FR, TS-SR-FR, 
FC-FR, LW-FR, VS-FR-SM and VS-FR-SM respectively. In 
these figures, the solid lines show the centrals and the fuzzy 
intervals of the models and the dotted lines show the h-intervals 
of the models, where all the collected data is constrained by 
being included within the h-interval. Figures 7e and 7f show 
that the h-intervals generated by the proposed VS-FR-SM and 
VS-FR-SM are zero, when 1x  is at zero. Hence, the fuzziness 

of the attractiveness is zero given that 1x  is zero, as the 

h-intervals are zero. Figures 7a, 7b, 7c and 7d also show the 
h-intervals generated by the existing methods, TS-FR, 
TS-SR-FR, FC-FR and LW-FR, when 1x  is at zero. These 

figures show that the fuzzy intervals range from 3 to 4.5, given 
that 1x  is zero. Therefore, more fuzziness is generated by the 

existing methods compared with the proposed methods, when 

1x  is at zero. Then, we consider 1x  is at 1. Figures 7a, 7b, 7c, 

7d, 7e and 7f show that similar h-intervals are generated based 
on the proposed and the existing methods, where the h-intervals 
are around 2 to 4. As smaller fuzzy intervals are generated by 
the proposed methods when 1x  is at zero and similar fuzzy 

intervals are generated when 1x  is at one, the overall fuzziness 

generated by the proposed methods is smaller compared with 
the existing methods. Therefore, unnecessary fuzziness is less 
likely to be estimated by the proposed methods, while the 
developed h-intervals cover all the collected data. 

Similarly, Figures 8a to 8f illustrate the models which 
correlate the attractiveness with 4x . They show similar 

characteristics in that smallest h-intervals are generated by the 
proposed VS-FR-SM and VS-FR-SM, compared with the 

existing methods. Therefore, the proposed VS-FR-SM and 
VS-FR-GA outperform the other tested methods. 

Tables 5, 6 and 7 show the three fuzzy criteria, AFS, IC and 
MFC, obtained by all the methods. These results demonstrate 
the effectiveness of the proposed methods compared to the 
existing methods. Table 5 shows the AFSs which illustrate the 
overall fuzzy spreads of a model covering the samples. It also 
shows the ranks with respect to the AFSs for all the tested 
methods. It shows that the proposed VS-FR-SM and 
VS-FR-GA, can generally generate smaller AFSs, compared 
with the four existing methods, TS-FR, FC-FR, LW-FR and 
TS-SR-FR. The ranks for the proposed methods are higher than 
those for the existing methods. Improvement can be obtained by 
the proposed VS-FR-SM. Hence, unnecessary fuzziness is less 
likely to be generated by the proposed methods than by the 
existing methods.  

Table 6 shows the IC for the six tested methods. When the IC 
value is larger, the estimates generated by the fuzzy regression 
model are better fitted to the collected data. Table 6 shows that 
the proposed methods generally obtain higher ICs compared 
with the existing methods, while FC-FR is the poorest method 
of all. The proposed methods obtain higher ranks in terms of IC. 
Therefore, the proposed methods are able to generate a better fit 
than the other tested methods. Among the five tested methods, 
the FC-FR generates the most unfitted models for the collected 
data.  Table 7 shows the MFC for the six tested methods. When 
the MFC is larger, the fuzzy regression models can generate 
better memberships for the collected data; moreover, the overall 
fuzziness is smaller. Table 7 shows that the proposed methods, 
VS-FR-SM and VS-FR-GA, and the existing method, FC-FR, 
can achieve better MFC compared with the other three existing 
methods, TS-FR, LW-FR and TS-SR-FR. The poorest method 
is TS-SR-FR, although it performs well in terms of IC. As 
FC-FR is developed by optimizing the MFC of the fuzzy 
regression models, the MFC achieved by the FC-FR is 
generally good. However, the models generated by FC-FR 
perform poorest in terms of IC. It is a trade-off when using 
FC-FR. These results show that the proposed methods, 
VS-FR-SM and VS-FR-GA, generally outperform the other 
existing methods in terms of the three fuzzy criteria, AFS, IC 
and MFC. 

The better results can be explained by the thrid-order 
polynomial functions that the proposed methods use to 
represent the fuzzy spreads while the other existing methods 
only use the linear polynomial function. Therefore, smaller 
fuzzy intervals can be generated by the proposed methods in 
order to cover all the samples; also, the fuzzy intervals are a 
better fit to the samples. Better AFS, IC and MFC can generally 
be achieved by the proposed methods.  To show the superior of 
the proposed method, we consider the relative improvements 
between the fuzz criteria achieved by the proposed methods to 
that achieved by the existing method. The relative improvement 
is formulated in (17). It is similar to the variation measure 
which indicates performance difference between two models 
[32]. 

 
   

 
Fuzzy criteria by Fuzzy criteria by 
proposed method existing methodRelative  = improve. Fuzzy criteria by 

existing method


  (17)  
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Table 4 Fuzzy regression models for affective design of electric irons 

 Fuzzy regression models 
Body 
color tone 

1x  

Existing methods TS-FR     13.83,1.50 0.88,0.60y x    

TS-SR-FR     13.80,1.54 -0.76,0.74y x   

FC-FR      13.82,0.70 -0.87,0.36y x   with  0.02h   

LW-FR     13.861,  1.173,1.312 0.882,0.871,0.8451y x   

Proposed methods VS-FR-GA    -15 -15 2 2
1 1 1 1 13.805.3 10 ,5.3 10 -0.76,0.76+0.76 +0.76 ,0.64+0.64 + 0.64y x x x x x     

VS-FR-SM    2 2
1 1 1 1 13.80,2.47,0.93 -0.76,1.17+0.35 +0.61 ,0.51+0.12 +0.30y x x x x x   

Soleplate 

2x  
Existing methods TS-FR    14

22.95,2.10 0.15,4.90 10y x     

TS-SR-FR    -12
23.25,2.70 -0.45,2.94 10y x    

FC-FR     -15
22.95,1.15 -0.14,8.23 10y x    with  0.087h   

LW-FR    -14 -14
22.95,  2.11,  2.10 0.15,3.36 ,3.310 106y x    

Proposed methods VS-FR-GA    2 2
2 2 2 2 23.25,6.46,3.02 -0.45, -0.52+0.26 -0.48 ,-0.65-0.66 0.22y x x x x x    

VS-FR-SM    2 2
2 2 2 2 23.25,2.70,1.50 -0.45, -0.77-0.77 -0.77 ,-0.77-0.77 0.77y x x x x x    

Handle 
design 3x  

Existing methods TS-FR    11
33.65,1.63 1.87,2.86 10y x     

TS-SR-FR    -12
33.99,2.57 -1.59,8.03 10y x    

FC-FR     17
33.65,1.37 1.87,1.10 10y x     with  0.40h   

LW-FR    16 16
33.66,1.61,1.66 3.66,1.61,1.66 ) ( 10 1.87 10,3.30 ,  3.30y x      

Proposed methods VS-FR-GA    2 2
3 3 3 3 33.99,11.36,0.96 -1.59, -0.22-3.20 -4.68 ,0.01-0.14 0.14y x x x x x    

VS-FR-SM    2 2
3 3 3 3 33.99,15.23,2.03 -1.59,95.88-160.01 +78.93 ,-6.95+9.60 4.27y x x x x x    

Spray 
button 
design 4x  

Existing methods TS-FR    10
43.40,1.80 0.90,3.61 10y x     

TS-SR-FR    -13
43.30,2.40 -0.30,1.51 10y x    

FC-FR     17
43.40,1.30 0.90,7.36 10y x     with  0.31h   

LW-FR    15 15
43.40,1.79,1.81 3.41,1.79,1.81  0.90,1.0) ( 10 11 0 0,1. 7y x      

Proposed methods VS-FR-GA    2 2
4 4 4 4 43.30,9.71,2.99 -0.30,0.55-2.64 -3.65 ,1.90+0.22 0.31y x x x x x    

VS-FR-SM    2 2
4 4 4 4 43.30,-2.05,2.31 -0.30,10.48+1.35 -10.75 ,-2.00-0.82 1.31y x x x x x    

Water 
level 
indicator 

5x  

Existing methods TS-FR     53.38,1.63 0.43,0.47y x    

TS-SR-FR     53.35,1.64 -0.43,0.51y x   

FC-FR      53.38,0.88 0.43,0.18y x    with  0.003h   

LW-FR     53.10,1.80,1.71 0.17,0.34,  0.344y x   

Proposed methods VS-FR-GA    2 2
5 5 5 5 53.35,0.15,0.63 -0.43, -0.57+0.23 +0.09 ,0.04+0.20 0.03y x x x x x    

VS-FR-SM    2 2
5 5 5 5 53.35,1.50,0.90 -0.43,0.18+0.18 +0.18 ,0.42+0.42 0.42y x x x x x    
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Figure 7a TS-FR correlates body colour tone Figure 7b FC-FR correlates body colour tone Figure 7c TS-SR-FR correlates body colour 
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Figure 7d LW-FR correlates body colour tone 

1x   to attractiveness y  
Figure 7e VS-FR-GA correlates body colour 

tone 1x   to attractiveness y  
Figure 7f VS-FR-SM correlates body colour 

tone 1x   to attractiveness y  
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Figure 8a TS-FR correlates spray button 

design 4x  to attractiveness y  
Figure 8b FC-FR correlates spray button 

design 4x  to attractiveness y  
Figure 8c TS-SR-FR correlates spray button 

design 4x  to attractiveness y  
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Figure 8d VS-FR-GA correlates spray button 

design 4x  to attractiveness y  
Figure 8e VS-FR-GA correlates spray button 

design 4x  to attractiveness y  
Figure 8f VS-FR-SM correlates spray button 

design 4x  to attractiveness y  
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Figure 9a Rel. improvements for AFS (iron) Figure 9b Rel. improvements for IC (iron) Figure 9c Rel. improvements for MFC (iron) 

 
Table 5 Average fuzzy spread (AFS) for the electric iron design (*The ranks of each method are bracketed) 

 Model  Body 
color tone 

1x  

Soleplate 2x  Handle 
design 3x  

Spray 
button 

design 4x  

Water level 
indicator 5x  

All features, 1x , 2x , 

3x , 4x  and 5x  

Ave. 
rank 

Existing 
methods 

TS-FR 2.03 (5) 2.14 (5) 1.68 (5) 1.83 (4) 1.86 (3) 1.03 (5) 4.50 
FC-FR 2.01 (4) 2.13 (4) 1.63 (4) 1.87 (5) 1.92 (4) 1.03 (4) 4.18 

TS-SR-FR 3.14 (6) 3.14 (6) 3.16 (6) 3.14 (6) 3.14 (6) 3.14 (6) 6.00 
LW-FR 1.93 (3) 2.11 (3) 1.61 (3) 1.79 (3) 1.97 (5) 1.02 (3) 3.33 

Proposed 
methods 

VS-FR-SM 1.84 (1) 1.68 (1) 1.17 (2) 1.46 (1) 1.65 (2) 0.93 (1) 1.33 
VS-FR-GA 1.88 (2) 1.69 (2) 1.14 (1) 1.48 (2) 1.63 (1) 0.94 (2) 1.68 
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Table 6 Index of confidence (IC) for the electric iron design (*The ranks of each method are bracketed) 
 Model  Body 

color tone 

1x  

Soleplate 2x  Handle 
design 3x  

Spray 
button 

design 4x  

Water level 
indicator 5x  

All features, 1x , 2x , 

3x , 4x  and 5x  

Ave. 
rank 

Existing 
methods 

TS-FR 0.23 (4) 0.23 (5) 0.21 (4) 0.22 (5) 0.23 (5) 0.21 (4) 4.50 
FC-FR 0.00 (6) 0.01 (6) 0.13 (6) 0.07 (6) 0.00 (6) 0.10 (6) 6.00 

TS-SR-FR 0.24 (3) 0.24 (3) 0.25 (5) 0.24 (1) 0.24 (2) 0.25 (2) 2.67 
LW-FR 0.23 (5) 0.23 (4) 0.21 (3) 0.22 (4) 0.23 (4) 0.21 (5) 4.17 

Proposed 
methods 

VS-FR-SM 0.27 (2) 0.34 (1) 0.44 (2) 0.23 (3) 0.26 (1) 0.26 (1) 1.67 
VS-FR-GA 0.29 (1) 0.34 (2) 0.44 (1) 0.23 (2) 0.24 (3) 0.25 (3) 2.00 

 
Table 7 Mean fuzzy credibility (MFC) for the electric iron design   (*The ranks of each method are bracketed.) 

 Model  Body 
color tone 

1x  

Soleplate 2x  Handle 
design 3x  

Spray 
button 

design 4x  

Water level 
indicator 5x  

All features, 1x , 2x , 

3x , 4x  and 5x  

Ave. 
rank 

Existing 
methods 

TS-FR 0.20 (5) 0.17 (4) 0.18 (5) 0.18 (2) 0.21 (4) 0.30 (5) 4.167 
FC-FR 0.29 (1) 0.22 (3) 0.18 (3) 0.19 (1) 0.27 (1) 0.32 (3) 2.000 

TS-SR-FR 0.08 (6) 0.02 (6) 0.08 (6) 0.05 (6) 0.10 (6) 0.11 (6) 6.000 
LW-FR 0.21 (4) 0.17 (5) 0.18 (4) 0.18 (3) 0.19 (5) 0.31 (4) 4.167 

Proposed 
methods 

VS-FR-SM 0.26 (3) 0.25 (1) 0.25 (1) 0.14 (4) 0.21 (3) 0.44 (1) 2.167 
VS-FR-GA 0.25 (2) 0.25 (2) 0.24 (2) 0.15 (5) 0.21 (2) 0.43 (2) 2.500 

  
In (17), the fuzzy criteria can either be AFS, IC or MFC. The 

model is better when either MFC or IC is large. The model is 
better when the AFS is smaller. Therefore (17) can directly be 
used when either MFC or IC is considered. The plus sign needs 
to be changed to minus in (17) when AFS is considered. Figures 
9a, 9b and 9c show the relative improvements for AFS, IC and 
MFC respectively. Due to the page limit, we consider the 
models with all affective features. The relative improvements 
between the proposed VS-FR-SM and the existing methods are 
considered The figures show that generally more than 10% 
improvements can be achieved by the proposed VS-FR-SM for 
AFS, IC and MFC. These improvements demonstrate the 
superior of the proposed method.  

To demonstrate how the fuzzy model can be used for product 
development, we consider the fuzzy regression model, 

        , ,C L R
VS VS VS LinF x f x f x f x , developed by VS-FR-GA, 

where  1 2 3 4 5, , , ,x x x x x x  are all objective features. We 

consider  VSF x , which is better than the other models 

developed by the existing methods in terms of AFS, IC and 
MFC. Based on  VSF x , the fuzzy optimization is given in (18) 

which maximizes the affective quality  C
VSf x  constrained with 

a predefined uncertainty limit, * , in quality estimation [27].  

  1 2 3 4 5max 4.7 0.3 0.6 2.4 0.8 0.4C
VSf x x x x x x      ;  (18) 

subject to      *L R
VS Linf x f x   , where 

     
   
 

2 2
1 1 1 2 2 2
2 2

3 3 3 4 4 4
2

5 5 5

3.94 1 0.01 0.75 0.44 0.6 0.8

    0.2 0.18 0.1 0.03 2.33 0.53

    0.37 0.54 1.06 , and

L
VSf x x x x x x x

x x x x x x

x x x

       
      
  

     
   
 

2 2
1 1 1 2 2 2

2 2
3 3 3 4 4 4

2
5 5 5

0.37 0.6 0.2 1.1 0.2 1.0 0.7

    + 0.24 0.75 0.28 0.04 1.03 0.04

   0.15 0.35 0.17

L
VSf x x x x x x x

x x x x x x

x x x

       
    

   

 

 By solving (18), the exact solution for the five objective 
features can be determined. Based on the exact solution, an 
electric iron can be designed with the maximum affective 
quality constrained with the required uncertainty. In new 

product development, some objective features are required to be 
predefined and cannot be changed. Despite the exact solution, 
inexact solutions can be determined by solving (18), when some 
of the objective features are predefined by the product designers  
For example, we consider that the body color tone and the 
soleplate are required to be predefined with warm tone (i.e. 

1 0.5x  ) and round tip (i.e. 1 0.5x  ) respectively. By solving 

(18) which substituting 1 0.5x   and 1 0.5x  , we can determine 

the inexact solutions for 3x , 4x  and 5x  which represent handle, 

spray button and water level indicator for the electric iron 
respectively. Detailed discussion of determination of inexact 
solutions can be referred to [50]. 

B. Image quality assessment Modelling 

Subjective image quality assessment (IQA) is typically 
performed to evaluate the affective quality of an image, which 
is important for many image processing applications such as 
image/video compression and image reconstruction [6]. In 
subjective IQA, a group of participants typically score the 
affective qualities of images and then the opinion scores are 
combined to produce Mean Opinion Scores (MOS), and the 
MOS can indicate the performance of image processing 
systems. Since MOS are obtained by subjective experiments, 
they cannot be obtained and deployed in real time. Therefore, it 
is essential to develop IQA models that predict the MOS [6]. 
These models typically take either an image analysis approach 
or a human visual system approach [51]. Both approaches, but 
more predominantly the former approach, use statistical 
regression [6] to estimate the MOS from objective features of 
an image. In our earlier work, we proposed fuzzy regression to 
develop IQA models in order to address the fuzziness of the 
MOS [22]. To further improve the reliability of IQA, the 
proposed fuzzy regression with varying spreads is used here 
and evaluated in the following subsections. 
1) Data description 
The effectiveness of IQA models based on the proposed fuzzy 
regression is evaluated based on the image quality database of 
Ponomarenko et al. [28]. This database contains 1725 distorted 
images which were developed based on 25 reference images 
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contaminated with 17 types of distortion and 4 levels for each 
type of distortion. Including the 25 reference images, 1725 
image samples are considered. Table 8 in the appendix 
illustrates the five image subsets namely Noise3, JPEG, Exotic, 
Actual and Full, which are involved with five different sets of 
distortion types [28]. In Table 8, the distortion types that belong 
to a given image subset are marked by ‘+’; also the number of 
distorted images in each image subset is shown. As an 
illustration in the appendix, Figures 10a to 10e, and Figures 11a 
to 11e show two image samples that are distorted by Additive 
Gaussian noise and Spatially-correlated noise with 4 distortion 
levels respectively. Seventeen objective features, 1x  to 17x , 

have been used to evaluate the distorted images. Details on the 
17 objective features can be referred to [28]. Table 8 shows the 
most significant objective features to each image subset. The 
distorted images were evaluated with the MOS by performing 
256428 subjective IQAs, where the assessments involved 
interviewees from 5 countries (Finland, France, Italy, Ukraine, 
and USA). Based on the MOS, five IQA models can be 
developed, each of which corresponds to an image subset, in 
order to correlate MOS and the objective features. 
2) Numerical results 
Table 9 shows the fuzzy regression models developed by the 3 
existing methods, TS-FR, FC-FR and TS-SR-FR, and the 
proposed method, VS-FR-GA. These fuzzy regression models 
correlate the MOS with the most significant objective feature of 
the image subset. Based on these IQA models, the MOS and its 
fuzziness can be predicted. As a large amount of MOS data is 
used in the IQA model development, the integer programming 
problem formulated by (13a) to (13e) has numerous constraints. 
To develop the fuzzy regression models, we need to solve this 
integer programming problem while simultaneously addressing 
all the constraints. Only infeasible solutions can be generated 
by the VS-FR-SM involving a simplex method which is a local 
search approach, and feasible solutions can be found by the 
VS-FR-GA takes the global search approach using the 
GA-solver. Hence, the results of VS-FR-GA are reported. 

Due to the constraints of limited space, we illustrate the 
models developed for only two image subsets, Noise3 and 
JPEG, where the models are correlated with the most significant 
objective features, PSNRHVS 8x  and PSNRHVSM 11x  

respectively. Figures 12a to 12e illustrate the fuzzy regression 
models that correlate 8x  to MOS, where the image subset, 

Noise3, is used. Figures 12a to 12e show the IQA models 
generated by existing methods TS-FR, TS-SR-FR, FC-FR, 
LW-FR and VS-FR-GA respectively. They show that the 
overall h-intervals generated by the proposed VS-FR-GA are 
smaller than those generated by existing methods. Hence, the 
overall fuzziness generated by the proposed method is smaller 
compared with that of the existing methods. Therefore, 
unnecessary fuzziness is less likely to be generated by the 
proposed method used for the MOS predictions. Similar results 
can be found in Figures 13a to 13e which illustrate the models 
corresponding with 11x  for the image subset, JPEG. Smaller 

overall fuzziness is generated by the proposed VS-FR-GA, 
thereby further demonstrating that the proposed VS-FR-GA 
outperforms the other tested methods.  

Tables 10, 11 and 12 show the three fuzzy criteria, AFS, IC 
and MFC, for the IQA models corresponding to the most 
significant objective feature respectively. These results attempt 
to demonstrate the effectiveness of the proposed method in 
developing the IQA models when compared with the existing 
methods. Table 10 shows the AFSs which evaluate the overall 
fuzzy spreads of the IQA models developed by the tested 
methods. It also shows the ranks with respect to the AFSs 
achieved by the IQA models. It shows that the proposed 
VS-FR-GA can generate smaller AFSs than do the existing 
methods, TS-FR, FC-FR, TS-SR-FR and LW-FR. The ranks for 
the proposed methods are the highest. Therefore, the 
VS-FR-GA can develop better models which are less likely to 
generate unnecessary fuzziness. Table 11 shows the IC obtained 
by the tested methods. It shows that the VS-FR-GA can 
generally obtain higher ICs compared with the existing 
methods, while FC-FR is the poorest method as the smallest IC 
is obtained. The proposed VS-FR-GA obtains the highest rank 
for IC, and therefore it can generate a better fit for IQA models 
to the MOS data than the existing methods. However, the 
FC-FR generates the most unfitted models to the MOS data. 
Table 12 shows the MFC obtained by the tested methods. It 
shows that the proposed method, and the existing FC-FR can 
obtain better MFC compared with TS-FR, TS-SR-FR and 
LW-FR. However, the FC-FR can generate the poorest models 
with the lowest IC. It is the trade-off of using FC-FR. Therefore, 
these results show the proposed method generally outperforms 
the other existing methods in terms of the three fuzzy criteria. 

Tables 13 to 15 show the three fuzzy criteria achieved by the 
IQA models which correlate the MOS with all the 17 objective 
features, 1x  to 17x . They demonstrate the effectiveness of the 

proposed VS-FR-GA when developing the IQA models that 
involve more independent regressors. Tables 13, 14 and 15 
respectively show that better AFS, IC and MFC can be achieved 
by the VS-FR-GA than those achieved by the existing methods. 
These results show that the proposed VS-FR-GA can generally 
produce better IQA models with more regressors. When small 
or large numbers of regressors are used for developing the IQA 
models, the proposed VS-FR-GA generally outperforms the 
existing methods. As VS-FR-GA uses the third-order 
polynomial functions to represent the fuzzy spreads, smaller 
fuzzy intervals are generated to cover all the MOS data. Hence, 
better AFS, IC and MFC can generally be achieved by the 
proposed method compared with the other tested methods 
which use only linear polynomials to represent the fuzzy 
intervals. The relative improvement in (17) is used to determine 
the superior of the proposed VS-FR-GA comparing with the 
other existing methods. Due to the page limit, we consider the 
models developed by two databases, ACTUAL and FULL. 
Figures 14 and 15 show the relative improvements for 
ACTUAL and FULL respectively. Figures 14a to c show the 
relative improvement for the three fuzzy criteria AFS, IC and 
MFC respectively. They show that generally more than 10% 
improvements can be achieved by the proposed method 
compared with the existing methods. Similar relative 
improvements with 10% can be found in Figures 15a to c for 
FULL database. These relative improvements demonstrate the 
superior of the proposed method.  
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Table 9 Fuzzy regression models for image quality assessment 
 Fuzzy regression models 

Noise3 to 
PSNRHVS 

8x  

Existing 
methods 

TS-FR     82.13,0.73 0.28,0.21y x    

TS-SR-FR     80.87,0.07 0.17,0.14y x    

FC-FR      82.13,0.73 0.26,0.20y x    with  0.021h   

LW-FR    17 17
81.67,3.89,3.88 4.93,2.54 ,2.510 107y x      

Proposed VS-FR-GA    3 5 2 3 5 2
8 8 8 8 80.87,0.34, 0.5 0.17,0.15 0.6 10 0.7 10 ,0.13 0.5 10 0.5 10y x x x x x                

JPEG to  
PSNRHVSM 

11x  

Existing 
methods 

TS-FR     111.76,0.24 0.18,0.09y x    

TS-SR-FR     110.93,0.40 0.15,0.12y x    

FC-FR     13
111.76,1.00 10 0.18,0.04y x     with  0.087h   

LW-FR     110.78,3.08,  2.08 0.14, 0.00,0.02y x    

Proposed VS-FR-GA    6 7 2 6 7 2
11 11 11 11 110.9,1.0,1.9 0.15,5 9.7 10 1.6 10 ,0.02 4.1 10 5.7 10y x x x x x               

Exotic to  
MSSIM 2x  

Existing 
methods 

TS-FR    12
20.26,4.33 5.19,8.03 10y x    

TS-SR-FR    10
21.51,7.87 6.82,3.81 10y x     

FC-FR     16
20.26,2.19 5.19,2.81 10y x    with  0.40h   

LW-FR    9 9
20.26,4.32,4.34 4.93, 10 ,1.041.0 14 0y x      

Proposed VS-FR-GA    2 2
2 2 2 2 21.51,2.23,0.64 6.82, 0.31 0.04 0.18 ,-0.32 3.42 4.13y x x x x x         

Actual to 
PSNRHVSM 

11x  

Tested methods TS-FR    16
112.11,2.82 10 5.11,0.24y x    

TS-SR-FR    15
111.72,4.64 10 5.60,0.260y x    

FC-FR     16
112.12,2.80 10 5.11,0.13y x    with  0.31h   

LW-FR    9
1

19
1

12.11,4.42,4.41 5.11,6.93 10 ,6.93 10y x     

Proposed VS-FR-GA    2 2
11 11 11 11 111.72, 2.99,2.77 5.60,0.17 0.38 5.45 ,0.60 0.62 1.02y x x x x x        

Fill to 
MSSIM 2x  

Existing 
methods 

TS-FR    16
20.17,5.19 5.19,1.38 10y x     

TS-SR-FR    9
22.59,10.02 7.86,1.20 10y x     

FC-FR     14
20.17,2.73 5.19,8.13 10y x     with  0.003h   

LW-FR    13 13
20.17,  5.18,  5.20 5.19,2.32 ,2.3610 10y x      

Proposed VS-FR-GA    2 2
2 2 2 2 22.59,2.63, 3.63 7.86,0.57 0.25 0.43 ,0.07 3.58 9.99y x x x x x         
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Fig. 12e VS-FR-GA correlates PSNRHVS 8x   to 

MOS y  under the data subset (Noise3) 
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Fig. 13d LW-FR correlates PSNRHVSM 11x   to MOS y  

under the data subset (JPEG) 

Fig. 13e VS-FR-GA correlates PSNRHVSM 11x  to MOS 

y under the data subset (JPEG) 
Table 10 Average fuzzy spread (AFS) for the IQA models correlated to the most significant objective feature 

 Model  PSNRHVS 8x  

(Noise3) 

PSNRHVSM 

11x   (JPEG) 
MSSIM 2x   

(Exotic) 

PSNRHVSM 11x   

(Actual) 

MSSIM 2x   

(Full) 

Ave. 
rank 

Existing methods TS-FR 3.40 (2) 1.42 (3) 2.17 (2) 3.75 (3) 2.60 (2) 2.40 
FC-FR 3.50 (3) 1.48 (4) 2.19 (3) 3.97 (4) 5.62 (5) 3.60 

TS-SR-FR 3.80 (4) 2.13 (5) 3.94 (5) 4.17 (5) 5.01 (4) 4.60 
LW-FR 3.89 (5) 1.39 (2) 2.16 (1) 3.71 (2) 2.60 (3) 2.60 

Proposed methods VS-FR-GA 1.19 (1) 1.33 (1) 2.22 (4) 2.23 (1) 2.17 (1) 1.60 
*The ranks of each method are bracketed. 

 

Table 11 Index of confidence (IC) for the IQA models correlated to the most significant objective feature 
 Model  PSNRHVS 8x  

(Noise3) 

PSNRHVSM 

11x   (JPEG) 
MSSIM 2x   

(Exotic) 

PSNRHVSM 11x   

(Actual) 

MSSIM 2x   

(Full) 

Ave. 
rank 

Existing methods TS-FR 0.23 (4) 0.24 (4) 0.24 (3) 0.25 (3) 0.24 (3) 3.40 
FC-FR 0.20 (5) 0.21 (4) 0.21 (5) 0.24 (5) 0.23 (5) 4.80 

TS-SR-FR 0.25 (2) 0.25 (2) 0.25 (2) 0.25 (2) 0.25 (2) 2.00 
LW-FR 0.25 (3) 0.24 (3) 0.24 (4) 0.24 (4) 0.24 (4) 3.60 

Proposed methods VS-FR-GA 0.33 (1) 0.28 (1) 0.32 (1) 0.36 (1) 0.36 (1) 1.00 
*The ranks of each method are bracketed. 
 

Table 12 Mean fuzzy credibility (MFC) for the IQA models correlated to the most significant objective feature 
 Model  PSNRHVS 8x  

(Noise3) 

PSNRHVSM 

11x   (JPEG) 
MSSIM 2x   

(Exotic) 

PSNRHVSM 11x   

(Actual) 

MSSIM 2x   

(Full) 

Ave. 
rank 

Existing methods TS-FR 0.06 (5) 0.16 (3) 0.09 (3) 0.03 (4) 0.06 (3) 3.60 
FC-FR 0.08 (3) 0.24 (2) 0.15 (1) 0.11 (1) 0.14 (1) 1.60 

TS-SR-FR 0.06 (4) 0.02 (5) 0.05 (5) 0.04 (3) 0.04 (4) 4.20 
LW-FR 0.12 (2) 0.15 (4) 0.09 (4) 0.03 (5) 0.06 (5) 4.00 

Proposed methods VS-FR-GA 0.43 (1) 0.26 (1) 0.09 (2) 0.04 (2) 0.07 (2) 1.60 
*The ranks of each method are bracketed. 
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Table 13 AFS for the IQA models correlated to all objective features (*The ranks of each method are bracketed) 
 Model  Noise3 JPEG Exotic Actual Full Ave. rank 

Existing methods TS-FR 2.09 (2) 1.19 (3) 2.95 (3) 2.66 (3) 3.12 (3) 2.80 
FC-FR 3.82 (5) 1.14 (2) 3.64 (5) 1.33 (2) 1.56 (2) 3.20 

TS-SR-FR 3.04 (4) 1.91 (5) 1.47 (2) 3.82 (5) 4.23 (5) 4.20 
LW-FR 2.09 (1) 1.36 (4) 2.95 (4) 2.66 (4) 3.12 (4) 3.40 

Proposed method VS-FR-GA 2.56 (3) 0.95 (1) 0.61 (1) 0.61 (1) 0.95 (1) 1.40 
 

Table 14 IC for the IQA models correlated to all objective features (*The ranks of each method are bracketed) 
 Model  Noise3 JPEG Exotic Actual Full Ave. rank 

Existing methods TS-FR 0.24 (3) 0.24 (3) 0.24 (3) 0.24 (3) 0.23 (3) 3.00 
FC-FR 0.25 (2) 0.21 (5) 0.24 (2) 0.21 (5) 0.21 (5) 3.20 

TS-SR-FR 0.21 (5) 0.25 (2) 0.20 (5) 0.25 (2) 0.27 (2) 3.20 
LW-FR 0.24 (4) 0.24 (4) 0.24 (4) 0.24 (4) 0.23 (4) 4.00 

Proposed method VS-FR-GA 0.49 (1) 0.42 (1) 0.30 (1) 0.30 (1) 0.29 (1) 1.00 
 

Table 15 MFC for the IQA models correlated to all objective features (*The ranks of each method are bracketed.) 
 Model  Noise3 JPEG Exotic Actual Full Ave. rank 

Existing methods TS-FR 0.20 (3) 0.30 (3) 0.14 (3) 0.16 (3) 0.14 (3) 3.00 
FC-FR 0.31 (2) 0.43 (2) 0.20 (2) 0.25 (2) 0.22 (2) 2.00 

TS-SR-FR 0.12 (5) 0.24 (5) 0.12 (5) 0.12 (5) 0.11(5) 5.00 
LW-FR 0.20 (4) 0.29 (4) 0.14 (4) 0.16 (4) 0.14 (4) 4.00 

Proposed method VS-FR-GA 0.41 (1) 0.60 (1) 0.39 (1) 0.37 (1) 0.23 (1) 1.00 
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Figure 14a Improve. AFS (ACTUAL) Figure 14b Improve. IC (ACTUAL) Figure 14c Improve. MFC (ACTUAL) 
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Figure 15a Improve. AFS (FULL) Figure 15b Improve. IC (FULL) Figure 15c Improve. MFC (FULL) 

C. Discussion 

The fuzzy regression models can be used to predict the affective 
qualities and uncertainty on evaluating the qualities. For both 
electric iron design and IQA, we consider the fuzzy regression 
models developed by the VS-FR-GA which are better than the 
existing methods in terms of AFS, IC and MFC. Equation (19) 
shows the model for the electric iron design, when we consider 
different spray buttons which are either flat ( 4 0.33x  ), curvy 

( 4 0.67x  ) or handle-shape ( 4 1x  ).  

 
 

2 2
4 4 4 4 4-0.30,0.55-2.64 -3.65 ,1.90+0.22 0.31

     3.30,9.71,2.99                                                    (19)
y x x x x x  

  

Similar to the analysis of fuzzy sets in [52, 53], the patterns of 
fuzzy estimates are analyzed based on (19). The x-axis of 
Figures 16a to 16c shows the fuzzy estimates of attractiveness 
(y), when 4 0.33x  , 4 0.67x   and 4 1x   are substituted into 

(20) respectively. When the patterns of fuzzy estimates are 
given, the memberships with respect to y can be indicated. The 
figures show the samples covered by the fuzzy estimates and 
they also show the memberships of the samples. The 
memberships of the samples are higher than 0.5, as the model is 
developed with the membership constrained with h=0.5. 
Affective quality estimated for flat spray button is higher than 
those of the curvy and handle-shape. However, uncertainty 
estimated for the curvy is larger than the flat which is larger 
than the handle-shape, as the base of the membership triangular 
of curvy is larger than that of flat which is larger than that of 
handle-shape. When an electric iron is designed, both estimated 
quality and estimated uncertainty need to be considered. 
Although higher attractiveness can be achieved with the flat 
spray button, higher uncertainty exists on it. A tradeoff between 
affective quality and uncertainty needs to be determined. 
       



1063-6706 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2016.2566812, IEEE
Transactions on Fuzzy Systems

IEEE TRANSACTIONS ON FUZZY SYSTEMS 
 

16

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Attract iveness (y)

M
em

b
er

sh
ip

7
ŷ
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Fig. 16a Spray button with flat ( 4 0.33x  ) Fig. 16b Spray button with curvy ( 4 0.67x  ) Fig. 16c Spray button with handle-shape ( 4 1x  ) 
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Fig. 17a PSNRHVSM ( 11 30x  ) Fig. 17b PSNRHVSM ( 11 40x  ) Fig. 17c PSNRHVSM ( 11 50x  ) 

For the IQA, we consider the models developed for 
estimating affective qualities of images which are contaminated 
by JPEG. The following model (20) developed by VS-FR-GA 
is considered, as the model is better than those developed by the 
existing methods. 

  


5 4 2
11 11

5 2
11 11 11

0.93,1.02,1.86 0.15,0.05 1 10 2 10 ,
    0.02 4 10 5.66                                   (20)
y x x

x x x

 


      

  
 

The x-axis of Figures 17a to c show the fuzzy estimates of the 
MOS when the PSNRHVSM with 11 30x  , 11 40x   and 

11 50x   are measured on the distorted images respectively. We 

can see that the memberships of the samples are higher than 0.5, 
where the membership of the sample with 11 30x   is 1; the one 

with 11 40x   is 0.67; and the one with 11 50x   is 0.9. The 

center of the membership triangular shows estimate of the 
image quality and the base shows the uncertainty of the quality. 
The figures indicate that the estimated quantities and 
uncertainties of the MOS increase when the measured 
PSNRHVSM increases from 30 to 50. When the PSNRHVSM 
of an image is given, the model can be used to predict the 
quantity of MOS and the uncertainty on evaluating the MOS.    
 The proposed approaches, VS-FR-SM and VS-FR-GA, are 
based on the optimization methods, simplex method and 
genetic algorithm respectively. Generally, the computational 
time required by genetic algorithms are higher than those of the 
local search method such as simplex method, as more 
computational evaluations are generally performed in genetic 
algorithms. Hence, VS-FR-GA requires more computational 
time than those required by the VS-FR-SM. For the electric iron 
design with one independent variable, VS-FR-GA required 24.5 
seconds for determining the feasible solutions and VS-FR-SM 
requires 0.02 seconds. For the IQA with one independent 
variable, VS-FR-GA required 4.4 minutes in average for 
determining the feasible solutions but VS-FR-SM cannot find 
the feasible solutions. Also VS-FR-GA can find the feasible 
solutions for IQA with full independent variables while 
VS-FR-SM cannot. The computational times required by 

VS-FR-GA are reasonable, as affective quality models are 
developed offline and real time implementation is not required. 
However, VS-FR-SM engaged with simplex method can only 
develop feasible solutions for the electric iron design which 
consists of 8 samples. The VS-FR-SM cannot develop feasible 
solutions for IQA which consists of more than 225 samples. 
Although smaller computational time is required by 
VS-FR-SM, VS-FR-SM cannot generate a feasible affective 
model when the number of samples is large. Therefore, we can 
only use VS-FR-SM when the number of samples is small. 
When the number of samples is large, VS-FR-GA is used. 

V. CONCLUSION 

In this paper, a novel fuzzy regression method has been 
proposed to take into account the fuzziness generated by the 
affective quality assessments, which cannot be done with the 
commonly-used statistical regression method. The proposed 
approach involves varying spreads in order to take into account 
the fuzziness in affective qualities. It overcomes the existing 
fuzzy regression methods that tackle only a single characteristic 
where the amount of fuzziness is linearly correlated with the 
independent and dependent variables. In fact, the fuzziness of 
dependent variables may decrease or remain unchanged when 
increasing the values of independent variables particularly 
when assessing affective quality. Therefore, unnecessary 
fuzziness is more likely to be generated by the existing fuzzy 
regression methods when this assumption is not valid. The 
proposed fuzzy regression uses a varying spread based on a 
third-order polynomial, in order to take into account the 
nonlinear and nonsymmetrical fuzziness caused by affective 
quality assessment.  

The effectiveness of the proposed varying spread fuzzy 
regression is evaluated using two case studies, the affective 
design of an electric iron and image quality assessment, both of 
which are fuzzy. They attempt to evaluate the effectiveness of 
the proposed method in predicting different types of affective 
qualities, where discrete and continuous data, large and small 
amount of data, and data with varying fuzziness are considered. 
The proposed approach is compared with the state-of-art fuzzy 
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regression approaches, the recently developed fuzzy regression 
approach and the fuzzy regression approach particularly 
developed for overcoming the problem of increasing fuzziness. 
Results indicate that better fuzzy regression models can be 
generated by the proposed approach in terms of three fuzzy 
criteria namely, index of confidence, mean fuzzy credibility and 
average fuzzy spread of each estimate. The better results can be 
explained by the third-order polynomial functions that the 
proposed methods use in order to represent the fuzzy spreads, 
while the other existing methods use only the linear polynomial 
function. These results also show that the proposed fuzzy 
regression can simulate increased, decreased or unchanged 
variances of the affective qualities which are observed as 
differences between objective features. Therefore, the smaller 
fuzzy intervals can be generated by the proposed method in 
order to cover all the observed data; moreover, the fuzzy 
intervals are a better fit to the data. Hence, the proposed method 
can obtain better results in terms of the three fuzzy criteria. 

In the future, we will further improve the effectiveness of the 
proposed method. Here, the proposed method models the 
central of fuzzy data as a linear relation. In the future, we will 
improve the strategy of modeling the centrals of fuzzy data. The 
nonlinearity of fuzzy data will be taken into account, which 
would increase the fitting capability of the model. 
Acknowledgement: The first author would like to thank C.K. 
Kwong for many useful discussions and providing the data sets 
of the electric iron design.  
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Figure 6 The five objective features of electric irons. 
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Table 2 Morphological description of electric irons [27] 
Objective features Category 

Body colour tone 1x  (1) Warm tone (2) Cold tone 

Soleplate 2x  

(1) Sharp tip  (2) Round tip  

Handle design 3x  

 
(1) Embedded 

 
(2) “╗” 

 
(3) “╔” 

 
(4) “T” 

Spray button 4x    
(1) Flat sharp 

    
(2) Curvy sharp  

(3) Handle 

Water level indicator 5x  (1) Transparent (2) Sandblasted 

 
Table 3 Categorical data of electric irons [27] 

Item Category and qualitative value  A B C D E F G H 

1. Body colour tone 1x  (1) Warm tone 
(2) Cold tone 
Qualitative value 

X 
 

0.50 

 
X 

1.00 

 
X 

1.00 

 
X 

1.00 

 
X 

1.00 

 
X 

1.00 

 
X 

1.00 

 
X 

1.00 
2. Soleplate 2x  (1) Sharp tip 

(2) Round tip 
Qualitative value 

X 
 

0.50 

 
X 

1.00 

 
X 

1.00 

X 
 

0.50 

X 
 

0.50 

X 
 

0.50 

X 
 

0.50 

X 
 

0.50 
3. Handle design 3x  (1) Embedded type 

(2) “╗” type 
(3) “╔” type 
(4) “T” type 
Qualitative value 

X 
 
 
 

0.25 

 
 

X 
 

0.75 

 
 
 

X 
1.00 

 
X 
 
 

0.50 

X 
 
 
 

0.25 

 
 

X 
 

0.75 

X 
 
 
 

0.25 

 
X 
 
 

0.50 
4. Spray button design 4x  (1) Flat 

(2) Curvy 
(3) Handle-shape 
Qualitative value 

X 
 
 

0.33 

 
X 
 

0.66 

X 
 
 

0.33 

 
X 
 

0.66 

X 
 
 

0.33 

X 
 
 

0.33 

 
X 
 

0.66 

 
 

X 
1.00 

5. Water level indicator 5x  (1) Transparent  
(2) Sandblasted 
Qualitative value 

X 
 

0.50 

 
X 

1.00 

X 
 

0.50 

 
X 

1.00 

 
X 

1.00 

 
X 

1.00 

X 
 

0.50 

X 
 

0.50 
Average attractiveness  y 3.80 3.00 2.60 1.90 4.00 2.80 3.60 3.40 

 

Fig. 10a Original image Fig. 10b Additive 
Gaussian noise in level 1 

Fig. 10c Additive 
Gaussian noise in level 2 

Fig. 10d Additive 
Gaussian noise in level 3 

Fig. 10e Additive 
Gaussian noise in level 4 

 

Fig. 11a Original image Fig. 11b Spatially 
correlated noise in level 1 

Fig. 11c Spatially 
correlated noise in level 2 

Fig. 11d Spatially 
correlated noise in level 3 

Fig. 11e Spatially 
correlated noise in level 4 
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Table 8 Distortion types and considered subsets of the image database [28] 
 Image subsets 
Type of distortion Noise3 JPEG Exotic Actual Full 
Additive Gaussian noise + - - + + 
Different additive noise in color components - - - - + 
Spatially correlated noise + - - + + 
Masked noise - - - - + 
High frequency noise + - - - + 
Impulse noise + - - + + 
Quantization noise - - - + + 
Gaussian blur + - - + + 
Image denoising + - - + + 
JPEG compression - + - + + 
JPEG2000 compression - + - + + 
JPEG transmission errors - - - - + 
JPEG2000 transmission errors - - - - + 
Non eccentricity pattern noise - - + - + 
Local blockwise distortions of different intensity - - + - + 
Mean shift - - + - + 
Contrast change - - + - + 
Most significant objective feature PSNRHVS 8x  PSNRHVSM 11x  MSSIM 2x  PSNRHVSM 11x  MSSIM 2x  

Number of samples of MOS data 625 225 425 825 1725 
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