2,531 research outputs found

    An exact algorithm for linear optimization problem subject to max-product fuzzy relational inequalities with fuzzy constraints

    Full text link
    Fuzzy relational inequalities with fuzzy constraints (FRI-FC) are the generalized form of fuzzy relational inequalities (FRI) in which fuzzy inequality replaces ordinary inequality in the constraints. Fuzzy constraints enable us to attain optimal points (called super-optima) that are better solutions than those resulted from the resolution of the similar problems with ordinary inequality constraints. This paper considers the linear objective function optimization with respect to max-product FRI-FC problems. It is proved that there is a set of optimization problems equivalent to the primal problem. Based on the algebraic structure of the primal problem and its equivalent forms, some simplification operations are presented to convert the main problem into a more simplified one. Finally, by some appropriate mathematical manipulations, the main problem is transformed into an optimization model whose constraints are linear. The proposed linearization method not only provides a super-optimum (that is better solution than ordinary feasible optimal solutions) but also finds the best super-optimum for the main problem. The current approach is compared with our previous work and some well-known heuristic algorithms by applying them to random test problems in different sizes.Comment: 29 pages, 8 figures, 7 table

    Minimizing and maximizing a linear objective function under a fuzzy max\max -\ast relational equation and an inequality constraint

    Get PDF
    summary:This paper provides an extension of results connected with the problem of the optimization of a linear objective function subject to max\max-\ast fuzzy relational equations and an inequality constraint, where \ast is an operation. This research is important because the knowledge and the algorithms presented in the paper can be used in various optimization processes. Previous articles describe an important problem of minimizing a linear objective function under a fuzzy max\max-\ast relational equation and an inequality constraint, where \ast is the tt-norm or mean. The authors present results that generalize this outcome, so the linear optimization problem can be used with any continuous increasing operation with a zero element where \ast includes in particular the previously studied operations. Moreover, operation \ast does not need to be a t-norm nor a pseudo-tt-norm. Due to the fact that optimal solutions are constructed from the greatest and minimal solutions of a max\max-\ast relational equation or inequalities, this article presents a method to compute them. We note that the linear optimization problem is valid for both minimization and maximization problems. Therefore, for the optimization problem, we present results to find the largest and the smallest value of the objective function. To illustrate this problem a numerical example is provided

    Geometric Programming Subject to System of Fuzzy Relation Inequalities

    Get PDF
    In this paper, an optimization model with geometric objective function is presented. Geometric programming is widely used; many objective functions in optimization problems can be analyzed by geometric programming. We often encounter these in resource allocation and structure optimization and technology management, etc. On the other hand, fuzzy relation equalities and inequalities are also used in many areas. We here present a geometric programming model with a monomial objective function subject to the fuzzy relation inequality constraints with maxproduct composition. Simplification operations have been given to accelerate the resolution of the problem by removing the components having no effect on the solution process. Also, an algorithm and two practical examples are presented to abbreviate and illustrate the steps of the problem resolution

    Affine arithmetic-based methodology for energy hub operation-scheduling in the presence of data uncertainty

    Get PDF
    In this study, the role of self-validated computing for solving the energy hub-scheduling problem in the presence of multiple and heterogeneous sources of data uncertainties is explored and a new solution paradigm based on affine arithmetic is conceptualised. The benefits deriving from the application of this methodology are analysed in details, and several numerical results are presented and discussed

    Fuzzy linear programming problems : models and solutions

    No full text
    We investigate various types of fuzzy linear programming problems based on models and solution methods. First, we review fuzzy linear programming problems with fuzzy decision variables and fuzzy linear programming problems with fuzzy parameters (fuzzy numbers in the definition of the objective function or constraints) along with the associated duality results. Then, we review the fully fuzzy linear programming problems with all variables and parameters being allowed to be fuzzy. Most methods used for solving such problems are based on ranking functions, alpha-cuts, using duality results or penalty functions. In these methods, authors deal with crisp formulations of the fuzzy problems. Recently, some heuristic algorithms have also been proposed. In these methods, some authors solve the fuzzy problem directly, while others solve the crisp problems approximately

    Soft quantification in statistical relational learning

    Get PDF
    We present a new statistical relational learning (SRL) framework that supports reasoning with soft quantifiers, such as "most" and "a few." We define the syntax and the semantics of this language, which we call , and present a most probable explanation inference algorithm for it. To the best of our knowledge, is the first SRL framework that combines soft quantifiers with first-order logic rules for modelling uncertain relational data. Our experimental results for two real-world applications, link prediction in social trust networks and user profiling in social networks, demonstrate that the use of soft quantifiers not only allows for a natural and intuitive formulation of domain knowledge, but also improves inference accuracy

    An Inventory Model under Space Constraint in Neutrosophic Environment: A Neutrosophic Geometric Programming Approach

    Get PDF
    In this paper, an inventory model is developed without shortages where the production cost is inversely related to the set up cost and production quantity. In addition, the holding cost is considered time dependent. Here impreciseness is introduced in the storage area. The objective and constraint functions are defined by the truth (membership) degree, indeterminacy (hesitation) degree and falsity (non-membership) degree. Likewise, a non-linear programming problem with a constraint is also considered. Then these are solved by Neutrosophic Geometric Programming Technique for linear membership, hesitation and non-membership functions. Also the solution procedure for Neutrosophic Non-linear Programming Problem is proposed by using additive operator and Geometric Programming method. Numerical examples are presented to illustrate the models using the proposed procedure and the results are compared with the results obtained by other optimization techniques

    Full Issue

    Get PDF
    corecore