81 research outputs found

    Mobility Analysis and Management for Heterogeneous Networks

    Get PDF
    The global mobile data traffic has increased tremendously in the last decade due to the technological advancement in smartphones. Their endless usage and bandwidth-intensive applications will saturate current 4G technologies and has motivated the need for concrete research in order to sustain the mounting data traffic demand. In this regard, the network densification has shown to be a promising direction to cope with the capacity demands in future 5G wireless networks. The basic idea is to deploy several low power radio access nodes called small cells closer to the users on the existing large radio foot print of macrocells, and this constitutes a heterogeneous network (HetNet). However, there are many challenges that operators face with the dense HetNet deployment. The mobility management becomes a challenging task due to triggering of frequent handovers when a user moves across the network coverage areas. When there are fewer users associated in certain small cells, this can lead to significant increase in the energy consumption. Intelligently switching them to low energy consumption modes or turning them off without seriously degrading user performance is desirable in order to improve the energy savings in HetNets. This dynamic power level switching in the small cells, however, may cause unnecessary handovers, and it becomes important to ensure energy savings without compromising handover performance. Finally, it is important to evaluate mobility management schemes in real network deployments, in order to find any problems affecting the quality of service (QoS) of the users. The research presented in this dissertation aims to address these challenges. First, to tackle the mobility management issue, we develop a closed form, analytical model to study the handover and ping-pong performance as a function of network parameters in the small cells, and verify its performance using simulations. Secondly, we incorporate fuzzy logic based game-theoretic framework to address and examine the energy efficiency improvements in HetNets. In addition, we design fuzzy inference rules for handover decisions and target base station selection is performed through a fuzzy ranking technique in order to enhance the mobility robustness, while also considering energy/spectral efficiency. Finally, we evaluate the mobility performance by carrying out drive test in an existing 4G long term evolution (LTE) network deployment using software defined radios (SDR). This helps to obtain network quality information in order to find any problems affecting the QoS of the users

    IEEE Access special section editorial: Artificial intelligence enabled networking

    Get PDF
    With today’s computer networks becoming increasingly dynamic, heterogeneous, and complex, there is great interest in deploying artificial intelligence (AI) based techniques for optimization and management of computer networks. AI techniques—that subsume multidisciplinary techniques from machine learning, optimization theory, game theory, control theory, and meta-heuristics—have long been applied to optimize computer networks in many diverse settings. Such an approach is gaining increased traction with the emergence of novel networking paradigms that promise to simplify network management (e.g., cloud computing, network functions virtualization, and software-defined networking) and provide intelligent services (e.g., future 5G mobile networks). Looking ahead, greater integration of AI into networking architectures can help develop a future vision of cognitive networks that will show network-wide intelligent behavior to solve problems of network heterogeneity, performance, and quality of service (QoS)

    Energy-efficient vertical handover parameters, classification and solutions over wireless heterogeneous networks: a comprehensive survey

    Get PDF
    In the last few decades, the popularity of wireless networks has been growing dramatically for both home and business networking. Nowadays, smart mobile devices equipped with various wireless networking interfaces are used to access the Internet, communicate, socialize and handle short or long-term businesses. As these devices rely on their limited batteries, energy-efficiency has become one of the major issues in both academia and industry. Due to terminal mobility, the variety of radio access technologies and the necessity of connecting to the Internet anytime and anywhere, energy-efficient handover process within the wireless heterogeneous networks has sparked remarkable attention in recent years. In this context, this paper first addresses the impact of specific information (local, network-assisted, QoS-related, user preferences, etc.) received remotely or locally on the energy efficiency as well as the impact of vertical handover phases, and methods. It presents energy-centric state-of-the-art vertical handover approaches and their impact on energy efficiency. The paper also discusses the recommendations on possible energy gains at different stages of the vertical handover process

    Energy-efficient vertical handover parameters, classification and solutions over wireless heterogeneous networks: a comprehensive survey

    Get PDF
    In the last few decades, the popularity of wireless networks has been growing dramatically for both home and business networking. Nowadays, smart mobile devices equipped with various wireless networking interfaces are used to access the Internet, communicate, socialize and handle short or long-term businesses. As these devices rely on their limited batteries, energy-efficiency has become one of the major issues in both academia and industry. Due to terminal mobility, the variety of radio access technologies and the necessity of connecting to the Internet anytime and anywhere, energy-efficient handover process within the wireless heterogeneous networks has sparked remarkable attention in recent years. In this context, this paper first addresses the impact of specific information (local, network-assisted, QoS-related, user preferences, etc.) received remotely or locally on the energy efficiency as well as the impact of vertical handover phases, and methods. It presents energy-centric state-of-the-art vertical handover approaches and their impact on energy efficiency. The paper also discusses the recommendations on possible energy gains at different stages of the vertical handover process

    Design and development of handover simulator model in 5G cellular network

    Get PDF
    In the modern era of technology, the high speed internet is the most important part of human life. The current available network is reckoned to be slow in speed and not be up to snuff for data transmission regarding business applications. The objective of handover mechanism is to reassign the current session handle by internet gadget. The globe needs the next generation high mobility and throughput performance based internet model. This research paper explains the proposed method of design and development for handover based 5G cellular network. In comparison to the traditional method, we propose to control the handovers between base-stations using a concentric method. The channel simulator is applied over the range of the frequencies from 500 MHz to 150 GHz and radio frequency for the 700 MHz bandwidth. The performance of the simulation system is calculated on the basis of handover preparation and completion time regarding base station as well as number of users. From this experiment we achieve the 7.08 ms handover preparation time and 9.98 ms handover completion time. The author recommended the minimum handover completion time, perform the high speed for 5G cellular networks

    Interference management in wireless cellular networks

    Get PDF
    In wireless networks, there is an ever-increasing demand for higher system throughputs, along with growing expectation for all users to be available to multimedia and Internet services. This is especially difficult to maintain at the cell-edge. Therefore, a key challenge for future orthogonal frequency division multiple access (OFDMA)-based networks is inter-cell interference coordination (ICIC). With full frequency reuse, small inter-site distances (ISDs), and heterogeneous architectures, coping with co-channel interference (CCI) in such networks has become paramount. Further, the needs for more energy efficient, or “green,” technologies is growing. In this light, Uplink Interference Protection (ULIP), a technique to combat CCI via power reduction, is investigated. By reducing the transmit power on a subset of resource blocks (RBs), the uplink interference to neighbouring cells can be controlled. Utilisation of existing reference signals limits additional signalling. Furthermore, cell-edge performance can be significantly improved through a priority class scheduler, enhancing the throughput fairness of the system. Finally, analytic derivations reveal ULIP guarantees enhanced energy efficiency for all mobile stations (MSs), with the added benefit that overall system throughput gains are also achievable. Following this, a novel scheduler that enhances both network spectral and energy efficiency is proposed. In order to facilitate the application of Pareto optimal power control (POPC) in cellular networks, a simple feasibility condition based on path gains and signal-to-noise-plus- interference ratio (SINR) targets is derived. Power Control Scheduling (PCS) maximises the number of concurrently transmitting MSs and minimises their transmit powers. In addition, cell/link removal is extended to OFDMA operation. Subsequently, an SINR variation technique, Power SINR Scheduling (PSS), is employed in femto-cell networks where full bandwidth users prohibit orthogonal resource allocation. Extensive simulation results show substantial gains in system throughput and energy efficiency over conventional power control schemes. Finally, the evolution of future systems to heterogeneous networks (HetNets), and the consequently enhanced network management difficulties necessitate the need for a distributed and autonomous ICIC approach. Using a fuzzy logic system, locally available information is utilised to allocate time-frequency resources and transmit powers such that requested rates are satisfied. An empirical investigation indicates close-to-optimal system performance at significantly reduced complexity (and signalling). Additionally, base station (BS) reference signals are appropriated to provide autonomous cell association amongst multiple co-located BSs. Detailed analytical signal modelling of the femto-cell and macro/pico-cell layouts reveal high correlation to experimentally gathered statistics. Further, superior performance to benchmarks in terms of system throughput, energy efficiency, availability and fairness indicate enormous potential for future wireless networks
    corecore