259 research outputs found

    Development and implementation of explicit computerized protocols for mechanical ventilation in children

    Get PDF
    Mechanical ventilation can be perceived as a treatment with a very narrow therapeutic window, i.e., highly efficient but with considerable side effects if not used properly and in a timely manner. Protocols and guidelines have been designed to make mechanical ventilation safer and protective for the lung. However, variable effects and low compliance with use of written protocols have been reported repeatedly. Use of explicit computerized protocols for mechanical ventilation might very soon become a "must." Several closed loop systems are already on the market, and preliminary studies are showing promising results in providing patients with good quality ventilation and eventually weaning them faster from the ventilator. The present paper defines explicit computerized protocols for mechanical ventilation, describes how these protocols are designed, and reports the ones that are available on the market for children

    Acute lung injury in paediatric intensive care: course and outcome

    Get PDF
    Introduction: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) carry a high morbidity and mortality (10-90%). ALI is characterised by non-cardiogenic pulmonary oedema and refractory hypoxaemia of multifactorial aetiology [1]. There is limited data about outcome particularly in children. Methods This retrospective cohort study of 85 randomly selected patients with respiratory failure recruited from a prospectively collected database represents 7.1% of 1187 admissions. They include those treated with High Frequency Oscillation Ventilation (HFOV). The patients were admitted between 1 November 1998 and 31 October 2000. Results: Of the 85, 49 developed acute lung injury and 47 had ARDS. There were 26 males and 23 females with a median age and weight of 7.7 months (range 1 day-12.8 years) and 8 kg (range 0.8-40 kg). There were 7 deaths giving a crude mortality of 14.3%, all of which fulfilled the Consensus I [1] criteria for ARDS. Pulmonary occlusion pressures were not routinely measured. The A-a gradient and PaO2/FiO2 ratio (median + [95% CI]) were 37.46 [31.82-43.1] kPa and 19.12 [15.26-22.98] kPa respectively. The non-survivors had a significantly lower PaO2/FiO2 ratio (13 [6.07-19.93] kPa) compared to survivors (23.85 [19.57-28.13] kPa) (P = 0.03) and had a higher A-a gradient (51.05 [35.68-66.42] kPa) compared to survivors (36.07 [30.2-41.94]) kPa though not significant (P = 0.06). Twenty-nine patients (59.2%) were oscillated (Sensormedics 3100A) including all 7 non-survivors. There was no difference in ventilation requirements for CMV prior to oscillation. Seventeen of the 49 (34.7%) were treated with Nitric Oxide including 5 out of 7 non-survivors (71.4%). The median (95% CI) number of failed organs was 3 (1.96-4.04) for non-survivors compared to 1 (0.62-1.62) for survivors (P = 0.03). There were 27 patients with isolated respiratory failure all of whom survived. Six (85.7%) of the non-survivors also required cardiovascular support.Conclusion: A crude mortality of 14.3% compares favourably to published data. The A-a gradient and PaO2/FiO2 ratio may be of help in morbidity scoring in paediatric ARDS. Use of Nitric Oxide and HFOV is associated with increased mortality, which probably relates to the severity of disease. Multiple organ failure particularly respiratory and cardiac disease is associated with increased mortality. ARDS with isolated respiratory failure carries a good prognosis in children

    Polynomial system identification modeling and adaptive model predictive control of arterial oxygen saturation in premature infants

    Get PDF
    The automation of the regulation of the fraction of inspired oxygen (FiO2) in neonatal mechanical ventilation to treat respiratory distress syndrome has proven challenging due to competing objectives: maintaining arterial oxygen saturation levels (SpO2) while simultaneously not inducing complications such as retrolental fibroplasia. Historically, models of the dynamics of the neonatal respiratory system were first order transfer function approximations. This work used higher order polynomial system identification methods with the model structures of autoregressive with exogenous inputs (ARX) and Box-Jenkins (BJ) models to investigate possible improved modeling of the dynamic relationship between the FiO2, Heart Rate (HR), and Respiratory Rate (RR) to the SpO2. Through a parameter sweep of different of polynomial orders and sampling delays, 3,456 ARX models and 13,176 BJ models were created, with four being selected for comparison based upon modeling performance metrics. From these best performing models, it was concluded that the FiO2 relationship to SpO2 could still be adequately approximated by a first order transfer function model with delay. The disturbance HR, RR, and the unmodeled dynamics did require higher order approximations. It was also shown that selecting a model based off the Akaike's Information Criterion was preferred in picking a model from a collection of identified models. With a singular winning model from the four best performing models, an adaptive model predictive controller (AMPC) was designed to adhere to clinical best practices to regulate the SpO2. Through a recursive polynomial model estimator (RPME), an ARX approximation of the unknown model's dynamics for the FiO2, HR, and RR relationship to the SpO2 could be used to update the internal model of the AMPC. Through this online model estimation, the AMPC could successfully feedforward reject the HR and RR disturbances improving the simulated time within the SpO2 target limits, 67.8% of simulation time, to a baseline PI controller's 56.6%, in periodic desaturation simulations.Includes bibliographical references (pages 63-65)
    corecore