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Abstract 
Introduction: Intensive Care Unit (ICU) medical personnel, in an ongoing process termed 

ventilation management, utilize patient physiology and pathology data to define ventilator 

apparatus settings. 

Aims: The aim of the research is to develop and evaluate in comparison hybrid ventilation 

advisor systems, that could support ventilation management process, specific to lung 

pathology for patients ventilated in control mode. 

Methodology: A questionnaire was designed and circulated to Intensivists. Patient data, as 

defined by the questionnaire analysis, were collected and categorized into three lung 

pathologies. Three ICU doctors evaluated correlation analysis of the recorded data. 

Evaluation results were used for identifying models basic architecture. Two custom software 

toolboxes were developed for developing hybrid systems; namely the EVolution Of Fuzzy 

INference Engines (EVOFINE) and the FUzzy Neural (FUN) toolbox. Eight hybrid systems 

developed with EVOFINE, FUN, ANFIS and ANN techniques were evaluated against 

applied clinical decisions and patient scenarios. 

Results: Seventeen (17) models were designed for each of the eight (8) modeling 

techniques. The modelled process consisted of twelve physiology variables and six 

ventilator settings. The number of models’ inputs ranged from single to six based on 

correlation and evaluation findings. Evaluation against clinical recommendations has shown 

that ANNs performed better; mean average error as percentage for four of the applied 

techniques was 0.16%, 1.29% & 0.62 for ANN empirical, 0.05%, 2.23% & 2.30% for 

ANFIS, 0.93%, 2.33% & 1.89% for EVOFINE and 0.73%, 2.63% & 6.56 for FUN NM, in 

Normal, COPD and ALI-ARDS categories respectively. Additionally evaluation against 

clinical disagreement SD has shown that 70.6% of the NN empirical models were 

performing in 90% of their suggestions within clinical SD, while the percentages were 53%, 

53% and 59% for the EVOFINE, ANFIS and NN Normalized models respectively. The 

EVOFINE and ANFIS produced Fuzzy Systems whose architecture is transparent for the 

user. Visual observation of ANFIS architectures revealed possibly hazardous advices. 

Evaluation against clinical disagreement has shown that the NN empirical was not producing 

hazardous advices, while EVOFINE, ANFIS and NN Normalized were shown to produce 

potentially hazardous advice in 17.6%, 23% and 5.8% of the developed models. 
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Abbreviations 
A Alveolar 

a Arterial 

ALI Acute Lung Injury 

ANFIS Adaptive network based fuzzy inference system  

ANN Artificial Neural Network 

APRV Airway Pressure Release Ventilation  

ARDS Acute respiratory distress syndrome  

C Airway & Lung Compliance 

CI cardiac index  

CDSSs Clinical Decision Support Systems 

CMV Continious Mandatory Ventilation 

CO Cardiac Output 

COPD Chronic obstructive pulmonary disease  

CPAP Continious Paositive Airway Pressure 

CRS Respiratory system static compliance  

CVP Central venous pressure  

DB Data Base 

E Elastance = 1/C 

EA Evolutionary Algorithms 

EC Evolutionary Computation 

ECG Electrocardiogram 

ET endotrachial tubing  

ETCO2 End tidal capnography 

EVOFINE EVolution Of Fuzzy INference Engines 

F Gas Flow 

FiO2 Fraction of Inspired Oxygen  

FL  Fuzzy Logic 

FLC Fuzzy Logic Controller 

Fmax Flow Limitation, ventilator setting 

FRBS Fuzzy Rule Based System 

FRC Functional Residual Capacity 

FS Fuzzy Set 

FUN FUzzy Neural toolbox, training NN driven FL 

G Conductance = 1/R 

GA Genetic Algorithm 

Gfuzzy Genetic Fuzzy Algorithm 

HCO3- bicarbonate 

HFV High Frequency Ventilation  
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I/E Inspiratory (time) / Expiratory (time) ratio 

ICU Intensive Care Unit 

IDSSs Intelligent Decision Support Systems 

IMV Intermittent Mandatory Ventilation  

IPPB Intermittent Possitive Pressure Breathing 

IPPV Intermittent Possitive Pressure Ventilation 

KB Knowledge Base 

mae mean absolute error 

MMV Mandatory Minute Volume  

mse mean square error 

Neural Neural Network 

NoM Nera of Maxima defuzzification technique 

OI Oxygenation Index  

P Pressure 

PaCO2 Arterial Carbon Dioxide tension 

PACO2 Alveolar Carbon Dioxide tension 

Pao airway opening pressure 

PaO2 Arterial Oxygen tension 

PAO2 Alveolar Oxygen tension 

PAP pulmonary artery pressure  

Pb barometric pressure 

PCWP pulmonary capillary wedge pressure  

PEEP Positive End Expiratory Pressure 

Pex Expiratory pressure (total PEEP) 

pH a measure of the activity of hydrogen ions (H+) in a solution and, 

therefore, its acidity. pH=-log(H+) 

PH2O water vapor pressure (47mmHg at 37o C) 

PIP Peak Inspiratory Pressure 

Pmax Pressure Limit, ventilator setting 

Ppl pleural pressure  

Pplateau end inspiratory pressure  

PSV Pressure Support ventilation  

Q Blood Volume 

R Airway & Lung Resistance 

Raw Airway resistance 

RB Rule Base 

RI Respiratory Index  

rmse root mean square error 

RR Respiration / Breathing Frequency in breaths per minute (BPM) 

RRS Respiratory system resistance  
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SaO2 Oxygen Saturation of the hemoglobin of arterial blood 

SC Soft Computing, synergy of Artificial Intel. techniques 

SIMV Synchronized IMV 

SOFLC Self Organizing fuzzy logic controller  

SpO2 Oxygen Saturation as measured by pulse oximetry 

T Temperature 

TI Inspiration time  

TSK Takagi-Sugeno-Kang model 

V Gas Volume 

v Venous 

V/Q ventilation-perfusion ratio  

VCO2 CO2 production  

VD Physiologic Dead Space 

VD Dead Space volume 

Ve Expired Volume / min 

VE Minute Ventilation (L/min) 

VO2 oxygen consumption  

VO2resp Oxygen cost of breathing  

Vpk peak flow (L/min) 

VT Tidal Volume 

WOB Work of breathing  

τ respiratory physiology the time constant 
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1. Introduction 
 

Mechanical ventilation support is provided to critically ill ICU patients who are 

unable to maintain gas exchange. ICU Clinicians monitor and evaluate cardio-

respiratory related physiology variables, in order to evaluate adequacy of mechanical 

ventilation. Since a patient’s needs are continuously changing, clinicians have to 

adapt the ventilation strategy and drug administration on a regular basis. This 

ongoing process is described as ventilation management. 

Clinicians examine physiology variables, and search for the optimum solution for the 

patient specific pathology. Due to the nature of the cardio-respiratory physiology, the 

number of involved variables is high. This is also true of the possible interventions 

(solutions) available to a clinician. An optimum set of ventilation variables is not 

described by a single solution, but rather by a range of solutions that could be 

beneficial to the patient. 

The above process could be described as a search for an optimum solution to a 

clinical problem, which utilizes a large number of input variables (search space). 

Different methods have been applied for modelling mechanical ventilation. Tehrani 

and Roum (Tehrani F.T, Roum J.H, 2008), provide an overview of different methods in 

intelligent decision support systems (IDSSs) for the mechanical ventilation. Authors 

compare different methods from 1985 to present. Three categories of basic 

architectures are identified by the authors; namely Rule-based, Model-based and 

Rule-based plus model-based. IDSSs utilize available clinical and engineering 

knowledge for improving respiratory care. Intelligent systems provide a promising 

tool for the ICU clinicians for improving respiratory care quality, decreasing 

workload and minimizing medical errors. 

 

1.1 Aims and objectives 

The aim of the research is to develop, implement and evaluate hybrid intelligent 

decision support methods for ventilation management. This core research aim will be 

addressed with the following objectives: 

 A literature review of current research into intelligent mechanical ventilation. 

 Selection of optimal variables for ventilation management. 
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 Establishment of a verified patient data library based on the optimal 

variables. 

 Development of hybrid systems for decision support problems. 

 Evaluation of the systems on established benchmarks. 

 Development of dedicated hybrid systems for ventilator management of a set 

of lung pathologies. 

 Comparison of the performance of the hybrid systems with ICU domain 

experts. 

1.2 Methodology 

The proposed approach develops and evaluates models’ performance based on the 

autonomous and synergetic use of genetic algorithms (GAs), neural networks (NN) 

and fuzzy logic (FL). This consortium of methodologies is commonly referred as 

Soft Computing. 

The models are applied on control ventilated patients. The models do not account for 

temporal changes in data sets but the data presented to the models represent specific 

time instances of the physiology variables in a way similar to the method 

experienced intensivist apply changes to ventilator settings. 

Development and optimization of hybrid systems requires first the identification of 

the appropriate input – output variables, second the evaluation of available 

architectures and decision making on the adapted system’s architecture, and finally 

training and evaluation of the system with the assistance of experimental – recorded 

data. Input and output variables for the models were identified with the statistical 

analysis of questionnaires, developed for this purpose and circulated to eighteen (18) 

ICU doctors of three general hospitals. Questionnaire variables that scored high were 

candidates for participating in the development of the hybrid systems. These 

variables were collected in real ICU settings in two hospitals in Greece. Data 

recorded were used to establish the patients’ database. Patients were further 

categorized into three major lung pathologies, namely COPD, ALI-ARDS and 

normal lungs. The purpose of this categorization was the difference in ventilation 

protocols among the different pathologies. Recorded data were randomly allocated 

into training (60%) and evaluation (40%) sets.  

Collected data were further analyzed for identifying strong relationships between 

monitored variables and ventilation settings. Correlation analysis was performed on 
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the assumption that clinical decision making on ventilator settings is based on a 

subset of monitored physiology variables. Correlation results were evaluated by 

three ICU doctors from three different hospitals. Monitored variables that exhibited a 

high correlation degree (Correlation coefficient >0.5) and were accepted by the 

majority of the evaluators, were chosen to participate as inputs to the systems. 

Two custom toolboxes were developed. The first was named EVOFINE (EVolution 

Of Fuzzy INference Engines) and utilizes Genetic Algorithms for identifying the 

optimum fuzzy system, based on available input-output training data. The second 

was named FUN (FUzzy Neural), and utilized a NN for substituting the rule base 

(RB) of a fuzzy system providing to the system the ability to learn from a given 

input-output data set. Both toolboxes were evaluated for their performance on non 

linear mathematical function and the cart pole system, prior to their application. 

Experiments were carried out for identifying the most efficient architecture of all the 

components involved in the hybrid systems.  Evaluation of different architectures 

suggests that Evolved FRBSs perform adequately with a subset of the Rule Base, 

damping mutation rates reach faster an optimum solution and moderate number of 

Fuzzy Sets reduces complexity and increases performance. Similarly experiments 

performed on FUN architectures revealed that the choice of defuzzification 

technique is the determinant factor of model’s performance. ANFIS and ANN 

performance was also tested against the same modelling problems and optimum 

architectures were identified. Neural networks with increased number of nodes and 

hidden layers, but sufficiently low to avoid overtraining, performed better. 

EVOFINE and FUN were benchmarked against the well established NN and ANFIS 

techniques. EVOFINE performed close to benchmarks while FUN could not succeed 

in cart pole stabilization. 

Utilizing the recorded data training sets and the evaluation findings from the 

correlation analysis, different soft computing techniques have been applied for 

modeling the ventilation management process; namely EVOFINE, FUN, ANN and 

ANFIS. The resulted models were evaluated against the evaluation set. The 

performance of the models against the data set was measured in terms of mean 

square error and mean average error. Although the error between models’ 

suggestions and clinical decisions is an important indicator of model’s performance, 

it provides little evidence on whether the results are clinically acceptable. In order to 

accommodate for this problem three intensivists were presented with clinical 
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scenarios and were asked to advice on ventilator settings. The difference in their 

clinical decisions was analyzed for identifying the clinically acceptable difference 

among peers. The analysis of clinical decisions was used as measure of the models’ 

performance. 

1.3 Remainder of thesis  

The thesis is organized into eight (8) chapters:  

Chapter 2 presents background information necessary for the reader to understand 

mechanical ventilation principles and ICU decision making methods. The 

introduction to ventilation management is followed by a brief review on the 

necessity of clinical decision support systems in the ICU. The final part of the 

chapter describes briefly the methods used in clinical intelligent decision support 

systems, emphasizing to the soft computing methods.  

Chapter 3 provides a literature review on respiration physiology models and 

mechanical ventilation controllers. Key research approaches and relevant research 

work undertaken by other authors is reviewed for the following approaches: 

Mathematical models and classical controllers, Expert systems, Hybrid and Fuzzy 

systems.  

Chapter 4 describes the methods used for designing intelligent ventilation decision 

support systems. Specifically it describes the method for minimizing the systems’ 

architecture, the method of data collection and analysis, the evaluation process, the 

custom hybrid models toolboxes development as well as the research ethics. 

Chapter 5 presents the questionnaire development and evaluation. Based on the 

results of the questionnaire analysis, the data collection process is described. The 

final part of this chapter describes the analysis performed on collected data for 

further minimizing the models’ architecture. 

Chapter 6 describes the process of development, training and evaluating the hybrid 

systems against the recorded patient data. Evaluation of the EVOFINE, FUN, ANFIS 

and ANN systems is visually and numerically performed against clinical decision in 

the ICU. Furthermore the developed models are evaluated against ICU peers 

disagreement acquired based on real patient scenarios. 

Chapter 7 presents and comments on the research findings. Research is discussed in 

terms of methodology used, models development and performance and comparison 

against other authors work on the same field.  
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Chapter 8 is presenting conclusions about the methods and the outcome of the 

research, providing insights of possible future applications and research work. 

Appendix I provides the reader with detailed information on the clinical aspects of 

ventilation management. 

Appendix II describes the architecture of the Matlab custom toolboxes developed for 

the purpose of the research. 

Appendix III, evaluates the custom toolboxes against benchmark problems. The 

performance of the toolboxes is compared to established modelling methods, namely 

ANFIS and NNs. 

Appendix IV provides the reader with additional information on the theory of AI 

methods. 

Appendix V, provides a summary table (table V.1) of published research on 

ventilation management as well as the results. 

Appendix VI presents the questionnaire used for collecting expert’s opinion on 

ventilation management variables relative significance. 

Appendix VII provides a table (VII.1) with the range of physiology variables and 

ventilator settings. 

 

1.4 Contribution 

Intelligent Decision Support (IDS) of ventilation management is a complex 

engineering problem involving a high number of participating variables, clinical 

expertise and human cardio-respiration physiology. The proposed research suggests 

a solution to the problem by introducing a two step method for modeling the 

ventilation management process. 

Step one, is reducing the complexity of the problem. Since the number of 

participating variables is very high, the proposed approach decreases problem’s 

search space by limiting the number of participating variables with the assistance of 

a questionnaire, correlation analysis and evaluation. Furthermore the proposed 

approach is designed to be pathology specific due to the differences in ventilation 

strategy according to pathology.  

Data collected from three ICUs formed a real patient data base for three common 

lung pathologies. The developed database will be available to research community. 

Similarly the resulting architectures from the process of evaluating clinicians’ 
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answers provides future researchers with appropriate input variables for each of the 

evaluated ventilator settings. 

Step two evaluates the appropriateness of different soft computing methods for the 

task. Different soft computing techniques (EVOFINE, FUN, ANNs and ANFIS) 

have been applied and evaluated in parallel, for modelling the ventilation 

management process rather than the physiology, providing future research with 

sufficient evidence on the appropriateness of each technique for the task. The 

proposed approach is designed for modeling six rather than a single ventilator 

setting, providing a more holistical approach to ventilation management.  

Additionally to the well established soft computing methods a new method for 

evolving FRBSs was suggested, and a new toolbox was designed and developed. 

EVOFINE was tested on benchmarking complex engineering problems in order to 

evaluate its’ performance. The suggested evolution process has been shown to 

sufficiently map complex problems. Furthermore variable damping mutation rates 

have been applied. Results suggested that damping mutation rates reach an optimum 

FRBS architecture faster than constant rates. 
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2. Background  

2.1 Mechanical Ventilatory Support 

The major function of the respiratory system is to supply tissues with oxygen and 

dispose of carbon dioxide generated by metabolism.  

Respiration includes four distinct processes, the pulmonary ventilation which is air 

movement into and out of the lungs, the External respiration which describes the 

gas exchange between blood and the alveoli air, the Transport of gases which is the 

transportation of blood gases between tissues and the lungs, accomplished by the 

cardiovascular system, and the Internal respiration, which describes cellular 

respiration, the exchange of gases between blood and cells (Marieb E.N. 1995). 

Breathing, a term used to describe pulmonary ventilation, is a mechanical process 

divided into two phases. The inspiration phase is an active process leading to the 

enlargement of the thoracic cavity. During quiet breathing the intrapleural pressure 

decreases to about -6 mmHg (relative to atmospheric) and lungs expand. Airway 

pressure becomes negative in respect to atmospheric and air flows into the lungs 

(Ganong W.F. 1975). Expansion of thoracic cavity is accomplished with the activation 

of inspiratory muscles. The Diaphragm accounts for 75% of the change of 

intrathoracic volume during quiet breathing, while intercostals muscles contract to 

expand the thorax both laterally and in the anteroposterior plane (Ganong W.F. 1975).  

During quiet breathing the inspiration muscles activation expand the thoracic 

dimensions by few millimeters along each plane, as a result intrapulmonary pressure 

drops about 1 mmHg relative to atmospheric. The above process is described by 

Boyle’s Law assuming that temperature is constant. 

The quiet expiration phase in healthy individuals is a passive process that depends on 

lung elasticity. Inspiratory muscles relax and thoracic and intrapulmonary volumes 

decrease. Intrapulmonary pressure increases to about 1 mmHg above atmospheric, 

forcing gases out of the lungs. 

Mechanical ventilatory support (which will be described from now as mechanical 

ventilation), is initiated when a patient’s ability to maintain gas exchange has failed. 

Respiratory failure is categorized mainly to Hypoxemic and Hypercapnic. 

Hypoxemic is failure to oxygenate, while hypercapnic is failure of the ventilatory 
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pump. The term pump describes the mechanical and the neural control of respiration. 

Pump failure is described usually by a combination of failures such as: 

 Inadequate muscle function: causes might be malnutrition, inadequate electrolyte 

balance, use of drugs such as calcium channel blockers. 

 Excessive ventilatory load: patients with chronic obstructive disease increase 

load due to secretion accumulation, mucosal edema or bronchospasm. 

 Impaired neuromuscular transmission and/or compromised central drive:  drugs 

may depress or increase ventilatory drive. Metabolic acidosis could cause 

hypercapnia, resulting to dyspnea anxiety with increase respiration rate. 

Hypoxemic failure is the failure to maintain arterial oxygenation. The basic 

mechanisms for this are the Ventilation-perfusion mismatch, right-left shunt, 

alveolar hypoventilation, diffusion effect and low concentrations of inspired O2, 

termed as Fraction of Inspired Oxygen (FiO2). Hypoxemia does not always call for 

mechanical ventilation; it is treatable with oxygenation support devices such as 

oxygen supply masks and continuous positive airway pressure (CPAP). 

Support of patients with respiratory failure is given by medical devices described as 

mechanical ventilators, or artificial ventilators. The majority of mechanical 

ventilators provide the patient with a user defined mixture of fresh gases, by 

applying positive pressure in the upper airways. Since the pressure is above 

atmospheric, air flows into the lungs causing them to expand. Usually during the 

expiration phase pressure levels at the upper airways drop at atmospheric or 

maintained above atmospheric levels. The latter methodology is called Positive End 

Expiratory Pressure, abbreviated as PEEP. However this process is the invert of the 

physiological one, where inspiration is initiated due to sub-atmospheric pressure in 

lung compartment. This inversion is the cause of ventilator induced lung injuries. 

Barotraumas and volume trauma are lung injuries caused by alveolar over-

distension; the former is due to excessive pressure and the latter due to high volume. 

Limiting maximum pressure and volume is the obvious solution to lung injuries. 

However limitation of these variables is not always advised due to abnormal lung 

mechanical properties. The reduction of cardiac output (C.O.) related to the 

increased intrathoracic pressure is another ventilator induced problem. Reduction is 

caused by the increased pulmonary vascular resistance, which decrease left 

ventricular filling (Pilbeam S.P. 1986). Prolong inhalation in respect to exhalation 
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decreases venous blood return to the heart. To decrease the effect of positive 

pressure ventilation on C.O., intensivists maintain a low mean airway pressure.  

Positive pressure ventilators are classified according to control variables, phase 

variables and conditional variables. Control variables remain constant as the 

ventilatory load changes. According to this classification a ventilator could be 

pressure, volume, flow or time controlled. This is interpreted as maintaining a supply 

of gas mixture, during the inspiration phase, until a predefined level of the control 

variable is reached. Phase variables initiate some phase of the ventilation cycle. 

Phase variables are trigger, limit and cycle. Inspiration triggering could be voluntary 

from the patient, detected as drop in airway pressure or as gas flow into the lungs, or 

time triggered, controlled by the clinician. The limit variable is a threshold that 

cannot be exceeded. Inspiration phase is not always terminated when the limit is 

reached. Cycle variable terminates the inspiration when a threshold is reached. 

Conditional variables are those controlled by the ventilator logic. Synchronization to 

patient’s efforts, permission for spontaneous breaths, and mandatory ventilation are 

examples of conditional variables. The flow chart in figure 2.1, taken from Hess and 

Kacmarek (Hess D.R., Kacmarek R.M. 2002), is a diagram for classifying mechanical 

ventilators. 

 

 
 

Figure 2.1: Classification of mechanical ventilators, taken from Hess D.R and 

Kacmarek R.M 2002. 
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Ventilators are further classified according to drive mechanism (McPherson S.P. 1995). 

Driving mechanism describes the technology of producing airflow into the lungs. 

The drive could be pneumatic, low or high pressure applied directly to the upper 

airways, Electric, usually pistons and compressors driven by servo or other electrical 

motors, and Bellows where high or low pressure is applied in the bellows chamber 

forcing it to collapse. 

A modern ventilator is described as a block diagram in figure 2.2. The main modules 

of the ventilator are the Control Unit, a user interface for selecting settings, viewing 

variables and waveforms, and selecting modes of operation, a mixer, responsible for 

providing the correct concentrations of gases (Usually 100% O2 with atmospheric air 

although Nitric Oxide was introduced lately to ICUs), the drive mechanism and the 

transducers for collecting flow, pressure, volume and oxygen concentration signals. 

 

 
Figure 2.2: Ventilator block diagram. 

 

Ventilators are capable of functioning as controllers, and/or assist devices. Several 

modes of operation have been developed in the last years, each having unique 

features designed for different respiratory problems and ventilation phases. The 

following modes are common to many manufacturers: 
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 Control ventilation: ventilator delivers preset volume or pressure controlled 

breaths, in predefined time intervals. Minute ventilation (
E

o

V ) is given by the 

product of tidal volume (VT)  multiplied by the respiration rate (RR):  

RRVV TE *
0 

  eq. 2.1 
 

 Assist ventilation: ventilator detects patient’s effort for inspiration, either as 

pressure drop or flow at the upper airways, and provides pressure or volume 

controlled ventilation. 

 Continuous Mandatory Ventilation (CMV): is an assist – control mode, were the 

clinician provides with a minimal rate of control ventilation, while the patient 

can trigger inspiration at a more rapid rate. 

 Intermittent Mandatory Ventilation (IMV): delivers breaths at a set frequency 

similar to control mode. However the patient can breathe spontaneously between 

control breaths from a reservoir or demand system. 

 Synchronized IMV (SIMV): works similar to assist mode. The difference is that 

it divides each minute into cycled time and to time where the patients effort to 

breathe will be assisted by synchronized mandatory breath. If patients fail to 

initiate a breath, for a given period, the system delivers mandatory breaths. 

 Mandatory Minute Volume (MMV): system allows the patient to breath 

spontaneously. If the volume of spontaneous breaths has not reached a 

predefined threshold, then the remaining volume is provided mandatory. 

 Continuous Positive Airway Pressure (CPAP): this is a spontaneous breathing 

mode. Clinicians decide upon a level of positive pressure throughout the 

ventilation cycle. 

 Pressure Support ventilation (PSV): in this mode patient initiates inspiration 

phase. The ventilator assists the patient’s effort until a predefined pressure level 

is reached. Some ventilators incorporate CMV, in case of patient’s apnoea. 

 Airway Pressure Release Ventilation (APRV): this is actually a CPAP mode 

which periodically lowers the pressure level to atmospheric level. This allows 

patient to exhale higher volumes; as baseline is restored patient is ventilated with 

higher volumes. 

 High Frequency Ventilation (HFV): ventilates patients at high rates (above 60 

BPM), with low volumes (Usually slightly higher than dead space volume). 
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Additionally to ventilation modes there are modifications to ventilation support. 

Positive End Expiratory Pressure (PEEP) is blocking exhalation when a preset 

pressure level is reached. Similar to PEEP is the Expiratory Retard, in which a 

resistance is applied to expiration tract, to maintain positive pressure in alveoli and 

prevent collapse. Inspiratory Hold (Pplateau) is a pause between inspiration and 

expiration phase, which allows gases to diffuse better in the alveoli.  

The choice between mandatory and assist-spontaneous ventilation is patient specific. 

Mandatory ventilation is provided to patients with drug suppressed ventilation 

trigger, or when clinicians attempt to minimize breathing effort. Partial support is 

often used during weaning process. Weaning describes the phase of discontinuation 

of ventilation.  In patients with Acute respiratory distress syndrome (ARDS), and 

Chronic obstructive pulmonary disease (COPD), control-assist modes are suggested 

such as CMV. 

 

2.2 Ventilation Management 

The care of critical ill mechanically ventilated patients requires regular gathering of 

clinical data for the evaluation of the ventilation strategy. Clinicians utilize the 

pathology and physiology data available for adapting ventilator settings to patient’s 

needs. This process is described in bibliography as patient or ventilation 

management. 

Patient’s needs are continuously changing, and for this reason ventilation 

management is an ongoing process. The periods of evaluation range from several 

minutes to hours, depending on patient’s health status and ventilation phase. It is 

common when clinicians initiate mechanical ventilation, to collect and evaluate data 

regularly, intervals of 15 to 30 minutes, in the first few hours, until the patient’s 

physiology variables are stable. Time intervals between evaluations also adapt to 

changes in ventilation strategy. Frequent intervals are used when decisions are made 

for changes of ventilation modes. 

Decision making of ICU clinicians concerning changes in ventilation support and 

drug administration, is supported by available clinical data, experience, and 

protocols. Appendix I provides with a detailed description on monitoring variables 

and ventilation targets during mechanical ventilation. 
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2.2.1 Decision Making - Ventilation Strategies – Protocols 

The changes performed on ventilation settings and drug administration related to 

ventilation adequacy, are made based on a strategy. The strategy could be based on 

knowledge, expertise and experience, or on available guidelines and protocols, or 

more often as a combination of both.  

Hancock and Durham (Hancock H.C., Durham L., 2007) addressed the theoretical 

background of clinical decision making. Three different approaches are described in 

the literature. These are: Analytical methodology, which is a linear process involving 

assessment of alternatives and selection of a course of action; Intuition, which is a 

holistic consideration of situations based on experience; practitioners have developed 

knowledge structures, enabling them to respond to a problem with the use of 

accumulated experience; and cognitive continuum theory which suggests that 

decision making is somewhere between the analytical and intuitive ends. 

In contradiction to the theoretical approach of clinical decision making by Hancock 

and Durham (Hancock H.C., Durham L., 2007), Taylor (Taylor F, 2006) reported that ICU 

staff utilizes in action different approaches in decision making. He identified that 

hypothetico-deductive approach, concept of balance, pattern matching, intuition and 

trial and error, were used by the clinical staff participated in the research.  

The subjective nature of decision making, as well as the multi-parametric nature of 

the ventilation management process, generates the need of protocols and guidelines. 

Carson et al (Carson E.R. et al 1991) focus on the need of converting measured data into 

information for clinicians. Their argument was supported by the substantial increase 

in the number of measured, derived and alarm variables in the ICU, over the past 

decades. Since humans have limited ability to estimate covariance between multiple 

variables (Morris A.H, Cook D.J, 1998), guidelines are necessary. Hypothesis, memory 

recall, prejudice, local cultural factors, local technical abilities and experience are all 

factors influencing caregiver decisions in the ICU. 

Protocols usually present either as paper based flow diagrams, or paper - 

computerized decision support trees. Such algorithms developed for the ICU setting 

usually contain fuzzy terms such as “optimize PEEP”, which cannot be translated 

into executable instructions (Morris A.H, Cook D.J, 1998). Even more when decision 

trees are developed, it is difficult to implement them in different patient-clinical 

settings, leading to identical treatment decisions. The application of general 
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guidelines is associated with great variation in practice, due to individual clinical 

practice styles (Morris A.H, Cook D.J, 1998). 

A different treatment strategy is adopted according to patient pathology. The most 

common health related patient categories found in ICU and potentially require some 

form of ventilation support, are the following (from: Hess D.R., Kacmarek R.M. 2002): 

 Acute Lung Injury - Acute respiratory distress syndrome (ALI-ARDS). 

 Chronic obstructive pulmonary diseases (COPD). 

 Chest Trauma. 

 Head Injury. 

 Postoperative patients. 

 Neuromuscular disease and chest wall deformities. 

 Cardiac failure. 

 Asthma. 

 Burns and inhalation injury. 

 Bronchopleural fistula. 

 Drug overdose. 

 

Although protocols - guidelines have been developed, there are diverse methods for 

dealing with the same problem (Brochard et al., 1994, Butter R et al., 1999, Horst H.M, 1998).  

The controversy surrounding mechanical ventilation is illustrated on ARDS 

ventilation management, thus reflecting a more general problem. ARDS is 

approached mainly by two different strategies. The open lung approach targets a 

specific pressure with pressure controlled ventilation (Amato M.B.P et al., 1998, 

Papadakos P.J, Lachmann B, 2002). High respiratory rates, high PEEP and permissive 

hypercapnia are used to maintain alveolar recruitment. A second approach named 

ARDSnet, or baby lung approach, focuses on the limitation of tidal volume using 

volume controlled ventilation (ARDS NETWORK, 2000). There is no convincing 

evidence that either approach is superior (East T, 1993, Shanhotz C). Figure 2.3 presents 

the protocol algorithms for both approaches. 
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Figure 2.3: (Top) baby lung algorithm. (Bottom) open lung approach (taken from 

Hess D.R., Kacmarek R.M. 2002). 
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Wall et al (Wall R.J, et al 2001), reports that it has been demonstrated that 

implementation of protocols in the ICU, for specific clinical procedures, improves 

clinical outcomes. However it argues that clinicians are not constrained by the 

protocol since it focuses on common aspects of the patient’s illness.  Clinicians often 

need to deviate from the protocol, due to “subtleties inherent to each patient”. 

Authors report that critics argue that protocols reduce the quality of care by reducing 

clinical judgment and degrading medical expertise. 

We conclude that the multi-parametric nature of the ventilation management 

problem and the complexity of the cardio-respiration physiology call for medical 

guidelines - protocols. However the design and implementation of the protocols is 

compromised by the multi-strategy approaches, the ICU patients’ case-mix (multiple 

pathologies) and the variation of clinicians’ expertise and treatment styles. 

 

2.3 An overview of common lung pathologies (ALI-ARDS & 
COPD) 
 

Acute Lung Injury (ALI) and acute respiratory distress syndrome (ARDS) are 

clinical entities describing the diffuse pulmonary inflammation (Bellingan G & Finney 

S.J 2006). ARDS was first described by Ashbaugh and co-workers in 1967 (Lechin A.E. 

et al 1994). ALI is the less extreme manifestation of ARDS.  Annual incidence of 

ALI-ARDS range from 8 to 70 cases per 100,000 population in developed countries 

(Bellingan G & Finney S.J 2006), while mortality ranges from 30-40% adults 

(Zwischenberger J.B 2006) and 30-75% in children (Hammer J 2006).  

ALI-ARDS is the disruption of the normal alveolar-capillary barrier   (Lechin A.E & 

Varon J 1994). Clinical manifestations are dyspnea, the severe hypoxemia due to 

mismatching of ventilation and perfusion, and lung stiffness manifested by increased 

compliance and WOB. ALI-ARDS could be caused by direct or indirect injury to the 

lung (Hammer J 2006). Sepsis is the basic etiology of ARDS in ICUs. Case mix 

(multiple risk factors) commonly develops ARDS and is usually the cause of 

patients’ mortality rather than ARDS itself. 

ALI-ARDS is usually treated with invasive mechanical ventilation and 

pharmacotherapeutic approaches. Pharmacotherapeutic approaches focus on the 

alveolar fluid balance and the reduction of inflammatory process. Ventilation 
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strategy influences mortality. Strategies focus on lung volumes, FiO2, PEEP and 

ventilation modes (Bellingan G & Finney S.J 2006). Adjuncts to traditional mechanical 

ventilation include prone positioning, recruitment maneuvers to prevent or recruit 

lung collapse, surfactant administration to reduce surface tension in alveoli, high 

frequency ventilation and non invasive ventilation. 

Chronic obstructive pulmonary disease (COPD) is “the airflow limitation due to 

narrowing and fibrosis of small airways and loss of airway alveolar attachment as a 

result of emphysema” (Barnes P.J 2006). Chronic airflow limitation is initiated by 

inflammation, airway hyperactivity, secretions and loss of the structural integrity of 

the lung parenchyma (Hess D.R, Kacmarek R.M 2002). 

COPD affects 6% of the general population and is one of the top five causes of 

chronic morbidity and mortality in the USA (Amborosino N, Simonds A, 2007). A large 

percentage of COPD patients are admitted to ICU. 26-74% of them receive 

mechanical ventilation support (Gursel G 2005). Ventilation is initiated to prevent 

hypoxia and to control acidosis and hypercapnia (Plant P.K, Elliot M.W 2003). Research 

has shown that COPD patients ventilated with non-invasive mechanical ventilation 

have better results than intubation (Hibert G et al 1998, Plant P.K, Elliot M.W 2003). 

Smoking, environmental and genetic factors are the main causes of COPD.  

 

2.4 Overview & Necessity of Decision Support Systems (DSS) 

for mechanical ventilation 

The controlled ventilation management process could be described as a closed 

control feedback system, where the controller is the ICU clinician and the controlled 

system is the patient. Clinicians gather clinical information utilizing multiple sources 

of data, such as blood gas analyzers, monitors, ventilators, patient’s drug 

administration records and patient’s pathology, and make decisions on the 

appropriate control adjustments to the ventilation apparatus. Clinical decisions are 

governed by expertise and experience. As it has already been stated the process of 

ventilation management, could be considered as a search of an optimum solution 

through a complex search space.  

When modelling the clinician-patient system the researcher is faced with many 

obstacles. Cardio respiratory physiology is on its own a highly complex control 
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system to be modelled. Additionally clinician’s decisions are made based on 

expertise and experience and a large number of available clinical data. Different lung 

pathologies are ventilated by utilizing different strategies. Strategies are not 

universally accepted, as described in section 2.2. Accumulated experience of the ICU 

clinical staff differs from one hospital to the other. ICU clinicians prioritize clinical 

data available to them with different hierarchy. Equipment type and measuring 

processes show a large variation among ICUs. Thus a system capable of mimicking 

doctor’s decision making process should be able to learn both from experience and 

expertise. Furthermore the system should apply knowledge acquired in a general 

context and not in terms specific to a patient. 

Automating the mechanical ventilation process has been suggested and applied as 

early as the first ventilation machines were introduced in the ICU. From 1957 (Saxton 

G.A and Myers G.A, 1957) up to today researchers have approached the goal of 

supporting the mechanical ventilation process by utilizing available technologies at 

the time. Although the variation of systems architecture is quite big, two main 

categories of mechanical ventilation support systems have been developed. The 

automated category consists of closed-loop systems, which automatically adjust 

ventilation settings based on a set of physiology measurements. In this category the 

number of controlled variables (the ventilator settings) and the number of input 

variables (the physiology measurements) ranges from single to multiple. Currently 

only two closed-loop systems are commercially available. Siemens-Draeger Medical 

and Hamilton Medical utilize adaptive algorithms for supporting delivered pressure 

and volume-frequency respectively. Siemens-Draeger uses a patented method known 

as Proportional Assist Ventilation (PAV, Younes M, 1992) which supports spontaneous 

breathing patients by adopting pressure support. Hamilton Medical, utilize a patented 

technology named Adaptive Support Ventilation (ASV, Tehrani F,T., 1991). ASV 

adjusts target volume and frequency based on respiratory mechanics, for minimizing 

work of breathing. Spontaneous breathing patients are supported with ASV, however 

when no breathing effort is initiated by the patient, the algorithm provides controlled 

ventilation. 

Open-loop systems capture the patient’s health status and provide suggestions on 

optimum ventilation settings. These systems are best described by the term Decision 

Support Systems (DSS). A more detailed description of DSS is provided in section 

2.5. Capturing of physiology data could be performed either by manual entry of data, 
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or automatically from the monitoring and ventilation devices. Suggestions usually 

appear to the clinician most commonly through a graphical user interface. 

Figure 2.4, presents graphically the closed-loop and open-loop basic architecture. 

The main difference between the two approaches is the feedback control loop of the 

ventilator apparatus (dashed line). 

 

 

 
Figure 2.4: Diagram of open and close loop (dashed) systems. 

 

The core of both system categories is the Information Processing and Control Unit 

(IPCU). The structure of the IPCU differs among researchers. However it can be 

categorized into four (4) main categories: 

 Mathematical models of respiratory control. Such models were the early 

attempts to describe and automate the ventilation process.  

 Classical controllers applied in mechanical ventilation. Control theory, such 

as Proportional-Integral-Deriviative (PID) controllers have been implemented 

for automating the mechanical ventilation process. 

 Protocol and expert rule-based systems, commonly named Knowledge Base 

Systems (KBS). The available ventilation protocols and/or the clinicians’ 

expertise are computerized. Decision trees and rule driven logic is often 

applied. 

 Intelligent models. Intelligent systems that model the mechanical ventilation 

process. Intelligent models utilize artificial intelligence methods for 
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modelling the cardio-respiratory system, the decision making process of the 

clinician or as a combination of both. 

The above categories have been implemented in combination. Examples of similar 

research are presented in the following sections. 

Tehrani and Roum (Tehrani F.T, Roum J.H, 2008, “Intell. Dec. Sup.”) provide a 

methodological review of intelligent decision support systems (IDSS). The key 

characteristics and the basic structure of IDSS is summarized by the authors in table 

2.1 (Taken from Tehrani F.T, Roum J.H, 2008). 

 

Table 2.1: IDSS main categories (Taken from Tehrani F.T, Roum J.H, 2008) 

 
 

Advisory expert systems and closed loop ventilation are gradually gaining 

acceptance (Wysocki M, 2007). The driving force for automating the process of 

ventilation management could be summarized in the following categories: 

Patient safety: “In the United States, the number of patients who died from medical 

error alone is equivalent to one airplane crash every day of the year” (Wysocki M, 

2007). Anesthetic incidents in the operating room are attributed between 70 to 82% to 

a human error (Dhillon B.S, 2000). Studies have shown (Giraud T et al, 1993), that a large 

percentage of ICU admitted patients (31%) has suffered iatrogenic complications. 

Schuh and colleagues (Schuh Ch, 2004) have shown that ICU staff reacts with long 

delays to hyper or hypoventilation, with mean delays of 127 and 50 minutes 

respectively. These are only few examples of the magnitude of medical errors 

complications. Alponso et al (Alponso A et al, 2007) evaluated ICU clinical staff and 

reported disturbing results about the difference among staff, in fundamental 

knowledge surrounding oxygen therapy. Since mechanical ventilation supports 

human life, errors caused by lack of appropriate training, experience and 

misjudgment, result in adverse effects for the patient.  

Quality of care: Due to cardio respiratory system’s complexity and ICU patients’ 

case-mix, the process of ventilation management is demanding. In order to minimize 
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the diversity in ICU personnel knowledge level, protocols have been introduced to 

ventilation management. However protocols suffer from a long list of drawbacks, 

such as fuzziness in advice (Morris A.H, Cook D.J, 1998), diversity in acceptance 

(Brochard et al., 1994, Butter R et al., 1999, Horst H.M, 1998) and rapid change in ICU 

standards (Wysocki M, 2007). The need of protocols and guidelines is generated by the 

multi-parametric nature of the ventilation management process. Carson et al (Carson 

E.R. et al 1991) focus on the need of converting measured data into information for 

clinicians. Their argument is supported by the substantial increase in the number of 

measured, derived and alarm variables in the ICU, over the past decades. Since 

humans have limited ability to estimate covariance between multiple variables 

(Morris A.H, Cook D.J, 1998), guidelines are necessary. ICU clinicians prioritize clinical 

data available to them with different hierarchy. Taylor (Taylor F, 2006) in his research 

on decision making process reported that ICU staff utilizes in action different 

approaches in decision making. Hypothetico-deductive approach, Concept of 

balance, Pattern matching, Intuition and trial and error, were used by the clinical 

staff participated in the research. East et al (East TD et al 1999) have reported in a 

multicenter randomized trial that a computerized decision support system can 

significantly improve patient morbidity. 

Resource limitation: In Greece ICUs operate with 20 to 30% of the appropriate 

clinical personnel according to European ICU standards (Roussos X, 2007). Due to this 

limitation a big percentage of ICU beds are left unused. The same problem is 

encountered in many European countries. In Sweden for example during April 2002, 

782 ICU-beds were available (8.7 per 100 000 inhabitants). Almost 200 beds were 

not operative due to budgetary reasons or lack of personnel (Walther SM, Wickerts C.J, 

2007). The resource limitations due to cost containment policies, has led ICU 

personnel working exhausting hours. Scott et al (Scott L.D et al, 2006) found that 86% 

of ICU nurses work overtime. When the number of available nurses per patient 

decreases there is an observed increase in the duration of ventilation (Thorens B.J et al, 

1995), thus ICU costs increase and quality of care degrades. 

 

The above evidence advocates the need of support tools for the process of ventilation 

management. Support tools could be in the form of decision making support or 

closed loop systems. Support should be provided in order to: 

 Establish a baseline, in terms of quality of care. 
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 Minimize clinical errors in the ICU. 

 Relieve partially ICU staff from the task of ventilation management. 

 Minimize the need, in terms of numbers, of expert personnel and thus 

increase availability of beds. 

 

In order to “mimic” the ventilation management process, support tools should rather 

model the process than the patient physiology. Modelling the process has several 

advantages. It includes available protocols that ICU staff employs in action, 

personnel experience and expertise and patient pathology and physiology. 

Thus a system capable of supporting decision making in the ICU for the ventilation 

management process should have the following characteristics: 

 Learn from clinical decision making, in order to incorporate protocols, 

experience and expertise. 

 Adapt to the patient needs, thus frequently processing routinely monitored 

physiology data for producing advice. 

 Provide a holistic ventilation management. Should not be concerned with 

part of the ventilator settings but with the total. 

 Be pathology specific. Ventilation strategy is adapted to patient’s pathology. 

Therefore the support tools should be able to do so. 

 

2.5 Clinical Decision Support Systems (CDSSs) 
 
Dr R. Hayward of the Center of Health Evidence of the University of Alberta 

(Canada) defines that “Clinical Decision Support systems link health observations 

with health knowledge to influence health choices by clinicians for improved health 

care”. Although the term Diagnostic Decision Support Systems has been used, the 

CDSSs define a broader perspective and include Decision Support Systems (DSSs) 

in the areas of Administration, Management of Clinical Complexity, Cost Control 

and Medical Diagnosis (Perreault L, Metzger J. A, 1999). 

CDSSs are divided into two major categories: The Knowledge Base Systems and the 

non Knowledge Base Systems. Knowledge-based systems (KBS) are widely used in 

the areas where knowledge is predominant rather than data (Pandey B, Mishra R.B, 

2009). The Knowledge Base Systems incorporate existing knowledge either in the 
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form of massive databases including well established knowledge and past patient 

cases, or a set of expert defined rules. These systems are commonly known as expert 

systems. Non Knowledge Base Systems utilize Artificial Intelligence (AI) techniques 

for developing a DSS from available data sets. 

The use of AI techniques for developing CDSSs has several advantages over the 

development of expert systems. One of the main problems of expert systems is the 

extraction of experts’ knowledge. (Clancey W.J, 1983) This problem is termed 

knowledge acquisition bottleneck. Medical data often suffer from ambiguity and lack 

of complete information. These real life characteristics degrade expert systems 

performance. Additionally expert systems are hard to maintain. On the other hand AI 

techniques are capable of learning and training from real life data, thus eliciting 

“decision rules”. Furthermore maintenance of AI systems usually involves retraining 

a developed system based on newly available data. 

Soft Computing (SC) is a consortium of AI methods which work synergistically 

(Yardimci A, 2009). SC utilize a combination of well established AI techniques such as 

Fuzzy Logic (FL), Neural Networks (NN) and Genetic Algorithms (GAs) for 

producing flexible information systems for handling imprecision, uncertainty and 

partial truth in real life situations. The systems designed with an innovative 

combination of different AI techniques are commonly referred to as hybrid systems. 

Fuzzy Logic (FL) was a term first coined by Zadeh (Cox E. 1994). FL is an inference 

engine, utilizing “IF premise THEN consequence” rules, similar to human reasoning. 

However numerical data are translated into degrees of membership for predefined 

fuzzy sets for a given variable domain. The inference engine makes decisions based 

on membership degrees to a given set. 

Artificial Neural Networks (ANNs) or commonly described as Neural Networks 

(NNs) have been around nearly 50 years. NNs consist of interconnected information 

processing units called artificial neurons, modelled on biological neural neurons. The 

simplified NN is designed with three layers. The signals are propagated from the 

input layer to the neurons of the hidden layer. The hidden layers’ neurons are linked 

to a weight. NN are trained by adapting neuron characteristics so as to adequately 

map an input-output relationship. Training is performed on available data sets, 

commonly based on a gradient descent back propagation method. 

Genetic Algorithms (GAs) were first proposed by Holland in 1975 (Holland J.H,  1962  

& 1975).  GAs are search and optimization methods that emulate natural evolution 
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based on three fundamental processes: Mutation, Recombination and Selection. GAs 

operate as search algorithms that evolve possible solutions through search in 

complex spaces. Possible solutions to a problem are coded, traditionally in binary 

format, into chromosomes. An initial population of candidate solutions is submitted 

for evaluation on a given problem. The best performers have an increased probability 

of advancing to the next generation. Exchanging of code (crossover or mating) and 

mutation are operation for exploring alternative possible solutions to the problem. 

This process is repeated until a specific number of generations, or a good solution to 

a given problem has been reached. 

Combination of these AI methods is commonly encountered in the form of NN-FL, 

NN-GA and FL-GA applications. NN-FL has two subcategories, the NN controlled 

by a FL or FL controlled by NN. Adaptive network fuzzy inference systems 

(ANFIS), was originally proposed by Jang (Jang J.S.R, 1993). ANFIS is actually a 

neural representation of Takagi-Sugeno-Kang model (TSK) fuzzy systems capable 

of learning through training data. 

GA are used for pre-processing data sets to be used by a NN, but also GAs evolve a 

population of NNs to find the most appropriate architecture for a given problem. 

Alternatively GAs have been used for evolving or tuning FL systems for generating 

a better mapping of fuzzy sets or an evolved rule base. 

A more detailed description of the AI methods as well as their combinations is 

provided in Appendix IV. 

Soft computing in medicine has been applied in many medical fields. In medicine 

FL-NN is used at a 68% rate, NN-GA at 27% rate and FL-GA at 5% rate according 

to Yardimci (Yardimci A, 2009), as shown in table 2.2. The combined AI techniques 

have been applied to many clinical disciplines including basic, Diagnostic, Clinical, 

Surgical science and Internal Medicine as shown in table 2.3. 
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Table 2.2: Applications of Soft Computing in medicine (taken from Yardimci A, 
2009) 

 
Table 2.3: SC in medical disciplines (taken from Yardimci A, 2009) 
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3. Review 

3.1 Related work on modelling respiration physiology & 

mechanical ventilation control. 

One of the early attempts to support the ventilation process was in 1957 by Saxton 

and Myers (Saxton G.A and Myers G.A, 1957). Researchers suggested and evaluated on 

poliomyelitis patients, a closed-loop iron lung ventilator. This early effort to 

automate the process of ventilation was adapting the iron lung negative pressure, 

based on end tidal carbon dioxide partial pressure (ETCO2). 

Chatburn presented the summary of models’ categories for the mechanical 

ventilation available at the time (Chatburn R.L, 2004). The models-systems were 

categorized into open-loop and closed-loop control systems. The author elaborated 

more on the closed-loop control category by dividing it into the following 

subcategories: set-point, auto set-point, servo, adaptive, optimal, knowledge base and 

artificial neural network control.  

The following sections present a selection of research work on the development of 

systems that support artificial ventilation, based on the underlying design methods. 

Paragraphs 3.1.1 to 3.1.4, briefly describe the basic design principles encountered in 

the bibliography. The design principles are presented by providing a review of other 

authors’ research. Paragraph 3.1.5 presents models based on AI, which are not 

directly related to ventilation management, but their design principles are considered 

relevant to the current work. 

 

3.1.1 Mathematical Models of the Respiratory System and 
Classical Controllers. 

Grodins et al, proposed a mathematical model of the respiratory control system 

(Grodins F.S et al, 1967). The model was designed with two major components: the 

controlling and the controlled system. The controlled system was sub-divided into 

three compartments, the lung, the brain and the tissue compartment. The controlling 

system included receptor elements, afferent nerves, neural centers, muscles and the 

thorax-lung pump, described in terms of chemical concentrations at receptors as 

inputs, and ventilation as the system’s output. Mathematical equations of the system 
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included cardiopulmonary variables as well as delays in the form of time constants. 

The proposed model was the most complete approach of modelling the respiratory 

control at time. The major model limitation is that mathematical relationships could 

not describe the individual’s physiology. The proposed model does not provide a 

holistic approach to respiration physiology, since it does not include dead space, 

respiration rate, venous admixture, and tissue circulation. Non-linear, complex, 

multi-parametric systems such as human physiology are not easily implemented by 

mathematical models. 

Saunders et al adapted Grodins model to include dead space, shunt, cyclic 

ventilation, and muscle compartment. (Saunders K.B et al, 1980). The resulting five 

compartment model was described by 17 non-linear differential equations. The 

model was tested by simulating the following cases: CO2 loading, step changes in 

inspired CO2, step increase in CO2 in mixed venous blood, hypoxic mixtures, CO2 

re-breathing and exercise. Performance was suboptimal in exercise and hypoxia 

experiments. 

MacPuf developed by Dickinson in the 70s (Dickinson C.J, 1977), is one of the most 

complete mathematical attempts to describe respiration physiology in software. The 

model was written in the Fortran computer language and included blood circulation, 

gas exchanging system, ventilation control, and tissues metabolism. Through a user 

interface the model allows for changes in 31 respiration related variables, as well as 

options of artificial ventilation, subject’s demographics and clinical disorders. The 

work of Dickinson has been used as a starting point of many modern models, 

including SOPA Vent, described in paragraph 3.1.3. 

Techrani (Tehrani F.T, 2007), suggested a decision support system for mechanical 

ventilation. The system process input data, such as blood gas, lung mechanical 

properties, breathing variables and ventilator settings, and computes the optimal 

level of ventilation. The algorithm utilizes mathematical equations for predicting 

tidal volume, respiration rate, peak inspiratory pressure, inspiration and expiration 

time and FiO2 and PEEP levels. The system produces new ventilator variables as 

well as suggestions on weaning. 

In the early attempts to automatically control patient’s ventilation many articles were 

published on applications of Proportional/Integral/Derivative (PID) controllers, 

based on a single physiology variable as input to the system (Coles J.Ret al 1973, Coon 

R.L et al 1978, East T.D et al 1982, Ohlson K.B et al 1982). A representative work of the early 
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attempts is that of Chapman et al (Chapman F.W et al 1985). The proposed system is a 

PID feedback controller responding to changes of Expired End Tidal CO2 Fraction 

(FETCO2). The system’s output is the minute ventilation, and is estimated by applying 

a transfer function utilizing previous controller output, current error (output value-

target) as well as previous error. An empirical relationship was designed to graph 

tidal volume against respiration frequency (their product is the minute ventilation). 

Evaluations on dogs showed that the system reacts fast to hypercapnia and hypoxia 

events. The drawbacks of the model include: the single input variable, ventilation 

control cannot be based on end tidal CO2 alone (Westenskow D.R, 1981), there are 

medical cases where we deliberately change the targeted PaCO2 (e.g. permissive 

hypercapnia), assumptions were made about constant dead space and metabolic rate, 

and changes in lung mechanics may alter the relationship between arterial and end 

tidal CO2. 

Martinoni et al (Martinoni E.P et al 2004), proposed a similar model to Chapman, in 

terms of monitoring variable. However the design of the system was based on a 

human physiological model of oxygen and carbon dioxide exchange, transport and 

storage. The systems’ output was the desired minute ventilation as well as prediction 

of FETCO2. The system was also adjusting the tidal volume and respiration frequency 

based on constrains on the maximum inspiratory pressure. Systems evaluation was 

performed on 15 patients during general anesthesia. The performance was compared 

against a fuzzy-controller described by Schaublin and colleagues (discussed in 

section 3.1.4). Both systems maintained ventilation close to a set point. However the 

same restrictions apply as in Chapman’s controller. 

In 2004, Jandre et al (Jandre FC et al, 2004), proposed a closed loop controller for 

regulating PETCO2, and minimizing elastance of the respiratory system (Ers). The 

authors work was based on the “open-lung ventilation” protocol. The model was a 

combination of proportional and integral (PI) controller, mathematical models and 

explicit objective functions. Two distinct controllers were designed. The first 

optimized VT and RR as well as inspiration and expiration time. The controller 

reduced the risk of lung injury by finding a balance between peak alveolar pressure 

and flow. The second controller was adjusting the PEEP value for minimizing Ers. 

For this purpose a gradient descent law utilizing local derivatives of the elastance 

was implemented. The controller’s gains were semi-automatically calculated prior to 

application. The system was evaluated on six paralyzed female piglets ventilated in 
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control mode (CMV). Authors concluded that the controller dynamics approximate 

physiological responses. 

In 2004, Tehrani et al (Tehrani F et al 2005), proposed a system composed from two 

closed-loop controllers. The first controller uses PETCO2,  SpO2, C & R as input 

variables and automatically adjusts rate, volume and Inspiration over Expiration time 

ratio (I:E). Values of capnography and saturation are translated into blood gases 

partial pressures based on mathematical equations. A correction factor is used for 

introducing shift of haemoglobin association curve based on pH. A threshold value 

for arterial oxygen is set to 104 mmHg. If readings are lower than this value, the 

effect of oxygen to ventilation is zero. Ventilation frequency is derived by 

mathematical relationship and targets to keep work of breathing at minimum. Tidal 

volume calculation takes into consideration PEEP and respiratory elastance. The 

second controller is a PID controller that maintains SpO2 at predefined levels by 

adjusting FiO2. Evaluation of the system was performed on both computer simulation 

and Yorkshire pigs. Results showed good performance in hypercapnia and 

hypoxemia in both computer and animal experiments. 

Laubscher et al (Laubscher T.P et al 1994), proposed a computerized method to be used 

for the start-up procedure (initial settings), for closed-loop ventilation. Evaluation 

was carried out in 25 adult and 17 children patients in ICU. Initial test breaths were 

given to derive ventilator settings for minute ventilation, VT and RR. The values of 

these variables were proposed based on measured median values of dead space and 

expiratory time constant (RC). Calculation was based on mathematical formulas, 

using work of other authors, and minimal work of breathing approach. Results 

showed that the proposed settings were similar to physiological breathing pattern. 

Differences between intensivist settings and computer proposal were not significant. 

The proposed model is different from the models encountered in the bibliography 

since it focuses on the problem of automatic selection of initial settings. 

A nonlinear model for mechanical ventilation (Polak A.G, Mroczka J, 2006) was 

proposed by Polak, and Mroczka. The model incorporated airway morphology, 

dynamic behavior of the lung and chest walls, nonlinearities due to turbulence and 

airway collapsing and time variance of mechanical properties. The model was 

implemented in Matlab software. Simulation was performed to observe results in 

comparison with published and experimental data. However resistance values, 

during simulation proven very small compared to normal values, and to compensate 
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the model error they were multiplied by three. The model of mechanical ventilation 

resulted that all variables behaved linear except for lung compliance. The proposed 

model is a suggestion for adapting ventilation according to pathology which affects 

lung mechanical properties. 

Guerrisi et al (Guerrisi M et al 2005), proposed a dual-controlled ventilation system for 

optimizing pressure and flow delivered to patients, both in inspiration and expiration 

phase. Changes in airway and lung resistance and compliance were compensated by 

two controllers, namely: stationary and transient flow generator stabilizer (STFGS) 

and time varying airways pressure stabilizer (DRSS). The synergism of the two 

controllers was designed to ensure tidal volume delivered to the patient, 

independently from intensity of the patient’s load. Laboratory tests showed 

successful compensation when respiration frequency was under 20 BPM. Tidal 

volume was shown to be independent from lung mechanical properties. Finally non 

conventional flow waveforms were applied in an attempt to mimic physiological 

breathing patterns. However the model has not been tested on human or animal 

subjects. 

Spahija et al (Spahija J et al 2005) approached the problem of closed-loop ventilation on 

a different base. The input to their controller system was the Diaphragm electrical 

activity (EAdi). When EAdi exceeds an upper threshold Pressure Support 

Ventilation (PSV) is incrementally increased. When EAdi falls below the threshold, 

the controller decreases PSV. This mode of ventilation was named Target Drive 

Ventilation (TDV). The system was tested in eleven health individuals who were 

breathing through an increased workload (flow resistance) mouthpiece. During the 

first test the threshold of EAdi was identified by an average value. Following this 

test, subjects were assisted in their ventilation while using a bicycle ergometer. 

Results have shown that it is possible to adapt the level of ventilatory assist based on 

changes in the respiratory drive, detected using the EAdi signal. Limitations of the 

approach include the initial test for evaluating the threshold, in which the subject has 

to breathe unassisted, something not always feasible in ICU patients. In order to 

improve expiratory synchrony, the authors used a neural cycling-off algorithm. The 

uses of such an algorithm lead to constant breathing cycle times, in contrast to 

physiological ventilation where changes both in respiration frequency and volume 

occur to compensate for metabolic demands. Finally results gained from the use on 

healthy subjects do not automatically apply to patients with lung pathologies. 
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Proportional Assist ventilation (PAV) is a pressure support ventilation method that 

adapts pressure support level throughout the inspiration phase. The pressure support 

changes in relation to volume and flow, thus allowing patient to have full control 

over breathing. The proportionality between flow and airway pressure is determined 

by a clinicians’ gain setting; the settings is set according to respiratory lung 

mechanics. PAV was first described by Younes et al (Younes M et al, 1992), utilising a 

piston ventilator. Similarly Chua et al (Chua L.P et al, 1997) and (Li N et al, 1997) utilized 

a linear actuator to collapse a bellow for producing the calculated pressure support. 

Lua and Shi (Lua A.C & Shi K.C, 2006) suggested a proportional solenoid valve (PSV) 

for regulating airflow to patients lungs. Based on lung mechanics the controller 

calculates a theoretical airway pressure target. The pressure target is used as a set 

point for a Proportional Integral Derivative (PID) controller, which utilizes actual 

airway pressures and deviation from the set point, for controlling the solenoid 

function. Authors have tested the PAV-PSV controller on breathing simulators 

capable of simulating changes in lung mechanics and on healthy volunteers with 

artificial change in lung mechanics. In both occasions PAV-PSV was capable of 

“comfortably” ventilating subjects. PAV is commercially available by Siemens-

Draeger. 

Luepschen et al (Luepschen H, 2007), developed a PID controller for automatically 

adjusting the FiO2 for maintaining the oxygen saturation in the range of 90-92%. The 

controller was tested against an ARDS Simulink (Matlab) model, by varying the 

PEEP level. Authors concluded that their approach exhibited a trade-off between 

robustness and performance. 

Rees et al (Rees S.E, Allerod C, Murley D et al, 2006), presented a DSS system for bedside 

use. The core of the system was a mathematical model of respiration physiology. 

However the model variables were fitted to patient specific physiology based on 

collected database physiology data. The systems interface allows clinicians to 

answer “What if” questions, by applying trial and error procedures on the physiology 

model rather than the patient. Additionally the system was capable of suggesting 

ventilator settings of tidal volume, respiration frequency and FiO2. Suggestions were 

made based on mathematical functions, called penalty functions. Penalty functions 

quantify the clinical preference to the goals of ventilation. The DSS utilizes gradient 

descent method for optimizing ventilator settings. The systems’ operation was 

illustrated by a single patient example. However no numerical data were provided on 
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the efficiency of the proposed ventilation. Additionally the penalty functions were 

designed with the input of experts, introducing subjectivity to the system. 

Allerod et al (Allerod C et al 2008), evaluated a DSS system based on mathematical 

models of respiration physiology. The system produces advice on tidal volume, 

breathing frequency and FiO2. Experimental procedures we used for estimating 

models’ variables. This step is performed to make the model patient specific. The 

quality of the model is evaluated by comparing the measured and modelled values. 

The system was evaluated retrospectively against recorded data from 20 patients. 

The DSS suggestions were compared against the intensive care physician. The 

mathematical model evaluation performs very well with mean difference between 

measured and simulated values in the range of 0.0 to 3.0 However the DSS 

suggestions on ventilation settings exhibits large deviations from clinicians’ 

suggestions. Tidal volume difference ranged from 0.2 to 0.9 ml/Kgr. FiO2 was 

persistently suggested lower than the clinicians’ suggestion (0% in one case to 17%). 

Breathing rate suggestions closely followed clinical decisions. 

 

3.1.2 Expert Systems for Ventilation Management. 

In 1985, Miller (Miller P.L, 1985) suggested a ventilator management advisor system 

named VQ-ATTENDING. The system collects medical condition inputs from the 

physician, the current set of Arterial Blood Gases (ABSs), the ventilator settings and 

the physician’s proposal for the new settings. The output of the system due to 

complexity of the task, as commented by the author, is limited to ventilator settings 

of FiO2, PEEP, RR, VT and Dead Space. The output is not only a suggestion on new 

ventilator setup, but also a critical view on the strategy of patient’s management. The 

system is built on multiple levels of “If .. THEN..” production rules. The systems 

goals adapt to patient needs depending on type and severity of disease and current 

ventilatory support. The rule base is in fact a “backwards-chaining” inference 

system, since the conclusions of rules become inferencing goals which the system 

confirms by investigating other production rules. However, the major drawback of 

such a system is that when multiple rules are simultaneously fired conflict on 

proposed solution might exist. The author overcomes this disadvantage by assigning 

priorities to goals. The system is based on binary logic, where crisp values are 

associated with premise and consequent. The method for the design of rules is not 
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analyzed.  It is a complex approach of multidimensional production rules, but there 

is no presented evaluation of the proposed model. 

In 1989, Shahsavar et al (Shahsavar N et al 1989) proposed an object oriented rule base 

system (KUSIVAR) for the support of three phases of ventilation management, 

initiation, treatment and weaning. The knowledge representation is structured in an 

object oriented format, where numeric values have been transformed into symbolic 

values (eg.PaCO2=9.05 kPa, is transformed to “Very High”), according to a crisp 

classifier. Rules have been added latter with the help of a knowledge acquisition tool 

named KAVE (Shahsavar N et al 1995). The knowledge base contains mathematical 

models for estimating and optimizing unavailable variables. However there is no 

reference or description of the models. The Inference engine works with forward 

chaining production rules. The model was evaluated in 1995 by Shahsavar et al 

(Shahsavar N et al 1995), once the rule base has been established. Evaluation of the 

system showed 75% agreement between system and clinical outcomes in initiation 

phase. During treatment and weaning phase the system made less wrong 

recommendations than the physicians. 

East et al (East T.D et al, 1990) presented and evaluated a computerized protocol for 

mechanical ventilation. Flow chart protocols were developed with the feedback of 

clinical personnel. Paper flow charts for ARDS patients, were evaluated and 

computerized. The computerized protocols were initially tested against 

retrospectively collected patient data for validation purposes. The proposed system 

was tested on 61 adult ARDS patients. Researchers have shown that 83% of protocol 

decisions were followed clinically. 

In 1993, Rutledge et al (Rutledge G.W et al 1993) developed a ventilator management 

advisor named VentPlan. The model incorporated both qualitative and quantitative 

values. The VentPlan consists of four components. A belief network named VPnet, 

which included diagnostic, monitored and intermediate nodes, a mathematical 

model, a plan evaluator and a graphical interface. The VPnet represented medical 

conditions such as Sepsis, Pneumonia, in binary format, with prior probabilities, and 

combined these diagnosis nodes with hemodynamic data to produce quantitative 

variables for the physiological model. VPnet classifies the diagnostic variables into 

classical sets and based on probability distribution produces mean and standard 

deviation values for the physiology model. The mathematical model is a first-order 

differential equation model, describing the exchange of oxygen and carbon dioxide 
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in lungs and tissues, and transport through the body. The model estimates the 

probability distribution of variables based on population prior variable distribution. 

The estimate is strongly influenced by the clinical context. Based on updated 

variable distributions and the ventilator settings, the model makes predictions for 

partial pressures of gases in each model compartment. The plan evaluator provides 

ranking of plans. The attributes of the model are FiO2, PEEP, RR, VT. Determination 

of values is based on a function provided directly from physician’s experience. 

Values are weighted to obtain an overall value. As commented by the authors “This 

value assumes that the predictions for an alternative plan are certain. Taken into 

account the uncertainty of the model predictions, the plan evaluator calculates the 

expected value for each plan from the distributions for the predictions of each 

attribute, by making the assumption that these distributions are independent”. The 

authors have validated the components of the system based on clinical scenarios and 

sets of patient’s data. However during mathematical model validation the model 

recorded very high standard errors for blood gases. Evaluation of recommendations 

was carried out retrospectively. The study included 10 ICU patients. Suggestions for 

FiO2 disagreed in only two cases, while the rest of settings disagreement was raised 

to seven (7) out of fifty five (55) adjustments, mainly due to not incorporating 

permissive hypercapnia in the model architecture. 

Adaptive support ventilation (ASV) was introduced by Laubscher and colleagues 

(Laubscher T.P, Heinrichs W et al, 1994 IEEE & David M, 1994). ASV incorporates 

measurement tools and algorithms to select VT and RR to minimize work of 

breathing. ASV combines different modes of ventilation since it switches between 

control and spontaneous breathing. Clinicians set the desired minute ventilation and 

ASV adopts tidal volume and respiration rate based on respiratory mechanics 

measurements. ASV safeguards against hypoventilation, auto-PEEP and lung over-

distension trauma. ASV has been evaluated by Arnal et al (Arnal J.M et al, 2004) on 243 

patients. Authors found that ASV was capable of selecting specific breathing volume 

and rate settings for COPD and ALI-ARDS patients. Iotti et al (Iotti G et al, 2005) 

tested ASV in more than 80 patients and found that ASV was achieving the same 

arterial partial pressure of Carbon Dioxide as the clinicians but with lower minute 

ventilation. ASV is commercially available by Hamilton. 

Miksch et al (Miksch S et al 1996),  presented a therapy planning system named VIE-

VENT. VIE-VENT used temporal data abstraction techniques for validating patient 
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data and therapy planning. Patient data and data trends were classified into 

qualitative descriptions. The dynamic comparison algorithm used by the authors 

classifies data to a qualitative trend description. Based on the fitting of the data to the 

trend description the system suggests changes in therapeutic actions. The logic of the 

system is based on decision rules (“ if …then …else”) and classification of measured 

variables into classical sets.  The system was evaluated retrospectively on clinical 

scenarios. However there is no numeric evidence provided for the efficacy of the 

proposed system. 

Dojat et al in 1997 (Dojat M et al 1997) suggested a knowledge-based closed loop 

system (NeoGanesh) for the automatic control of pressure support ventilation. The 

system aims were to reduce the need for monitoring, improve weaning process and 

to reduce duration of ventilation. The system’s crisp inputs were the Respiration 

Rate, the end tidal Capnography, expressed in pressure units, the pressure support 

level and the tidal volume. The input data were classified in diagnostic categories. 

The knowledge representation was expressed in temporal reasoning. Temporal 

reasoning, (Ramaux N et al 1997) compares predefined scenarios which represent the 

knowledge-base, to current events (sessions). The temporal reasoning proposed 

introduced the mechanisms of aggregation of similar situations and forgetting of non 

relevant information. Temporal abstractions were used to assess the time course of 

patient’s disease status. Object oriented programming creates instances of subclasses 

to be matched by rule variables for a given rule. In this way a new rule base defined 

as a subclass inherits all the old rules. This was named inherited rule base, allowing 

knowledge base to evolve. Finally a subtask named Action Planning determines the 

new ventilator settings.  

The initial target of the system was to maintain the ventilated patient in a comfort 

zone (12<RR<28, VT>300ml, ETCO2<55mmHg). The second target was to assist 

weaning process. Recommendation for weaning to the clinician, was stated when 

pressure support drop bellow a threshold. Clinical evaluation of the model on ten 

(10) patients (Dojat M et al 2000), reveals that mean duration in ventilation support was 

slightly higher with the proposed model compared to standard procedure (24h 

compared to 23h). However automatic pressure support showed longer periods of 

ventilation in the comfort zone that standard ventilation (93% compared to 66% 

respectively). Overall results supported the research hypothesis that continuous 

support pressure adjustment may facilitate weaning process.  
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A second evaluation was performed in 2005 (Bouadma L et al 2005). In their work 

authors concluded based on results from 43 patients, that the system ventilated 

patients within comfort zone 64% of total time. The difference from the previous 

evaluation was attributed to technical problems in end tidal CO2 acquisition. 

Weaning readiness was detected earlier than intensivists in 17 cases. 

The distinct characteristic of NeoGanesh architecture is the knowledge base 

representation. However this was originally developed on available data and 

clinicians’ expertise which limit the performance to clinical specific ventilation 

strategies. Furthermore the classification of input data to classes, named states by 

authors, is based on classical set theory (e.g. Normal set), which by itself provides 

binary representation to the forward chain rule base. Thus the main advantage of the 

knowledge base relies on the chain of events preexisting knowledge rather than on 

the representation of the current states. 

Neurally adjusted ventilator assistance (NAVA, Sinderby C et al, 1999), collects 

electromyographic activity with the use of an esophageal catheter, to record the 

diaphragm activity. The system based on muscle effort generates a proportional 

airway pressure. NAVA results in a better patient – ventilator synchrony. The 

pressure support could be adjusted to patient needs. 

Tehrani and Roum (Tehrani F.T, Roum J.H, 2008) presented a rule and model based DSS, 

named FLEX. FLEX use a predefined decision tree and a mathematical model for 

calculating ventilator settings. FLEX system is capable of weaning patients applied 

in a closed-loop setting. Many of the FLEX rules apply according to predefined 

thresholds, allowing flexibility based on patient’s conditions. The system was tested 

against clinicians’ recommendations in a 24h interval. Although authors present 

results and suggest small deviations from clinical recommendations, the 

disagreement of FLEX exhibits big variations. As authors comment:” Thus the 

predictive minute ventilation value for FLEX is well within the expected variability 

for this variable (20%), supporting the utility”. FLEX provides decision support on 

minute ventilation, respiration rate, PIP, FiO2, PEEP and I/E. The mathematical 

model as well as the decision rules utilize recorded (automatically or keyed) 

physiology variables; namely blood gases (PaO2 or SpO2, PaCO2 or ETCO2), 

respiratory mechanics, ventilatory variables and ventilatory measured variables 

(spontaneous breathing rate, peak inspiratory pressure, tidal volume). The 

advantages of the proposed system are that it can be used in different modes of 
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ventilation, it can be applied to various pathologies and could be used as DSS or 

closed-loop weaning. The drawbacks could be summarized to the large variations of 

FLEX suggestions from the clinical data and the use of mathematical models for 

predicting desired outputs. The use of mathematical models includes coefficients 

which should be adjusted to the patients needs. However adjusting coefficients is on 

its own a problem of optimization. 

 

3.1.3 Hybrid Models for Ventilation Management. 

Kwok et al in 2003 (Mahfouf M 2006, Kwok H.F et al 2003) proposed the use of an 

Adaptive Fuzzy Inference System (ANFIS), for the control of the inspired FiO2. 

Their model utilized FiO2, PEEP and PaO2 as inputs to their system. The ANFIS 

method utilized training data from different clinical scenarios. Respiratory 

measurements, hemodynamic data, ventilator settings, body temperature and 

hemoglobin level were collected from seventy one (71) measurements from three 

ICU patients. These measurements were presented to nine (9) anesthetists, who were 

asked to advise on the FiO2 level. They were also presented with recorded data and 

asked to advice on inspired O2 fraction. A computer physiology simulator named 

SOPA Vent (Goode K.M, 1993, Mahfouf M 2006) calculated the resulted PaO2, and the 

new scenario was presented to the anesthesiologist. The scenario values at each 

sampling point were used for training data for the ANFIS Sugeno-type fuzzy 

inference system. The training cost function was the mean square error (mse) 

between scenario value and systems output. The training process resulted into 11 

rules for the inference engine. Simultaneously the authors developed a feed-forward 

multilayer perceptron (MLP), using the same training data. Evaluation of both 

systems and two previous designed models called FAVeM (Goode K.M et al 1998) and 

RBN-MB (Kwok H.F et al 2000) respectively, was made on data sets not used for 

training purposes. The output of all models was compared against clinicians’ advice. 

Results have shown that MLP was the best modelling approach to clinicians’ advice. 

The main drawback of this research lies in the simulation. As argued by the authors, 

clinicians’ advice may be subject to constrain due to simulation process. Moreover 

the development of training and test sets was based on the accuracy of the computer 

model to predict new physiological values. 
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In 2004, the same authors described the architecture of a hybrid model for ventilation 

decision support system (Linkens D.A et al 2004).  

Wang et al, in 2006, presented a new version of Simulation of Patients under 

Artificial Ventilation (SOPA Vent) model (Wang A et al 2006). SOPA Vent initially 

developed in 1993 (Goode K.M, 1993). The original SOPA Vent mathematically 

modelled the gas exchange during mechanical ventilation, by utilizing a large 

number of invasive and non-invasive measurements, demographic data and 

ventilator apparatus settings. The model consists of five compartments: the alveolar, 

the pulmonary, the arterial, the tissue and the venous compartment. The model 

equations are based on the work of Dickinson, which is briefly described in 

paragraph 3.1.1. Computing speed and need for invasive measurements were 

identified as the main limitations of the model. The new model does no longer utilize 

invasive measurements. To compensate for the non use of these measurements a 

neuro-fuzzy model was developed for the estimation of dead space. An ANFIS 

algorithm was used on data from control ventilated ICU patients, collected from the 

patient data management system of Royal Hallamshire Hospital ICU in Sheffiled 

UK. In order to identify model’s inputs, physiology and ventilation variables were 

correlated to dead space; those that scored higher were incorporated as inputs to the 

model. PaCO2, RR, tidal volume, Pinsp and PEEP were identified as inputs and were 

utilized for tuning the rule base of the fuzzy inference engine. The results have 

shown a good estimation of dead space. The same method was used for identifying 

input variables for the estimation of tidal volume. Patient’s weight, PEEP, PIP, and 

RR were the input variables for developing and training with an ANFIS algorithm 

the inference engine. To validate the final model authors feed the ventilator settings, 

ventilator measurement, demographic data and blood gas measurements to the model 

and evaluated the predictions of PaCO2 and PaO2 against real measurements. Results 

show a good prediction of arterial oxygen, but not so realistic estimation of arterial 

CO2. 

Kwok et al (Kwok H.F et al 2004) presented an advisory system for the control of FiO2, 

taking into consideration the bypass of venous blood to the arterial compartment, 

which is called a shunt.  This can be measured clinically using a pulmonary artery 

catheter (PAC), but it is not routinely available. The authors proposed a non-

invasively estimation of shunt based on high correlation (0.839) of respiratory index 

(RI) to shunt. RI is calculated by the following formula: RI=(PAO2-PaO2)/PaO2. 
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An ANFIS model and a linear regression model were fitted to the RI and shunt, 

based on data from ICU patient records of a teaching hospital. The mean estimation 

error of ANFIS model was lower than that of linear regression; this suggested that 

the relationship is non-linear. For the estimation of FiO2 Newton’s method, 

population median cardiac index and oxygen consumption were used. The evaluation 

of the FiO2 advisor was carried out by simulation on the SOPA Vent model. The 

study aimed to evaluate the change in PaO2 produced by the FiO2 recommendation, 

taking into consideration effective shunt. Comparison of the two methods for shunt 

estimation showed that FiO2 advisor made better recommendations when the ANFIS 

estimation was used. This is mainly due to the non-linear estimation of shunt. 

Limitations of the study include the uneven distribution of shunt values between the 

two groups during pseudorandom generation of groups, and the use of SOPA Vent 

model for testing advisor performance since models are a simplification of the 

respiration physiology. 

Liu et al (Liu F et al 2006), proposed a Neuro-Fuzzy system for modelling the 

clinician FiO2 setting process. The systems inputs were the current RR, PEEP and 

SaO2, as well the current FiO2 ventilator settings. The system was trained and 

evaluated retrospectively, based on a 20 day (1h sampling) record of BIPAP 

ventilated patients. The system utilized a Mamdani type FS. Initial rule base was 

updated when a new data sample was presented. The rules were ranked based on 

Hebbian learning rule. Additionally the system incorporated a rule reduction feature. 

The proposed system was benchmarked against other Neuro-Fuzzy systems showing 

superior performance both in terms of rmse and reduction of rules. 

Chen and Chen (Chen AH, Chen G-T, 2007) presented a ventilator weaning prediction 

system named VWPS. The core of the system was an Artificial Neural network that 

utilized 16 weaning features. The back propagation algorithm was trained with 

different training algorithms with a subset of the 121 collected datasets (2/3rds , 81 

datasets). The system was evaluated based on accuracy and sensitivity, on the 

evaluation datasets. The accuracy and the sensitivity score was delivered by a 

ranking 2x2 matrix that incorporated the following fields: Actual weaning successful 

or failure, predict weaning successful or fail. The evaluation method is not 

encountered in other relevant papers. Results are summarized in table Appendix V, 

table V.1. 
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3.1.4 Fuzzy Systems for Ventilation Management. 

In 1994, Sun, Kohane and Stark (Sun Y et al 1994), proposed an advisor FiO2 fuzzy 

system for mechanically ventilated newborn infants. The target of the system was to 

maintain oxygen saturation at a predefined level. The system utilizes two inputs, 

directly measured from a Nellcor pulse oximeter. The inputs are the error between 

target and measured SpO2 and the slope of SpO2 trends. The input variables were 

assigned seven (7) and five (5) fuzzy sets respectively. A rule base was designed by 

expert neonatologists. The system utilized weighted mean deffuziffication method. 

The system was tested on infants, providing suggestion and not directly controlling 

inspired oxygen concentrations. Patients with shunt and vasoactive medication were 

excluded from the test. Preliminary results show adequate operation of the fuzzy 

system. 

Schaublin et al (Schaublin J et al 1996) designed and evaluated a fuzzy closed-loop 

system for the automatic adjustment of tidal volume and respiration frequency 

during general anesthesia. The system’s target was to maintain end tidal CO2 at a 

predefined level, to minimize deviation of tidal volume and respiration frequency 

from normal values according to patient’s weight, and to maintain an acceptable 

pressure plateau. The system used five inputs, namely: difference between desired 

and actual end tidal CO2 fraction, the difference between actual and end tidal fraction 

of CO2 recorded 60 seconds before, current respiration rate, tidal volume/Kgr, and 

plateau pressure. The outputs were the change in minute volume/Kgr, and the change 

in breathing rate. The original rule base was designed with the help of clinical 

experts and it was modified in pilot studies. Center of gravity was chosen as the 

defuzzification method. The study was performed on 30 patients. Fuzzy logic control 

was compared with human control. Control time intervals were allocated randomly 

to anesthesiologists and fuzzy controller. Both anesthesiologists and controller were 

tested against maintenance of target end tidal CO2 fraction, and step changes of 

target value. Results have shown that maintenance of target value was performed 

with similar precision by both controller and humans, while the fuzzy controller 

responded better to step changes. The tidal volume, respiration frequency and 

plateau pressure, defined by the controller were within acceptable ranges. Arterial 

blood samples were taken during the process and results were within clinical 

accepted limits. 
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Nemoto et al (Nemoto T et al 1999), proposed a fuzzy algorithm for controlling the 

level of pressure support ventilation. The proposed system was designed with six (6) 

inputs, namely heart rate, arterial oxygen saturation, tidal volume, respiration rate, 

and respiration frequency and heart rate rates of change (Trends). The first fuzzy 

module translated these reading to a fuzzy mapping of patients’ condition rating 

from poor to good, divided into four categories. The second fuzzy module utilized 

heart rate and respiration rate trends as well as respiration rate values for producing 

Trend value. Trend fuzzy sets were assigned with stable, improving, deteriorating 

and crashing linguistic variables. The system’s output was the proposed percentage 

change in the level of pressure support, based on Condition and Trend output from 

the previous two fuzzy modules. The system was tested retrospectively on 13 

patients with chronic obstructive pulmonary disease (COPD). The fuzzy controllers’ 

decisions were compared against actually implemented changes by the attending 

physician. The agreement, within +/-2 cmH2O, for the first and second 24h period 

was 78% and 72% respectively. The architecture of the controller was based on non 

invasive variables and parameter trends. The choice of variables and fuzzy 

knowledge base was not based on a specific method. Furthermore the collection of 

variables was performed manually every hour by medical staff, which might have 

induced errors to the test data. 

Belal et al used fuzzy trend template fitting model for producing advice on neonatal 

ventilation management alerts (Belal S.Y et al 2005). Eighteen (18), variables were 

automatically collected from monitoring and ventilation equipment. Only three (3) 

were used as inputs to the model, the rest were collected for future analysis. Arterial 

oxygen saturation (SaO2), Transcutaneous O2 and CO2 (tcpO2 & tcpCO2), were 

tagged either as valid or artifacts, using algorithms suggested by other authors. The 

model is composed of first a fuzzy classifier and second a Mamdani inference 

engine. Trend template fitting was used. Trends of SaO2, tcpO2 and tcpCO2, were 

expressed qualitatively and compared to predefined fuzzy templates. If the trends did 

not follow, both in terms of direction and time, the normal expected behavior 

expressed by templates, clinical intervention would be necessary. Variables were 

qualified into seven categories, not by assigning membership values to fuzzy sets, 

but rather fulfillment degrees. Fulfillment was defined as a real value in the range 0 

to 1. The assignment of a fulfillment degree to a variable is based on the following 

logical approach: Fulfillment increases linearly from 0-1, when a variable is above 
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the target value, and decreases linearly when it is below the target. Targets for each 

variable are crisp values assigned by experts. The qualitative category was used as an 

input to the classifier. A similar method was adapted for the variables that qualitative 

describe trends. Variables were considered to follow under normal behavior an 

exponential function towards a normal range. If a variable converges in an expected 

way it may be qualitatively described as “normal”, otherwise it could be described in 

terms such as “fast increase”. If the slope (growth rate), falls between two growth 

limits, it is described as normal, otherwise is described as abnormal. Six qualitative 

categories were given for two scenarios, above and below target. Growth rate and 

growth limits were dynamically calculated every second. Qualitative trends were the 

second input to the classifier. A smoothing method was applied for calculating the 

qualitative categories for a specified time window. The time window was set by 

experts, but it was also user defined through software graphical interface. The 

Mamdani inference engine accepted as inputs the classifier output, and five user 

settings such as last ventilation change and suctioning. The inference engine 

produced alert advice on initiation of tcp calibration, suctioning, blood sampling 

and/or ventilation settings change. The system was validated against clinical staff 

decisions. Validation was made in terms of agreement, disagreement and no action, 

by direct comparison of produced advice to clinicians’ actions. Overall agreement 

was high (93%). 

Luepschen et al (Luepschen H et al 2005) presented a fuzzy logic controller capable of 

performing recruitment maneuvers for patients with Acute Respiratory Distress 

Syndrome (ARDS). The system was designed to perform the recruitment scheme 

called “open lung”. The fuzzy systems’ inputs were the Peak Inspiratory Pressure 

(PIP), the arterial oxygen partial pressure (PaO2), and its gradient (delta PaO2). The 

system was capable of controlling directly the pressure limit of a ventilator by 

incremental changes (d_PIP). The fuzzy controller incorporated a second output 

called “lung open”, in order to specify the change in phase of recruitment maneuver. 

According to open lung approach the maneuver is composed of four (4) phases, 

namely: Opening, closing, re-opening, and steady state. Signals and images from 

Electrical impedance tomography and CT scan were used to verify the progress of 

the procedure. Tests were performed on three female pigs which were under general 

anesthesia. ARDS was simulated to pigs by multiple lavages of saline solution. 
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Results were not statistically supported, but as authors comment “presented results 

are promising”. 

In 2005 a fuzzy logic open-loop controller was presented for optimizing the 

respiratory rate and tidal volume ventilator settings (Tzavaras A et al 2005). The fuzzy 

system was designed in four interconnected sub-systems, in an effort to decrease 

knowledge base complexity. The system’s inputs are: end tidal capnography, arterial 

oxygen saturation, cardiac output, body temperature, airways resistance and 

compliance, as well as patients’ height, age and weight. The main Mamdani 

inference engine produced advice on minute ventilation and lung mechanics time 

constant (RC). Rule base was developed based on respiration physiology and 

mathematical models proposed by other authors. Minute ventilation and RC constant 

were feed into the second Mamdani controller, which produced an initial advice on 

respiration rate (RR). The RR value was adapted to patient age by a gradient d_RR, 

which was provided by a third Mamdani inference engine. Finally a Mamdani 

controller considered the patients’ height and weight, and provided with a desired 

change in minute ventilation (d_VE).  

The system was tested by changing input values as singles or as pairs. The model 

performed according to accepted knowledge of respiration physiology.  It 

dynamically adapted ventilation settings for changes in lung mechanics, to 

compensate for deficiency to deliver large volumes by increasing respiration rate. 

Limitations include the derivation of rule base based on mathematical models, and 

the systems’ testing in non-clinical conditions. 

 

3.1.5 Hybrid Approaches in other Medical Fields. 

Weller et al (Weller P.R et al 2002) designed and evaluated a genetically tuned fuzzy 

controller for the intra-aortic balloon pump. The fuzzy inference engine was 

developed with two inputs (mean diastolic pressure and peak systolic pressure), and 

one output, the deflation time before the end of the cardiac cycle. Rules as well as 

input domains were designed with the assistance of a domain expert. Three fuzzy 

linguistic variables were assigned to each input-output. The system was trained and 

tested with the help of a standard cardiac model modified to simulate failing and 

intra-aortic balloon assisted heart. The membership functions were evolved for 100 
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generations. The final best individuals were tested successfully on the simulation 

model. 

Shieh et al developed and evaluated two genetically tuned controllers for the close-

loop control of bispectral index (BIS) during general anesthesia (Shieh J.S et al 2006). 

The first controller was developed on PID technology, while the second was a fuzzy 

inference engine. Both controllers were adapting drug infusion rate to the needs of 

simulated patients. GAs were used for tuning proportional, integral and derivative 

gain of the PID controller, and for tuning the shape (constant center) of the fuzzy 

engine membership functions. PID GAs initial population was randomly initialized, 

and gain variables were randomly chosen in the domain of 0 to 10. FLC was 

designed with input variables, namely error of BIS index, and change in error 

between current and previous samples. The FLC output was the change in drug 

(propofol) infusion rate. Each FLC variable was divided into five (5) linguistic 

membership functions. Rule base was developed with the assistance of domain 

experts, resulting into 25 rules. For testing purposes a patient model was developed 

based on genetic fuzzy clustering of clinical data from 12 surgical patients. The 

patient model was designed with two inputs, the propofol infusion rate and the body 

weight, and three outputs, the heart rate, the systolic arterial pressure and the BIS 

index. The systems fitness function was the mean square error (mse). The model 

incorporated trends of vital signs; if fitness function was optimal and trends did not 

agree with clinical data then the model was identified as not being optimal. Seventy 

two (72), virtual operations showed that both controllers were maintaining target BIS 

better than manual control in target level of BIS=50. The limitation of the method is 

the use of a patient model which is representative to the population used for its 

development. 

Curatolo et al (Curatolo M et al 1996) designed a fuzzy logic system for the control of 

the inspired oxygen and isoflurane concentrations during minimal flow anesthesia in 

30 patients. They developed two fuzzy controllers, controlling oxygen and isoflurane 

delivered concentration, based on a target value. The oxygen FLC utilized the error 

between the desire and actual concentration and the fresh gas flow as inputs. The 

isoflurane FLC utilized three inputs; the error between desired and actual 

concentration, its integral and the fresh gas flow. The authors do not provide detailed 

information about the FLCs. Both controllers were directly controlling a PID servo 

controller which was calibrated and exhibited linear response in the range of 0.5 – 5 
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L/min. Patients were randomly allocated into standard and control groups. 

Anesthesia was performed to the standard group by another technique due to lack of 

personnel experience. This difference in methods does not allow for direct 

comparison between the two groups. Another method for limitation is the use of 

different values for the control methods by clinical staff and FLCs. Clinical staff 

evaluated the end tidal concentration while the FLC operated based on delivered 

concentrations. However general assumptions could be made for the performance of 

the FLC. Results have shown that O2 concentrations remained between 28-30 vol% 

(target was 30 vol%), for a longer period than in the standard group. During steady 

state of isoflurane delivery, the controller maintained delivered concentrations +/- 

0.1 of target vol% in 94% of time. 

Linkens et al suggested a hierarchical structure based on fuzzy logic for monitoring 

the depth of anesthesia (DOA). The monitoring system was developed in two levels 

(Linkens D.A, Shieh J.S, Peacock J.E 1996). The first level was a self-organizing fuzzy 

learning algorithm. The FL system included heat rate and systolic arterial pressure as 

inputs variables. The authors developed the rule base of the system by using two 

different approaches. In the first, the rule base was developed from anesthetists’ 

experience, resulting into seven rules. Self organizing learning obtained 

automatically six rules from training input-output data. In order to include all 

possible situations, a suitable trial protocol was designed with the help of 

anesthetists. The first level output is the FL interpretation of primary depth of 

anesthesia (PDOA). In order to decide the DOA with more confidence, when the 

first level decided that DOA is light, a second level was developed. Based on 

linguistic rules of Sweating, Lacrimation and Pupil response, and a scoring system, 

the second level was able of deciding the degree of lightness of DOA. Levels one 

and two were merged to produce the confidence DOA. 

In order to test the system a linguistic model simulator was designed as an alternative 

to pharmacokinetic-pharmacodynamic model for propofol drug administration. The 

model was again build on two levels. The first level was concerned with induction 

stage. Three linguistic variables were assigned to propofol and fentanyl (high, 

medium and low).  Three linguistic variables were assigned to systolic arterial 

pressure and heart rate. The second level was concerned with the maintenance stage. 

Supply of anesthetic agents were divided into three categories increase, constant and 

decrease for propofol and high, low and zero for the amount of fentanyl. Systolic 
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pressure was divided according to anesthetist experience in five ranges for change. 

The proposed model was tested in clinical and simulation conditions. The first level 

fuzzy model has shown similar results when applied with expert and self learned 

rules. The patient model was tested by simulating three clinical scenarios. The 

patient model was further developed as presented in 2004 by the same authors (Shieh 

J.S, Linkens D.A, Peacock J.E, 2004). The linguistic patient model was adapted with 

linguistic definitions for fentanyl time constant for the induction and maintenance 

stage. The model was clinically validated both off-line and on-line in ten (10) and 

seventeen (17) patients under general anesthesia in 2005 (Shieh J.S, Linkens D.A, 

Peacock J.E, 2005). The off-line validation was performed on data recorded from 10 

surgical patients. Both rule base models worked similar. Deviation of the self 

organized rule base was within +/-15% to anesthetists decisions in drugs 

administration. Based on this the self organizing fuzzy model was used for on-line 

validation. Recovery times did not always agree between patient data and the model. 

For this reason rule base was adapted prior to testing it on-line. On line results have 

shown very low mean recovery time (7.8 min), when control was assigned to the 

model. However the final control of drug administration was always in the hands of 

anesthesiologist. The authors concluded that the systems’ second level should 

incorporate clinical signs to guarantee the safety of the patient. 

Nunes et al presented a simulation system replicating patients’ undergoing general 

anesthesia, during routine intravenous anesthesia (Nunes C.S et al 2005). The proposed 

architecture includes three components. The first component is a fuzzy relational 

classifier.  The classifier was trained with 2/3 of data gathered from surgical 

maintenance phase, the remaining 1/3 were used for testing purposes. The signals 

used for the training were Auditory Evoked Potentials (AEP), extracted from the 

EEG trace, with wavelet transforms. The AEP signals were clustered and the FLC 

specified the class membership of DOA. DOA was designed with five membership 

values, ranging from Awake to Deep. During the training phase, anesthesiologist 

opinion was the classification evaluation “golden standard”. Testing showed that the 

system was able to classify all the samples. A second classifier was developed based 

on cardiovascular variables (change in Heart Rate, HR and Systolic Arterial 

Pressure, SAP), but the performance was inferior to the AEP classifier. 

The second model is a patient model. The model utilizes propofol and Remifentalil 

infusions rates, and produce changes in HR, SAP and AEP features. Infusion rates 
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were feed into a three compartment Pharmacokinetic model, to determine plasma 

concentrations of drugs independently. An effect compartment, a hypothetical 

compartment describing the delay between plasma and effect concentrations, 

translated concentrations into effect concentrations, which were used as inputs to 

TSK fuzzy model. The TSK model was trained using ANFIS method. Each output 

variable was trained separately, resulting into three distinct TSK controllers, one for 

each model output. During training, TSK controllers for changes in HR and SAP, 

appear to smooth out the disturbances due to stimuli. 

The third component is the surgical stimuli model. This is a Mamdani inference 

engine. The engine describes the small changes in HR and SAP due to the perceived 

stimulus. The knowledge base was developed from domain experts. The model 

failed to take into consideration the observed delay between stimulus and effect on 

cardiovascular variables. 

The authors have tested the proposed model in a series of open loop simulations 

(Mahfouf M, Nunes C.S et al 2005). The AEP-FRC applied to maintenance phase, while 

during the induction phase a cardiovascular RFC was used instead. The model was 

described as performing adequately concerning the effects of stimulus to HR and 

SAP, while the administered drug concentrations were within range. 

The model was also tested in closed-loop simulation. To perform this task an FRC 

system was developed for adjusting the drugs infusion rates. The infusion rates were 

adjusted according to DOA level, suggested by the proposed model. The infusion 

FRC suggested changes in Reminefantanil in two cases through linguistic rules, and 

propofol infusion rate during specific scenario. The fuzzy controller performing the 

adjustments to propofol, was trained in terms of tuning the scaling factors with the 

use of GAs. The system was capable of adjusting infusion rate of both administered 

drugs, during the simulated scenarios, taking into consideration the drugs synergism. 

 

3.1.6 From theory to ICU clinical practice 
 
While most of the suggested research that was described in the previous paragraphs 

has failed to impact outcomes, few have been commercially applied. 

Proportional assist ventilation (PAV), suggested by Younes (Younes M 1992) is 

available by Tyco Carlsbad USA and as PPS by Siemens Draeger Medical, Germany 
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(Lellouche F, 2009).  Neurally adjusted ventilatory assist (NAVA), suggested by 

Sinderby (Sinderby C et al 1999), has recently become available by Marquet Critical 

Care, Sweden (Lellouche F, 2009). Adaptive support ventilation (ASV), was based on 

the work of Otis (Otis AB, 1950) and Mead (Mead J 1960) suggesting that for a given 

minute ventilation there is an optimum respiration rate and tidal volume setting. This 

mode of ventilation is commercially available by Hamilton Medical, Switcherland 

(Lellouche F, 2009). SmartCareTM, is the commercial name of NeoGanesh (Dojat M et al 

1997). This is the only knowledge based intelligent system available in clinical use. It 

was built and commissioned in 2003 by Draeger Medical, Germany. 

Current Regulatory framework does not require the evaluation of the outcome of a 

new mode of ventilation. As Branson (Branson RD 2005) comments “Manufacturers 

need only to demonstrate engineering success in a lung model in order to obtain 

marketing approval through the Food and Drug Administration’s 510(k) process; 

patient studies are not required.”. 

In a recent study by Branson and Joahannigman (Branson RD, Joahannigman JA, 2004), 

the evidence on improving outcomes was categorized and published research was 

graded. Grading was performed on a scale of A to D as shown in the following table. 

 

Table 3.1: Evidence level grades (taken from Branson RD, Joahannigman JA, 2004) 

 
 

In Branson’s (Branson RD, Joahannigman JA, 2004), bibliographic grading of the evidence 

levels, only one study by Fernandez-Vivas M et al (Fernandez-Vivas M et al, 2003) of the 

PAV mode was graded with A. This reveals that there are insufficient data for 

providing evidence that new ventilation modes improve outcome. 
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4. Methodology 

4.1 Methodology strategy  

As presented in chapter 3, many authors have approached the problem of optimizing 

ventilation management utilizing different technologies and methods.  

Section 3.2 identified the major differences and drawbacks of the suggested systems. 

In order to advance the research in this area, researchers have to provide answers in 

the following questions: 

I. How can the developer reduce or even eliminate subjectivity from the systems 

architecture and decision making logic? 

II. Which is the most suitable approach – technology for developing systems that 

optimize ventilation management process? 

III. Which evaluation method is optimal for testing the developed systems in their 

preliminary stage? 

Published research that utilizes experts’ feedback in the development of the models 

architecture introduces subjectivity to the systems. Therefore it is crucial to 

implement a method that reduces the requirement of experts’ feedback. Concerning 

the basic systems architecture, translated as input and output variables of the 

systems, most authors make choices based on previously published work, available 

respiratory physiology models and experts’ feedback. Although experts’ feedback 

should not be excluded from the designing stage, since “mimicking their logic” is the 

research target, the method should incorporate a system of reducing subjectivity. 

Statistical analysis has always been an excellent tool for pursuing this goal. 

Decision trees, Fuzzy systems, computerized protocols and knowledge base systems 

have in common the need of experts’ input to the system’s logic. Although 

respiration physiology models are an attractive alternative, the need of coefficients is 

also a source of subjectivity and specificity. Hybrid models, on the other hand, are 

capable of optimizing their architecture and decision making process while 

eliminating or minimizing expert’s feedback. However the performance of the 

hybrid systems is also a function of the size and quality of the available training sets. 

Intelligent models show a large variation in their internal architecture. ANNs have 

been around for a long time and their efficiency has been exhibited in many medical 

applications. However ANNs suffer from the black box syndrome, where the 

developer is faced with a trained decision making engine which has no transparency 
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of its operating principles. Neural Networks driven fuzzy systems, improve the 

problem of transparency, but only in terms of input and output domain partitioning. 

Neuro-Fuzzy method overcomes the black box problem. It uses the strengths of 

ANN for producing transparent to the end user, fuzzy systems. Evolutionary 

algorithms applied on fuzzy logic have also gained their respect in the medical field. 

They also provide a means of optimizing systems architecture for a specific problem, 

while the end product of the optimization process is a comprehensive model.  

Since there are no comparative studies on the appropriateness of intelligent models, 

applicable to the ventilation management process, one cannot make decisions on the 

optimum method. For this reason the presented research attempts a preliminary 

evaluation of the intelligent methods on the problem in hand. 

It is clear that the optimum method for evaluating a medical system is the application 

of the system to laboratory animals, or on volunteered humans. However such an 

approach requires a system that has already passed a preliminary qualification test. 

In the last decades the evaluation of a system based on a model of physiology has 

gained acceptance. However the evaluation of a model based on another model 

(evaluation model) has obvious and hidden drawbacks. Some of the drawbacks are: 

(1) the tested model’s performance depends highly on the efficiency of the 

evaluation model. (2) The tested system’s architecture is constrained by the available 

variables of the evaluation model. (3) The generalizability of the tested model is 

confined by the specificity of the evaluation model. 

Hybrid models are commonly tested against a sub set of the collected data. This 

approach evaluates the performance against unused data (data not used for training 

purposes), thus evaluates the models performance against clinical decisions. Real 

clinical decisions, and not expert scenarios, are considered the golden standard. It is 

obvious that modelling a human process can only be evaluated against clinical 

outcomes. Since the ultimate measure of clinical outcomes is patient’s survival the 

use of clinical decisions that produced such an outcome is the suggested evaluation 

method. Although such a retrospective evaluation is considered sufficient, there are 

many limitations. The most important limitation is expressed very fluently by the 

Nobel laureate in Physics Nils Bohr: “Prediction is very difficult, especially if it’s 

about the future.” (Univ. of Exeter). Decision making in uncharted areas is a major 

problem of models’ efficiency. The problem is minimized by increasing the quantity 

and the quality of the available training sets. Increasing the data sets quantity during 

the training phase, allows the model to account for the common incidence 
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encountered in a particular problem. Thus the increased quantity decreases the 

model’s specificity. However quality is concerned with accuracy of data and 

appropriateness for the task. In ventilation management, accuracy is an important 

issue. Furthermore models could not always distinguishing false and inaccurate 

measurements, as clinicians do. Additionally appropriateness is also important. Are 

the collected variables representative of the process? Is the process described by a 

single category or the process, as well as the collected data, has to be assigned to 

subcategories? 

The following sections briefly describe the method chosen for the proposed research. 

The choice of the methods as well as the evaluation methods have been designed so 

as to overcome the stated problems. 

 

4.2 Methodology overview 
 
The methodology is presented in steps according to their logical and chronological 

order: 

4.2.1 Identification of key variables to the problem 
 
In an effort to decrease the number of models’ variables (search space), a 

questionnaire was developed and circulated to ICU doctors for identifying the 

relative importance of respiration related physiology and ventilator settings 

variables. The questionnaire was prepared with the cooperation and assistance of 

ICU personnel of Agia Olga (Konstantinopoulio) General Hospital of Athens. 

Eighteen (18) ICU doctors of Ag. Olga, Thriasio and Nikaia general hospitals of 

Athens-Greece answered the questionnaire. Answers were collected, encoded and 

statistically analyzed. This process intended to reduce the problem’s search space, 

namely the input and output variables participating in the models design. 

 

4.2.2 Data collection 
 
The set of variables identified in step 1 (section 4.2.1), were recorded during the 

patient data acquisition phase. Acquisition was performed automatically with the use 

of certified medical software, in two ICUs; namely the ICU of University Hospital of 

Heraklio-Crete (PAGNI) and the ICU of Navy Veteran’s General Hospital of Athens 
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(NIMITS). Sufficient patients’ data, for the purpose of preliminary evaluation of the 

models, were collected from eight ICU patients with different pathologies, all 

ventilated in control mode. The three pathologies utilized for the purpose of the 

research, namely COPD, ALI-ARDS and Normal lungs, are representative of lung 

mechanical properties for the common health related patient categories described in 

section 2.2.1. The utilization of two ICUs for the data collection was to establish a 

database that would include possible differences in strategies on ventilation 

management. 

 

4.2.3 Database development  
 
The recorded data (approximately 70h records) were classified by the ICU medical 

staff of PAGNI into three lung pathologies. The three categories were COPD, ALI-

ARDS and Normal lungs. For each category a database was developed. The database 

included all the measured variables in time intervals of five (5) minutes. The total 

number of data sets in all categories was eight hundred and forty one (841). A 

second database was developed which included only the recorded data at time 

instances when ICU clinical staff applied changes to ventilator settings (29 records). 

Recorded data were randomly allocated into training (60%) and evaluation (40%) 

sets. Data sets were scaled in the range of zero to one, and a normalized database 

was formed. 

 

4.2.4 Data Analysis 
 

The recorded data were further analyzed using correlation, in an attempt to identify 

strong relationships between output variables (ventilator settings) and input data 

(physiology variables). This analysis was performed on the grounds of the following 

research question: “Is the decision making of ICU clinicians on ventilator settings 

performed on a subset of measured variables? Does the subset vary between 

different lung pathologies? Could the analysis of real data including monitored 

variables and ventilator settings reveal clinicians decision making pattern?”. The 

analysis revealed that a subset of input variables exhibited higher degrees of 

correlation with output data. The number and type of input data varies with lung 

pathology and ventilator setting. 
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4.2.5 Evaluation of data analysis 
 
To confirm that the correlation analysis provided medical acceptable results, three 

clinical evaluators from different hospitals were asked to comment on our findings. 

The number of evaluators was restricted by the number of participating hospitals. 

Evaluators were working in PAGNI, NIMITS and Ag. Olga hospitals. Evaluators 

were asked to classify the correlation coefficients into one of three decisions: 

accepted, rejected or accepted under given conditions. Based on a voting process, the 

physiology variables that exhibited high correlation degrees with ventilator settings, 

and were accepted by the majority of evaluators were chosen for use in the 

development of the intelligent systems. 

 

4.2.6 EVOFINE Toolbox development 
 
Two Matlab® toolboxes were developed and tested for the optimization and learning 

of fuzzy systems. The first toolbox, named EVOFINE (EVolution Of Fuzzy 

INference Engines) evolved fuzzy systems assuming no prior knowledge, based only 

on available recorded patient data. The search for the optimum fuzzy system was 

performed simultaneously on fuzzy sets and fuzzy rules. Fuzzy Sets were allowed to 

change linguistic variables size and position within predefined limits, so as not to 

lose their linguistic meaning. The Rule Base was optimized both in rules’ definition 

and rules’ weight. The only preset variable was the number of rules and fuzzy sets. 

The Pittsburg approach was chosen as the appropriate evolutionary method (Cordon 

O, Herrera F, et al, 2001,).  

The software tool was developed in Matlab version 7.1 (®Mathworks), in order to 

simplify user interface for training settings, as well as viewing of GA results. The 

software preformed the evolution of fuzzy inference engine, as well as storing 

experiment settings and results. Evolution was performed with a customized-

modified version of the Sheffield University’s GAs toolbox (Evolut. Comp. Research 

Group 1994).Several other features were incorporated into the developed software, 

such as choice of Scaling function, evolution using constant or variable mutation 

rates, choice of membership values type and user defined input and output variables. 
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4.2.7 FUN Toolbox development 
 
The second toolbox was named FUN (FUzzy Neural). The software was also 

developed in Matlab version 7.1 (®Mathworks). A simplified user interface allowed 

the user to specify the fuzzy system setup as well as the Neural Network 

architecture. The toolbox develops the Rule Base of a Fuzzy system by substituting 

the rules with a NN, based on available input – output data sets. 

Both toolboxes were designed and developed in a general context and not for the 

specific application.  

 

4.2.8 Toolbox evaluation 
 
The performance of the EVOFINE and FUN toolboxes was tested against non linear 

mathematical function and a dynamic control systems namely the cart balancing pole 

system. This evaluation was performed for determining the robustness of the 

proposed toolboxes. Both toolboxes were applied to build models of multi input – 

single output (MISO) functions namely the z=sin(x*y), and cart pole control 

systems. The performance was tested by means efficiently mapping the three 

dimensional non linear function and efficiently balancing the cart pole respectively, 

in predefined input and subsequently output domains in terms of root mean square 

error (rmse) and pole balancing time. This stage compared the performance of the 

two suggested approaches in developing intelligent fuzzy systems of non linear 

mathematical functions and dynamic systems, against ANN and ANFIS methods. 

Detailed analysis on the tests performed is presented in Appendix III.  

4.2.9 Evaluation of systems architecture 
 
We conducted small scale experiments to identify the appropriate GA, Fuzzy, neural 

network, FUN and ANFIS architecture. Criteria were the performance and the 

simplicity (translated as computation time) of the models. 

The experiments performed on the proposed soft computing methods, were carried 

out in order to derive “rules of thumb” that would be latter applied on the 

development of the mechanical ventilation models. Although for ANN and ANFIS, 

the rules of thumb are known, such as relationship of data set size and NN 

complexity, this was not true for the new toolboxes; namely the EVOFINE and 

FUN. Based on the experiments the main characteristics of the systems such as RB 
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size, damping or constant mutation rates, defuzzification technique, were evaluated. 

Conclusion from the preliminary evaluation were used in the development of the 

ventilation models. 

Furthermore the process of correlation analysis and evaluation resulted into 

simplified model’s architectures in terms of input variables to each model. Reducing 

the number of input variables reduces systems complexity but also adapts the models 

to human perception of the process. 

 

4.2.10 Mechanical ventilation advisory models 
 
Development of the AI models was based on the results of sections 4.2.5 to 4.2.9. 

EVOFINE, FUN, ANFIS and ANN Matlab toolboxes were applied for the AI system 

models. Different models were developed for each pathology (COPD, ALI-ARDS & 

Normal), by utilizing the recorded patient training data. Models used the MISO 

architecture, where the inputs were the highly correlated physiology variables and 

output was one of the ventilator settings. For each category six (6) AI system models 

were developed, one for each ventilator setting, with the use of the four proposed 

methods.  

 

4.2.11 Models’ evaluation 
 
The resulting AI systems were tested against evaluation data. Performance was 

measured in terms of root mean square error and absolute mean error between 

clinicians recorded actions and model’s advice given as an error and as percentage 

error. Evaluation included also the development computation time. Computation 

time is not important in the development phase of a system, but is crucial during the 

maintenance phase when models have to be retrained with newly available data. 

Furthermore patient scenarios from the collected data were developed and presented 

to ICU clinicians. The purpose of this evaluation was to identify whether the 

difference between the developed models suggestions and the clinical applied 

decisions was clinically significant. The clinical decisions difference on the patient 

scenarios provided an upper medically acceptable limit of disagreement between 

clinicians; thus the upper acceptable limit of disagreement between the models 

decisions and applied clinical decisions on ventilator settings.  
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Clinicians presented with patient scenarios and were asked to advice on ventilation 

settings. The doctors’ advice was then statistically analyzed. The outputs from the 

models were compared against the clinicians’ advice for the same scenarios. The 

analysis was performed in order to investigate whether the models’ disagreement 

with clinical decisions was within the range of clinical disagreement on scenarios. 

Finally we compared the four approaches performance and concluded on the 

appropriateness for research purposes. 

 

4.3 Research Ethics 

Ethical approval was obtained for all research phases which involved collecting 

human data. Prior to circulation the questionnaire was granted ethical approval for 

the methods, human resources and materials, by the ethical committee of the 

department of Medical Instrumentation Technology of the Technological 

Educational Institute (TEI) of Athens (www.teiath.gr). Due to lack of an appropriate 

dedicated institutional ethics committee in the Universities and the Technological 

Institutes in Greece, the department’s ethics committee acts under exceptional 

circumstances. The duration from application to approval for acquiring ethical 

approval by the department’s committee was less than a month.  

For the collection of patient physiology data, the ethics committee of the University 

Hospital of Heraklio Crete (PAGNI) granted the approval (www.pagni.gr). We have 

fully complied with the ethics committees guidelines for these institutions. Patients’ 

data were collected directly from digital outputs of medical equipment by using 

certified medical software and cabling. Data collected included basic demographics, 

relevant to our research and physiology variables and ventilator settings and not 

patient information that could reveal a patient’s identity. Throughout the report 

patients are referred to with a numbering system. 
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5. Questionnaire Development & Evaluation 

5.1 Questionnaire 

A questionnaire (available in Appendix VI) was prepared and circulated to ICU 

doctors of three General Hospitals namely Konstantinoupolio (former Agia Olga) 

general hospital, Thriasio general hospital and Nikaia general hospital. 

The purpose of the questionnaire was to collect data on ventilation related variables, 

in order to derive, with the use of statistics, the relative significance of patient 

physiology variables and ventilator settings, according to doctor’s experience and 

expertise, on the process of Ventilation Management in controlled ventilated 

patients.  

This would result in minimizing the research search space and so reduce the number 

of input and output variables for our models, and thus reducing complexity during 

the development process.  

5.1.1 Development 
 
Five groups of ventilation related variables have been identified with the assistance 

of the ICU clinician personnel of Konstadinoupolio (former Agia Olga) general 

hospital. For this purpose a series of three meetings were held at the hospital, 

together with an introductory presentation about the purpose of the research project. 

The variables were grouped according to the acquisition method, and the physiology 

principle they describe. The final grouping is described in table 5.1. 

A questionnaire (available in Appendix IV) was prepared and circulated to ICUs 

doctors of three General Hospitals namely Agia Olga general hospital, Thriasio 

general hospital and Nikaia general hospital.  

In order to promote understanding of the purpose of the research, the first page of the 

questionnaire described the research as well as the purpose of the questionnaire. A 

second page followed with completion and mailing guidelines. 
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Table 5.1: Variables’ grouping. 
Variables Groups Variables 

Patient Demographic Data 

Patient’s Age 

Patient’s Height 

Patient’s Weight 

Patient’s Sex 

Non Invasively acquired 
variables 

Arterial Oxygen Saturation (SpO2) 

End Tidal Capnography (ETCO2) 

Heart Rate (HR) 

Core Body Temperature 

Extremes Body Temperature 

Blood Gases 

Partial Pressure of Oxygen in Arterial blood (PaO2) 

Partial Pressure of Carbon Dioxide in Arterial blood (PaCO2) 

Hydrogen Ions Concentration in blood (pH) 

Concentration of HCO3 in blood 

Oxygen Saturation of Central Vein blood (SVCO2) 

Partial Pressure of Oxygen in Venous blood (PvO2) 

Partial Pressure of Carbon Dioxide in Venous blood (PvCO2) 

Oxygenation Index (PaO2 / FIO2) 

Volume, Flow and airway 
pressures. 

Expired Volume (Ve) 

Mean airway Pressure (PMEAN) 

Maximum-Peak Inspiratory airway Pressure (PIP) 

End-Inspiratory Pause Pressure (PPLATEAU) 

Intrinsic PEEP (Auto PEEP) 

Lung mechanics 

Lung Compliance (C) 

Airway Resistance (R) 

Work of breathing (WOB) 

Hemodynamic variables 

Cardiac Output (CO) 

Mean Pulmonary Artery Pressure (ΜPAP) 

Variation of Systolic arterial pressure 

Central Venous Pressure (CVP) 

Pulmonary Capillaries Wedge Pressure (PCWP) 

Ventilator Settings 

Minute Ventilation (VE) 

Tidal Volume (VT) 

Respiration Rate (RR) 

Positive End Expiratory Pressure ( PEEP) 

Fractional Inspired Oxygen (FIO2 ) 

Maximum allowed airway Pressure (Ppeak or Pmax) 

Inspiration Time / Expiration Time ratio (I/E) 

Maximum Inspiratory Flow (Fpeak or Fmax) 

Inspiratory Pause 

Inspiration Flow Pattern 
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The questionnaire was designed with closed questions, where answers were scored 

with an analog rating scale from 0 to 10. Zero (0) described a variable of small 

significance for the process of ventilation management, while ten (10) was used for a 

variable of high significance. 

Five major categories of physiology variables were proposed. ICU clinicians were 

asked to classify their relative importance in ventilation management decision 

making. The categories are shown in the left column of table 5.1. 

In total 26 physiology variables have been identified. These variables are utilized by 

ICU doctors during control ventilation management for estimating the adequacy of 

mechanical ventilation. In addition 4 variables were included in the questionnaire 

(patient’s Age, Weight, Height and Sex), describing the initial phase of ventilator set 

up. 

The above 26 variables summarized the doctor’s feedback for the efficiency of the 

ventilation process. Doctors utilize the trends and values of these physiology 

variables in combination with patient’s pathophysiology and pharmacology, to 

evaluate the adequacy of ventilation. If ventilation is judged as insufficient, then 

doctors induce changes to ventilator set up to improve patients’ ventilation. For that 

purpose 10 variables (bottom of Table 5.1), which describe the most important 

settings of the ventilator apparatus, have been included to the questionnaire. 

 

5.1.2 Coding 
 

Coding is the process of formatting qualitative answers in a way that can be 

statistically analyzed. For the purpose of analyzing data, the responder’s answers 

from the first two fields were coded as follows: 

 Sex was coded as 1 for male and 2 for female responders. 

 Patient age was coded into groups of 1 (18-35 years), 2 (36-45 years), 3 (46-

55 years) and 4 (56-70 years). 

The remaining fields were recorded into a spreadsheet format, for direct statistical 

analysis, since the numerical scale of the answers did not required any further 

processing. 

 



75 
  

5.2 Questionnaire Results 

The questionnaire was designed to explore the importance of the variables in 

ventilator management. It was hypothesised that not all variables have the same 

significance in the ventilation process. This would allow to decrease the number of 

variables incorporated into the developed model, thus decreasing the search space 

and subsequently the number of monitored – recorded variables. 

The questionnaire was circulated and answered by eighteen (18) intensivists of three 

general hospitals in Attica-Greece province; namely Thriassio - Elfesina general 

Hospital, Konstadinoupolio general hospital and state general hospital of Nikaia. 

Questionnaires were delivered by hand to the directors of the ICU, following an 

introductory conversation on the purpose of the research. The number of 

participating intensivists was dictated by the directors of the ICUs and the number of 

available personnel.  

Thirty nine percent (39%) of responders were male. The responders between the 

ages of thirty six (36) to fifty five (55) accounted for the eighty eight percent (88%) 

of all the responders, while the mean working experience in ICU was 8.5 years (table 

5.2) 
 

Table 5.2: Responders statistics. 
Hospital Number of 

respondents 
% male age groups 

% 
 

Average ICU 
experience in 
years (SD) 

 H1 4 25 1: 0 
2: 50 
3: 50 
4: 0 

4 (2,9) 

 H2 6 33 1: 0 
2: 66,6 
3: 33,3 
4: 0 

9,8 (6,6) 

 H3 8 50 1: 25 
2: 25 
3: 50 
4: 0 

9,8 (10,9) 

Total (H1,H2,H3) 18 39 1: 11,1 
2: 44,4 
3: 44,4 
4: 0 

8,5 (8,35) 

  
Question Three asked the doctors to rate the importance of basic patient 

characteristics on the initial ventilator settings. Answers revealed that a patient’s 

weight is the most important factor (fig. 5.1 and table 5.3). This high score was 

anticipated since initial settings of tidal volume are set based on ml/Kg are reported 
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in most literature. Height was ranked as the second variable, which is related to the 

body mass index (BMI). Sex and age do not seem to have a significant role in 

ventilation. Lung’s phenomenal age is defined by the mechanical properties rather 

than the actual patient’s age, and sex is accounted for with the use of the weight 

variable; sex and weight are highly correlated variables.  

 

 
Figure 5.1: scoring of patient’s characteristics; answers average (blue) & median 

(dashed red). 
 

Table 5.3: scoring of patient’s characteristics. 
 Avg Median SD 

Age 6,11 7,00 3,16 
Weight 8,83 10,00 1,98 
Height 7,44 8,00 2,59 

Sex 4,94 5,00 3,62 
 

Patient’s weight (table 5.3) has shown a small SD value when examining the total of 

responders’ answers. This presents a good agreement between responders.  

All of the questionnaire variables were grouped into five (5) groups (Fig 5.2). 

Variable grouping was decided upon by the method of acquisition (invasive or non-

invasive), the type of equipment (bedside monitor, ventilator, and blood gas 

analyzer) and the physiology system (respiration-lung and cardiac-circulation 

physiology) they monitor. Blood gases, acquired usually through arterial and/or 

venous sampling were identified based on their average value and the low SD among 

hospitals, as the most important group. Variables related with lung volume and 
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pressure measurements scored as the second best group. Lung mechanics, non-

invasively monitored physiology variables and hemodynamic variables scored in a 

descending order. None of the groups was considered as irrelevant to the process of 

ventilation management. The worst group was ranked with a median value of 8. This 

outcome was anticipated since the grouping was designed with the assistance of 

intensivists.  

Group scoring values were used for decisions on the number and type of variables 

that were included in our model. It was decided to only include variables from the 

four best scoring groups, namely in descending order blood gases, pressure-volume, 

lung mechanics and non-invasive variables. Hemodynamic variables were excluded 

based on their low scoring and on the need of catheterization prior to monitoring, 

which is not always available or applied. Oxygenation index (OI) is calculated 

directly from blood gases and ventilator settings (OI= PaO2/FiO2) and for this reason 

it was included as a candidate in our models. 

 

 
Figure 5.2: scoring of variables groups; answers average (blue) & median (dashed 

red). 
 
 
 
 

 
 
 
 
 

A
ve

ra
ge

A
ve

ra
ge

A
ve

ra
ge

A
ve

ra
ge

A
ve

ra
ge

M
ed

ia
n

M
ed

ia
n

M
ed

ia
n

M
ed

ia
n

M
ed

ia
n

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

N
on

 In
va

si
ve

ly

B
lo

od
 G

as
es

V
,F

,P

Lu
ng

 M
ec

ha
ni

cs

H
em

od
yn

am
ic

sc
or

e 
0-

10



78 
  

Table 5.4: scoring of variables groups. 
 Avg Median SD 

Non Invasively 8,28 9,00 1,99 
Blood Gases 9,72 10,00 0,67 

Volume Flow pressure 8,89 10,00 1,57 
Lung mechanics 8,61 9,00 1,54 

Hemodynamic variables 7,72 8,00 1,71 
 

Answers on specific variables for each group, were used for identifying the final 

group of model’s variables.  

Question five (5) asked the respondent to score the non-invasive monitored 

variables. The resulting scores, shown in Fig 5.3 and table 5.5, identify arterial 

oxygen saturation and heart rate as the most important candidate variables for our 

model. End Tidal Capnography has also exhibited a high ranking, slightly inferior to 

heart rate. Both SpO2 and ETCO2 are related to adequacy of ventilation; however 

clinicians seem to value more the former. Core body temperature has scored higher 

than extremes body temperature. This is mainly due to core body temperature 

relationship to infections (fever), while extreme body temperature signifies thermal 

shock and circulation problems. There was a large variation among answers provided 

by different hospitals for the extreme temperature, however none of the hospitals 

ranked extreme temperature above five (average value). 

 

 
Figure 5.3: scoring of non-invasive variables; answers average (blue) & median 

(dashed red). 
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Table 5.5: scoring of non-invasive variables. 
 Avg Median SD 

SaO2 9,56 10,00 1,15 
ETCO2 7,17 7,50 2,31 

HR 7,61 8,50 2,55 
Core Temperature 5,89 6,00 3,07 

Extremes Temperature 3,39 3,00 3,03 
 

Question six (6) was concerned with the ventilator related variables. Participants 

were asked to score volume, pressure and lung mechanics variables based on their 

importance in selecting appropriate ventilation settings. In figure 5.4 and table 5.6, 

the average and median scoring values from volume-pressure and lung mechanics 

groups are shown. Plateau and peak pressure as well as compliance and expired 

volume scored very high both in average and median scores. Compliance (C) 

exhibited a slightly higher variation than airway resistance (R). Mean pressure, 

airway resistance (R) and WOB scored above 8. Auto-PEEP at first glance exhibits a 

poor scoring. However this is attributed to an error in the produced photocopies of 

the questionnaire, where the scoring fields are not clearly printed for this variable. 

Most responders were confused with the scoring of the variable and left the specific 

field blank. This answer was coded with zero (0). Once the problem was identified, it 

was decided to exclude the specific variable from the analysis process. The variable 

was excluded on the following grounds: (1) introducing false measurements; (2) 

trapping air into the lungs could be indicated by the increased airway resistance and 

poor lung compliance as well by limited expired volume.  However the misleading 

printout could be a source of bias concerning the variables participating in question 

six (6), in terms of possibly excluding an important variable. This does not reduce 

the importance of scoring of the other variables since each variable was scored 

independently from the others. 
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Figure 5.4: scoring of ventilation related variables answers; average (blue) & 

median (dashed red). 
 

Table 5.6: scoring of ventilator variables. 
 Avg Median SD 
VE 8,94 10,00 1,63 
PMEAN  8,28 8,00 1,93 
PIP 9,28 10,00 1,02 
PPLATEAU  9,72 10,00 0,67 
Auto PEEP 4,44 1,50 4,83 
C 8,89 10,00 1,68 
R  8,78 9,00 1,35 
WOB 8,17 8,50 2,07 

 

Question seven (7), asked participants to score the variables measured invasively. 

Invasive measurements are performed either with the support of catheterization 

equipment, or with the acquirement of blood samples. The results of question 7 are 

presented graphically into two groups (fig. 5.5 & 5.6). The first group is the blood 

sample measurements (blood gases), and the second group is the catheterization 

measurements (blood pressure and cardiac output variables). Arterial blood gases 

have scored higher than venous measurements. HCO3, has the lowest score among 

arterial gases; this is attributed to known close relationship to arterial CO2 which 

provides sufficient information. In the second group on invasive variables, OI has 

exhibited the higher score. OI is not directly measured but rather calculated based on 

arterial oxygen concentrations and supplied oxygen concentration. Arterial, venous 

and pulmonary pressures scored lower. Variation of systolic pressure has scored 

higher than invasive blood pressure measurements. Variation of systolic pressure is 

closely related to changes in circulation induced by the mechanical ventilation. 
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Similarly CO could be constrained due to mechanical ventilation. However CO 

scoring was lower than arterial blood gases measurements and variation among 

hospitals was higher. 

 

   
Figure 5.5: scoring of blood gases; average (blue) & median (dashed red). 

 

  
 

Figure 5.6: scoring hemodynamic variables; average (blue) & median (dashed red). 
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Table 5.7: scoring of invasive variables. 
 Avg Median SD 

PaO2 9,50 10,00 1,15 
PaCO2 9,56 10,00 1,15 

pH 9,06 9,50 1,35 
HCO3 8,33 9,00 1,71 
SVCO2 6,17 7,00 2,31 
PvO2 5,78 6,00 2,56 

PVCO2 4,72 5,00 2,67 
C.O. 7,22 7,00 2,02 
OI 8,83 10,00 2,07 

ΜPAP 6,28 6,50 2,76 
Variation of Syst. 

Art.Pr 7,06 7,50 2,29 

CVP 6,67 7,00 2,83 
PCWP 6,67 7,00 2,93 

 

The final question concerned with the importance of ventilator settings. Responders 

ranked FiO2 and maximum allowed pressure (Pmax) as the most important 

variables. VT, RR, PEEP and minute ventilation (VE) were similarly ranked. 

However VE in control ventilation is the product of VT times RR, and thus is 

sufficiently described by these variables. Inspiration over expiration time ratio (I/E), 

maximum flow and flow pattern were ranked slightly lower, but relatively high 

(median values of 9). Inspiratory pause, exhibited the lowest average and median 

value (3.4 and 0 respectively). This is due to the fact that all responders of the first 

hospital (H1) did not rank this field at all. Thus the median value was set to zero. 

This could indicate a bias in the questionnaire. However informal interviews 

followed the analysis of the questionnaire revealed that the specific variable is 

considered of small importance, relative to other variables, in the ventilation process. 

Table 5.8: scoring of ventilator settings. 
 Avg Median SD 

VE 9,44 10,00 1,25 
VT 9,44 10,00 1,15 
RR 9,17 10,00 1,72 

PEEP 9,11 10,00 1,75 
FIO2 9,56 10,00 1,04 
PIP 9,50 10,00 0,71 
(I/E 8,00 9,00 2,70 

Peak Flow 8,17 9,00 2,46 
Insp.Pause 3,39 0,00 4,02 

Insp. Flow Pattern 8,00 9,00 2,70 
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Figure 5.7: scoring ventilator settings; average (blue) & median (dashed red). 

 
 
The aim of the questionnaire was to identify relative importance of physiology 

variables and ventilator settings in the ventilation management process. For this 

reason Average values, Mean values and Standard Deviation (SD), was calculated 

for each of the variables. 

The final choice of variables was preformed based on those that exhibit the highest 

average and mean score. The scoring of variable groups was used for identifying the 

number of variables chosen from each group. Based on group scores, eleven (11) 

variables were included in our models, as well as one calculated variable; namely the 

oxygenation index (OI). The groups with the higher scores contributed with more 

variables to our model. This approach resulted into utilizing four (4) variables from 

the blood gases group, three (3) from the volume-pressure group, two (2) from the 

lung mechanics group and two (2) from the non-invasively acquired variables group. 

The decaying number of variables reflects the group’s importance to the ventilation 

management process. 

Six output ventilator settings were chosen as system’s outputs (Table 5.9). Tidal 

volume (VT), respiration rate (RR), Positive End Expiratory Pressure (PEEP), 

maximum inspiratory pressure (pressure limit –Pmax), maximum inspiration flow 

(Fmax) and Fractional Inspired Oxygen (FiO2), were chosen. Although minute 

ventilation scored very high it was excluded from the development process since in 

control ventilation mode its value is given by the product of tidal volume multiplied 

by the respiration rate. Similarly flow pattern setting (F Pattern) was excluded on the 
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grounds that is not available in all commercial ventilator equipment. Inspiratory 

pause was excluded on the grounds that it was not answered by one hospital due to a 

photocopy error. Informal consultation on the I/E ratio has suggested the importance 

of the variable when auto-PEEP is present. However since the measured variable of 

auto-PEEP was excluded, as discussed earlier, the specific setting was not chosen for 

participating in the models. 

The classification of the ventilation related variables resulted into a reduced set of 

physiology and ventilator variables. The reduction of the number of ventilation 

related variables simplifies the recording phase and reduces the complexity of the 

problem.  

Table 5.9: selected variables. 
Variable 

type 

Variable Recording 

method & device 

M
on

ito
re

d 

Arterial Oxygen Saturation (SpO2) Automatically 

Monitor/Central 

Station Heart Rate (HR) 

Arterial Blood O2 partial pressure (PaO2) 

Manually 

Patient’s Chart 
Arterial Blood CO2 partial pressure (PaCO2) 

Hydrogen Ion concentration (pH) 

Concentration of HCO3 in blood (HCO3) 

Oxygenation Index =PaO2 / FIO2    (OI) Calculated 

Maximum-peak airway pressure (PIP) 

Automatically 

Ventilator 

End Inspiratory pause pressure (Pplateau) 

Lung Compliance (C) 

Airway Resistance (R) 

Expired Volume (Ve) 

V
en

til
at

or
 

Se
tti

ng
s 

Tidal Volume Settings (VT) 

Positive End Expiratory Pressure settings 

(PEEP) 

Fractional Inspired Oxygen (FIO2 ) 

Respiration Rate Settings (RR) 

Inspiration flow limit (Fmax) 

Airway pressure limit setting (Pmax) 
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5.3 Patient Data 
 

Peripheral University Hospital of Heraklio (PAGNI), Crete and Navy Veterans’ 

hospital of the Ministry of Defence in Athens (NIMITS) were chosen as the 

appropriate settings for collecting ICU patient data. The choice was based on 

availability of medical devices that were equipped with digital outputs (RS232), for 

data acquisition. The ICUs were equipped with Siemens-Draeger ventilators, which 

have medibus serial interface enabled. Furthermore the ICUs were equipped with a 

central monitoring station, able to record patients’ variables trends for the duration of 

patient’s stay. 

For the collection of patient physiology data, the ethics committee of the PAGNI and 

hospital granted the approval. Patients’ data were collected directly from digital 

outputs of medical equipment by using certified medical software namely 

®MedLink 4.0 by Nortis (Nortis), and ®VentView by Siemens-Draeger (Siemens-

Draeger). Data collected included only physiology variables and ventilator settings 

excluding any other information that could reveal the patients’ ID.  

 A typical software interface and data records snapshot screen is shown in figures 5.8 

and 5.9 respectively. 

While monitors could provide only with arithmetic values (Trends), ventilators could 

also provide flow, and pressure real time waveforms. Numerical data collection was 

chosen in seconds with a maximum period of 5 min. Real time flow and pressure 

waveforms were acquired from the ventilator devices at a sampling rate dictated by 

the medical apparatus, for future research. Blood gases data were collected manually 

directly from patient’s bed side charts. Blood gases were collected at time intervals 

specified by clinicians. The physiology variables and ventilator settings recorded are 

shown in table 5.9. 
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Figure 5.8: Data acquisition Software interface from Ventilator apparatus. 

 

 
Figure 5.9: Software data records. 

 

Approximately seventy hours of patients’ data were collected from eight ICU 

patients with different pathologies, ventilated in control mode. The utilization of two 

ICUs for the data collection was to establish a database that would include possible 

differences in strategies on ventilation management. 

Recorded patient data were extracted to Excel format (®Microsoft). Due to small 

variation between successive samples data were re-sampled at five (5) minute 

intervals. Table 5.10 presents the format of the database for COPD records of one 

hour and ten minutes (1h 10min) duration. The time points were changes were 

implemented to at least one of the ventilator settings were identified and used for the 

development of a second database that includes only the records at the point of 

change. Furthermore data sets were scaled into the range of zero (0) to one (1), and 

used for the development of a scaled data set which was named normalized set. 
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Table 5.10:COPD example Patients’ database 
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ax
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M
ax
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0:00 99 69 70 7,4 115 351 49 40,9 22 27 86 44 3,36 27 2 0,6 84 80 

0:05 99 69 70 7,4 115 350 48 39,5 23 26 86 44 3,36 27 2 0,6 84 80 

0:10 99 69 70 7,4 115 345 47 38,1 24 24 85 44 3,36 27 2 0,6 84 80 

0:15 99 67 73 7,39 112 354 47 38,5 23 24 86 45 3,36 27 2 0,6 84 80 

0:20 94 71 69 7,42 203 369 36 26,5 28 18 63 44 4,53 21 6 0,35 76 60 

0:25 94 71 69 7,42 203 365 36 26,8 27 18 63 44 4,53 21 6 0,35 76 60 

0:30 94 71 69 7,42 203 349 36 27,5 25 18 62 44 4,53 21 6 0,35 76 60 

0:35 94 71 69 7,42 203 319 37 29,2 23 18 62 44 4,53 21 6 0,35 76 60 

0:40 94 71 69 7,42 203 283 36 28,2 23 18 61 44 4,53 21 6 0,35 76 60 

0:45 95 71 69 7,42 203 342 37 28,2 26 18 63 44 4,53 21 6 0,35 76 60 

0:50 94 71 69 7,42 203 357 36 27,2 26 18 61 44 4,53 21 6 0,35 76 60 

0:55 94 76 73 7,4 217 312 33 24,5 25 14 62 46 4,53 21 6 0,35 76 60 

1:00 95 76 73 7,4 217 355 34 24,5 28 14 59 46 4,53 21 6 0,35 76 60 

1:05 94 76 73 7,4 217 305 33 24,5 25 14 60 46 4,53 21 6 0,35 76 60 

1:10 94 76 73 7,4 217 355 32 22,5 28 14 59 46 4,53 21 6 0,35 76 60 

 

As described in the methodology paragraphs, patients were classified into three 

major lung pathologies. The resulted database is described in table 5.11. 

Patient 1 suffered from COPD and has been recorded for a prolonged period. The 

recordings were made into two successive days. Recording was interrupted on the 

first day (approximately after 17h) following clinical personnel request. The 

recording was continued on the second day after a 4h break in recording process. 

The recording time of the patients does not describe the full period that the patients 

were ventilated in control mode. The recording time was limited by changes in 

ventilation mode, shifting from control to assist ventilation and from medical 

procedures requiring the pause of bed side ventilation. Most of the recording were 

performed based on availability of patients ventilated in control mode, and were 

restricted by the available time in the ICU, as well as the availability of specialized 

personnel (technical personnel) to assist the initiation of the recording phase.  
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Table 5.11: Patient records overview. 
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COPD 

1 M 48 75 455 37:55 

16 2 M 51 90 27 2:15 

3 M 43 110 42 3:30 

ALI-ARDS 

4 F 78 100 75 6:15 

10 5 F 66 70 55 4:35 

6 M 59 80 59 4:55 

Normal 

lungs 

7 F 55 50 108 9:00 
3 

8 M 78 80 20 1:40 

  

Utilizing random generator software in Matlab we have randomly distributed patient 

records into training and evaluation sets for all categories. The training set accounted 

for the sixty percent (60%) of the available data while the evaluation set accounted 

for the forty percent (40%). Resulted data sets were scaled, forming the normalized 

database, and used to models with normalized input – output data. The random 

allocation of available data into training and evaluation sets results into participation 

of the same patients into both sets. However the time instances represented by the 

measured variables and the ventilator settings are different; thus the time specific 

patient needs are also different. The relatively small sample of patients for each 

category does not provide sufficient data for applying different patients for the 

evaluation and training sets. Additionally the use of specific patients for training the 

develop models would result in patient specific systems.  
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5.4 Correlation results 

The use of the questionnaire simplified the data collection process by limiting the 

number of recorded variables. A research question was established and correlation 

analysis was used to support it. The research question is summarized in the following 

paragraph: 

“Is the decision making of ICU clinicians on ventilator settings performed on a 

subset of measured variables? Does the subset vary between different lung 

pathologies? Could the analysis of real data including monitored variables and 

ventilator settings reveal clinicians decision making pattern?”. 

The validity of the research question would result into further reduction of the 

problems search space, by incorporating into the intelligent models only the 

physiology variables that play an important role in the ventilation strategy for each 

pathology; and more specific the variables that exhibit high degree of relationship 

with specific ventilator settings for each lung category. 

In order to investigate the validity of the question and to define the degrees of 

relationship between inputs (monitored physiology variables) and outputs (ventilator 

settings), correlation analysis and statistical significant tests on the analysis (p<0.05) 

were performed. The correlation analysis was performed on both the developed 

databases; for each lung pathology. The two databases were the 5 minute trends and 

the applied changes database. 

Correlation and significance tests (Bland M, 1996), were performed between measured 

physiology variables and ventilator settings. The analysis was performed separately 

on each lung’s pathology.  

Correlation is measured by the correlation coefficient (C or r). When C is close to 

zero, the variables are uncorrelated. Absolute values of C close to 1, reveal a strong 

linear relationship between variables.  The value of C was computed based on 

Pearson’s linear correlation coefficient (Bland M, 1996). 

For each correlation test, we have calculated the probability value (P-value <0.05). 

Small P-values support the hypothesis that correlation is nonzero. 

Tables 5.12 to 5.13 present the correlation analysis of the recorded data for the three 

lung pathologies. Analysis was performed on both databases; namely the five minute 

records and the applied changes database. Absolute correlation coefficients below 

0.5 presents a weak relationship between variables. Absolute correlation coefficients 

between 0.5 and 0.75 exhibit a strong relationship, while absolute coefficients above 
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0.75 describe a very strong relationship between variables. Strong and very strong 

relationships are identified in bold writing. Negative values of C reflect change in the 

variables in the opposite direction. The tidal volume is expressed in terms of volume 

per patient’s weight (ml/Kg), in order to allow comparison between different 

patients. 

We calculated correlation coefficients (C) and probability values (P) with the use of 

Matlab ™ statistics toolbox. We have defined a threshold of 0.5 for C. Variables that 

exhibited C above the threshold value at least in one of the two databases and 

coefficients were statistically acceptable (P<0.05), were used for calculating an 

average correlation coefficient (Cavg). The variables for which the Cavg was 

calculated they were chosen as candidate inputs to the intelligent systems. 

The above process was not similar for the normal lungs category since the number of 

available data was very small in the applied changes database, as shown in table 

5.11. In normal lungs category we have chosen as candidate inputs to our models the 

variables that exhibited C above the threshold value and P below the 0.05. In this 

category Cavg matches the C calculated for the five minute records database. 

Although justification or rejection of degree and direction of correlation requires 

deep knowledge of human physiology and medical background, the following points 

attempt to identify and comment key findings: 

 PEEP variable does not correlate with any of the recorded variables for 

Normal lungs. This is mainly attributed to the fact that small or zero PEEP is 

applied to these patients. 

 SpO2 does not relate strongly with any of the ventilator settings. SpO2 values 

are maintained in stable margins (94-98%). Only under extreme respiration 

deficiency SpO2 values fall below 90%. Thus SpO2 seems to have a random 

variation around physiological values; thus does not correlate strongly with 

any of the ventilator settings (in the 5 min database, table 5.12). However the 

applied changes database correlation we observe that SpO2 is highly 

correlated with a number of factors improving oxygenation (VT, PEEP,FiO2). 

 OI is based on calculus is related to inspired oxygen concentration. 

Additionally the OI is relevant to variables that improve blood oxygenation. 

Such factors, accepted and supported by bibliography, are PEEP, minute 

ventilation (product of RR times VT), and mean airway pressure (closely 

related to maximum pressure). These strong relationships are observed in all 

patient categories. 
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 Blood gases (PaO2, PaCO2, pH, HCO3), reflect the efficiency of ventilation. 

For normal lungs almost all settings (excluding PEEP), present a strong 

relationship with blood gases. For COPD and ALI-ARDS lungs this is not 

true. In these cases simple interventions (changes in volume and RR) do not 

have a significant effect. Increasing mean pressure and functional residual 

capacity (FRC) through PEEP, improves ventilation efficiency. On the other 

hand respiration is a major mechanism for eliminating CO2, and changing pH 

& HCO3 values. Based on this RR is related to changes in blood ions. 

 Expired volume (Ve) is expected to have strong correlation with VT, since 

patients are ventilated in control mode. 

 Maximum recorded (PIP) and plateau pressures, are strongly related to 

applied PEEP and flow/pressure limits. The relationships are self explained 

since an elevated initial pressure at the lungs (PEEP) results to higher 

maximum pressure for a given volume, and flow rate regulates the amount of 

air delivered (for a specific time); thus maximum airway pressures. 

 Static lung compliance (C), as measured by the medical equipment is 

calculated based on PEEP and Plateau values. Therefore correlation between 

pressure and flow settings is directly related to C calculation. 

 Similarly static airway resistance is calculated based on PIP, Plateau and flow 

measurements. This relationship could be observed in COPD & ALI-ARDS 

categories. 

 The difference in existence and degree of correlation between categories is 

attributed to the different strategies in ventilation. 
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Table 5.12: correlation coefficients and P values for all categories. 

 
vt ml/kgr RR (BPM) PEEP(mbar) FiO2 Max Insp P 

(mbar) 
Max Flow 

(L/min) 
 

 r P r P r P r P r P r P  

SpO2 0.23 0.01 -0.10 0.26 -0.15 0.10 -0.14 0.13 0.18 0.04 -0.28 0.00 

N
or

m
al

 P
at

ie
nt

s 
C

or
re

la
tio

n PaO2 0.92 0.00 -0.61 0.00 -0.38 0.00 -0.70 0.00 0.82 0.00 -0.72 0.00 

PaCO2 -0.93 0.00 0.85 0.00 0.33 0.00 0.89 0.00 -0.93 0.00 0.30 0.00 

pH 0.91 0.00 -0.79 0.00 -0.33 0.00 -0.84 0.00 0.89 0.00 -0.37 0.00 

O2 Index 1.00 0.00 -0.89 0.00 -0.38 0.00 -0.94 0.00 0.99 0.00 -0.35 0.00 

Ve (ml) -0.59 0.00 0.82 0.00 0.12 0.17 0.78 0.00 -0.70 0.00 -0.34 0.00 

PIP (mbar) -0.32 0.00 0.03 0.74 -0.09 0.33 0.10 0.26 -0.21 0.02 0.59 0.00 

Plateau 0.02 0.82 -0.09 0.29 0.01 0.92 -0.08 0.38 0.05 0.56 0.14 0.13 

C (l/bar) -0.43 0.00 0.51 0.00 0.20 0.03 0.50 0.00 -0.47 0.00 -0.08 0.38 

R (mbar/L/s) -0.17 0.06 0.19 0.04 0.01 0.92 0.19 0.04 -0.18 0.04 -0.01 0.95 

HR 0.52 0.00 -0.76 0.00 0.03 0.72 -0.72 0.00 0.64 0.00 0.37 0.00 

HCO3 0.49 0.00 -0.46 0.00 -0.19 0.04 -0.48 0.00 0.49 0.00 -0.12 0.19 

SpO2 -0.41 0.00 0.65 0.00 -0.51 0.00 0.55 0.00 0.02 0.73 0.57 0.00 

C
O

P
D

 P
at

ie
nt

s 
C

or
re

la
tio

n PaO2 0.24 0.00 0.14 0.00 0.41 0.00 -0.11 0.01 -0.68 0.00 -0.10 0.02 

PaCO2 -0.06 0.14 -0.47 0.00 -0.23 0.00 -0.16 0.00 0.86 0.00 -0.17 0.00 

pH -0.03 0.50 -0.01 0.85 -0.11 0.01 -0.05 0.24 0.32 0.00 -0.05 0.28 

O2 Index 0.86 0.00 -0.43 0.00 0.84 0.00 -0.86 0.00 -0.17 0.00 -0.83 0.00 

Ve (ml) 0.04 0.33 0.18 0.00 0.06 0.16 0.03 0.51 -0.33 0.00 0.06 0.21 

PIP (mbar) -0.57 0.00 0.25 0.00 -0.75 0.00 0.55 0.00 0.58 0.00 0.55 0.00 

Plateau -0.57 0.00 0.26 0.00 -0.73 0.00 0.57 0.00 0.42 0.00 0.58 0.00 

C (l/bar) 0.00 0.98 0.18 0.00 0.23 0.00 0.08 0.06 -0.72 0.00 0.09 0.05 

R (mbar/L/s) -0.48 0.00 0.26 0.00 -0.69 0.00 0.51 0.00 0.45 0.00 0.52 0.00 

HR -0.13 0.00 0.52 0.00 -0.17 0.00 0.33 0.00 -0.35 0.00 0.34 0.00 

HCO3 -0.06 0.19 -0.43 0.00 -0.21 0.00 -0.18 0.00 0.84 0.00 -0.19 0.00 

SpO2 -0.51 0.00 -0.34 0.00 -0.32 0.00 -0.59 0.00 -0.49 0.00 0.32 0.00 

A
LI

-A
R

D
S

 P
at

ie
nt

s 
C

or
re

la
tio

n 

PaO2 -0.24 0.00 0.70 0.00 -0.80 0.00 -0.57 0.00 0.75 0.00 -0.82 0.00 

PaCO2 0.25 0.00 0.91 0.00 -0.33 0.00 -0.01 0.84 0.93 0.00 -0.88 0.00 

pH 0.15 0.03 -0.70 0.00 0.67 0.00 0.52 0.00 -0.60 0.00 0.64 0.00 

O2 Index -0.73 0.00 0.02 0.73 -0.92 0.00 -0.99 0.00 0.03 0.73 -0.20 0.01 

Ve (ml) 0.80 0.00 -0.01 0.88 0.90 0.00 0.96 0.00 -0.08 0.27 0.29 0.00 

PIP (mbar) 0.54 0.00 -0.43 0.00 0.92 0.00 0.78 0.00 -0.63 0.00 0.77 0.00 

Plateau 0.40 0.00 -0.39 0.00 0.88 0.00 0.73 0.00 -0.64 0.00 0.75 0.00 

C (l/bar) -0.16 0.03 0.44 0.00 -0.45 0.00 -0.25 0.00 0.66 0.00 -0.68 0.00 

R (mbar/L/s) 0.64 0.00 -0.22 0.00 0.90 0.00 0.86 0.00 -0.39 0.00 0.56 0.00 

HR -0.28 0.00 -0.50 0.00 -0.25 0.00 -0.37 0.00 -0.37 0.00 0.34 0.00 

HCO3 0.51 0.00 0.81 0.00 0.05 0.49 0.39 0.00 0.87 0.00 -0.77 0.00 
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Table 5.13: correlation coefficients and P values for all categories, for applied 
changes data set. 

 vt ml/kgr RR (BPM) PEEP(mbar) FiO2 Max Insp P 
(mbar) 

Max Flow 
(L/min)  

 r P r P r P r P r P r P  

SpO2 --    --    --    --    --    --    

N
or

m
al

 P
at

ie
nt

s 
C

or
re

la
tio

n PaO2 --   --   --   --   --   --   

PaCO2 --   --   --   --   --   --   

pH --   --   --   --   --   --   

O2 Index --   --   --   --   --   --   

Ve (ml) --   --   --   --   --   --   

PIP (mbar) --   --   --   --   --   --   

Plateau --   --   --   --   --   --   

C (l/bar) --   --   --   --   --   --   

R (mbar/L/s) --   --   --   --   --   --   

HR --   --   --   --   --   --   

HCO3 --   --   --   --   --   --   

SpO2 -0.69 0.00 0.64 0.01 -0.59 0.02 0.73 0.00 -0.13 0.64 0.59 0.02 

C
O

P
D

 P
at

ie
nt

s 
C

or
re

la
tio

n PaO2 0.21 0.44 0.23 0.39 0.47 0.07 -0.04 0.89 -0.83 0.00 -0.32 0.23 

PaCO2 -0.06 0.83 -0.40 0.12 -0.33 0.21 -0.17 0.52 0.93 0.00 0.16 0.56 

pH 0.02 0.93 -0.42 0.11 -0.24 0.38 -0.13 0.62 0.68 0.00 0.11 0.67 

O2 Index 0.87 0.00 -0.50 0.05 0.84 0.00 -0.87 0.00 -0.22 0.41 -0.75 0.00 

Ve (ml) -0.03 0.90 0.19 0.48 0.07 0.81 0.10 0.70 -0.34 0.20 0.05 0.85 

PIP (mbar) -0.61 0.01 0.28 0.30 -0.86 0.00 0.56 0.02 0.59 0.02 0.82 0.00 

Plateau -0.61 0.01 0.23 0.40 -0.85 0.00 0.57 0.02 0.63 0.01 0.75 0.00 

C (l/bar) 0.02 0.93 0.38 0.15 0.39 0.13 0.13 0.63 -0.97 0.00 -0.21 0.43 

R (mbar/L/s) -0.51 0.04 0.28 0.29 -0.74 0.00 0.53 0.04 0.49 0.05 0.63 0.01 

HR -0.09 0.73 0.58 0.02 -0.07 0.80 0.36 0.17 -0.44 0.09 0.12 0.65 

HCO3 -0.04 0.87 -0.44 0.09 -0.33 0.21 -0.18 0.50 0.93 0.00 0.16 0.55 

SpO2 -0.79 0.02 -0.20 0.64 -0.54 0.17 -0.77 0.03 -0.41 0.31 0.18 0.68 

A
LI

-A
R

D
S

 P
at

ie
nt

s 
C

or
re

la
tio

n 

PaO2 -0.28 0.50 0.68 0.06 -0.52 0.18 -0.27 0.51 0.61 0.11 -0.57 0.14 

PaCO2 -0.14 0.75 0.92 0.00 -0.42 0.30 -0.09 0.83 0.88 0.00 -0.84 0.01 

pH 0.70 0.05 -0.60 0.12 0.83 0.01 0.69 0.06 -0.37 0.37 0.43 0.29 

O2 Index -0.94 0.00 0.04 0.92 -0.90 0.00 -0.97 0.00 -0.18 0.67 0.06 0.89 

Ve (ml) 0.92 0.00 -0.15 0.72 0.77 0.02 0.88 0.00 0.06 0.88 0.18 0.68 

PIP (mbar) 0.69 0.06 -0.63 0.09 0.81 0.02 0.62 0.10 -0.67 0.07 0.81 0.02 

Plateau 0.74 0.04 -0.34 0.40 0.89 0.00 0.72 0.05 -0.50 0.20 0.58 0.13 

C (l/bar) -0.49 0.21 0.22 0.60 -0.52 0.19 -0.50 0.20 0.04 0.93 -0.09 0.83 

R (mbar/L/s) 0.45 0.26 -0.29 0.49 0.48 0.23 0.38 0.35 -0.48 0.23 0.62 0.10 

HR -0.32 0.44 -0.56 0.15 -0.33 0.42 -0.41 0.31 -0.43 0.29 0.49 0.21 

HCO3 0.48 0.23 0.71 0.05 0.20 0.64 0.53 0.18 0.85 0.01 -0.74 0.04 

 

 5.4.1 Evaluation of Correlation Results 
 
Correlation results were presented to three experienced ICU doctors from PAGNI, 

NIMITS and Konstadinoupolio general hospital of Athens. Two of the doctors 

participated in the questionnaire development. The doctors were asked to evaluate 

the presented correlation coefficients. Presented coefficients were the average values 

of both databases results that exceeded the C threshold; namely the five minute 

trends and the applied changes databases. Evaluation was performed in terms of 

Accepting (A), Rejecting (R) or Accepting under given conditions (Auc) the 

existence and the direction of the relationship between input – physiological 

measured variables and the ventilator settings. Accepted under given conditions was 

introduced to the evaluation process following an informal conversation with 

intensivists, based on the grounds that for a given ventilation strategy and patient 



94 
  

pathology the relationship could be accepted. Evaluation was not concerned with the 

value of the relationship strength. Each variable was evaluated in isolation with the 

remaining correlated variables and ventilator settings. Evaluators’ answers were used 

for identifying the input variables for each intelligent model. The choice was based 

on a majority voting of evaluators’ answers. When the majority of evaluators 

accepted or accepted under given conditions the relationship between a measured 

variable and a ventilator setting, then this variable was incorporated into our model 

as input. Table 5.14 presents the evaluation results. 

Evaluators’ voting process rejected in normal category 8 out of 28 relationships 

(28%) between ventilator settings and monitored variables. Five of the relationships 

could be easily justified as rejected since there is no apparent cause and effect 

relationship between them; namely RR with Ve & C and FiO2 with Ve, C & HR. 

However the relationship between FiO2 and arterial CO2 & pH was rejected mainly 

on the grounds of the direction of the relationship. 

In the COPD category, voting rejected 9 out of 31 (29%) of correlation coefficients. 

Rejection included relationships such as FiO2 with R, PIP, Pplateau. Rejection of the 

above correlation coefficients was anticipated, since there is no apparent relation 

between percentage of oxygen and lung mechanics. However the relationship 

between maximum pressure and oxygenation variables (PaO2, pH, HCO3), as well as 

lung mechanics indicators (C, R, Pplateau) was rejected although there are supporting 

evidence suggesting that changes in mean airway pressure (related to maximum 

allowed pressure) improve oxygenation and the fact that lung mechanics are 

important for regulating the maximum pressure allowed. 

ARDS evaluation rejected 6 out of 20 (30%) coefficients. Rejection in ARDS was 

higher than the other categories. HCO3 correlation was rejected for all ventilation 

settings (RR, Pmax, Fmax) although coefficients were high. Relationship of FiO2 

with Ve and Pplateau was rejected since there is no mechanism explaining their 

relation. All evaluators rejected the relationship between pH and PEEP although 

there is an explanatory mechanism. PEEP is applied for improving oxygenation by 

changing FRC volume which supports the gas exchange between alveolar and 

venous gases. This should improve venous CO2 levels; thus changing blood pH. 
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Table 5.14: Evaluators’ scoring on correlation results. 

 vt ml/kgr RR (BPM) PEEP(mbar) FiO2 Max Insp P 
(mbar) 

Max Flow 
(L/min)  

 r Evl r Evl r Evl r Evl r Evl r Evl  

SpO2             

N
or

m
al

 P
at

ie
nt

s 

PaO2 0.92 3/3 -0.61 3/3   -0.70 3/3 0.82 3/3 -0.72 3/3 

PaCO2 -0.93 3/3 0.85 3/3   0.89 1/3 -0.93 3/3   

pH 0.91 2/3 -0.79 2/3   -0.84 1/3 0.89 3/3   

O2 Index 1.00 3/3 -0.89 3/3   -0.94 3/3 0.99 3/3   

Ve (ml) -0.59 1/3 0.82 0/3   0.78 0/3 -0.70 2/3   

PIP (mbar)           0.59 2/3 

Plateau             

C (l/bar)   0.51 1/3   0.50 0/3     

R 
(mbar/L/s) 

            

HR 0.52 3/3 -0.76 3/3   -0.72 1/3 0.64 3/3   

HCO3             

SpO2 -0.55 3/3 0.64 3/3 -0.55 3/3 -0.64 3/3   -0.58 3/3 

C
O

P
D

 P
at

ie
nt

s 

PaO2         -0.75 1/3   

PaCO2         0.90 2/3   

pH         0.50 0/3   

O2 Index 0.87 2/3 -0.47 3/3 0.84 2/3 -0.87 3/3   -0.79 3/3 

Ve (ml)             

PIP (mbar) -0.59 3/3   -0.81 2/3 0.56 1/3 0.59 2/3 0.68 3/3 

Plateau -0.59 3/3   -0.79 2/3 0.57 1/3 0.52 1/3 0.66 2/3 

C (l/bar)         -0.84 1/3   

R 
(mbar/L/s) 

-0.50 3/3   -0.71 2/3 0.52 1/3 0.47 1/3 0.58 3/3 

HR   0.55 2/3         

HCO3         0.89 0/3   

SpO2 -0.65 3/3     -0.68 3/3     

A
LI

-A
R

D
S

 P
at

ie
nt

s 

PaO2             

PaCO2   0.91 3/3     0.90 2/3 -0.86 2/3 

pH     0.75 0/3       

O2 Index -0.84 3/3   -0.91 3/3 -0.98 3/3     

Ve (ml) 0.86 3/3   0.84 3/3 0.92 1/3     

PIP (mbar)     0.86 3/3     0.79 3/3 

Plateau 0.57 3/3   0.89 3/3 0.72 1/3     

C (l/bar)             

R 
(mbar/L/s) 

            

HR             

HCO3   0.76 0/3     0.86 0/3 -0.75 0/3 

 

Evaluators rejected relationships not on the grounds of strength but on the grounds of 

medically accepted (based on experience and expertise) physiology mechanisms. Ve 

– RR rejection for normal category (r=0.82) and SpO2 – VT acceptance for COPD 

(r=-0.55) are typical examples. 

The presentation of the correlation coefficients to the evaluators could be considered 

as a possible cause of bias. However the use of more than one evaluator and the 

majority voting process is expected to minimize the bias effect. Furthermore the 

purpose of this evaluation was to evaluate correlation findings; thus this would not 

be possible without informing the evaluators of the coefficients. 
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5.5 Models’ Basic Architecture 
 
The minimization of the search space accomplished with the correlation statistics 

and the evaluation of the relationships, provided as with the basic architecture of the 

FRBSs. 

As stated in paragraph 5.4.1, physiology measured variables that were accepted by 

the majority of the evaluators were chosen to participate as input variables for the 

FRBSs.  

We decided to develop individual models for each lung pathology in order to 

incorporate different ventilation strategies used in different pathologies. Due to the 

nature of the proposed FRBSs development method we anticipated that resulting 

models will be optimal, in the case of GAs, or trained, in the case of NN, ANFIS & 

FUN, for a given ventilation strategy. A separate FRBS was designed for a given 

ventilator setting. In this way we have simplified the structure of the FRBS, since for 

each ventilator setting, a different number and type of input variables participates. 

 

 
Figure 5.10: Plimit & Fpeak sample FRBSs architecture for Normal Lungs. 

 
Based on evaluators’ results and voting process we have concluded to seventeen (17) 

different architectures for the models. In total the number of models should have 

been eighteen (18). The maximum number of models is calculated by the product of 

the ventilator settings times the number of lung categories. However in the case of 

PEEP ventilator setting for the normal lung category, none of the measured 

physiology variables is correlated with the setting and thus there are no suggested 

inputs for the system. Table 5.15 presents the basic architecture of the proposed 

FRBSs. 
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Table 5.15:Models’ input-output variables based on evaluators voting. 
 

Input Variables VT RR PEEP FiO2 Pmax Fmax  

SpO2       

N
or

m
al

 P
at

ie
nt

s 

PaO2 * *  * * * 
PaCO2 * *   *  
pH * *   *  
O2 Index * *  * *  
Ve (ml)     *  
PIP (mbar)      * 
Plateau       
C (l/bar)       
R (mbar/L/s)       
HR * *   *  
HCO3       
SpO2 * * * *  * 

C
O

PD
 P

at
ie

nt
s 

PaO2       
PaCO2     *  
pH       
O2 Index * * * *  * 
Ve (ml)       
PIP (mbar) *  *  * * 
Plateau *  *   * 
C (l/bar)       
R (mbar/L/s) *  *   * 
HR  *     
HCO3       
SpO2 *   *   

AL
I-A

R
D

S 
Pa

tie
nt

s 

PaO2       
PaCO2  *   * * 
pH       
O2 Index *  * *   
Ve (ml) *  *    
PIP (mbar)   *   * 
Plateau *  *    
C (l/bar)       
R (mbar/L/s)       
HR       
HCO3       
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6. Evaluation of Models Performance on Patients’ 
Database 

6.1 Overview 

Two custom toolboxes were developed, namely the EVOFINE and the FUN toolbox 

(Appendix II). The developed toolboxes were designed to model the decision making 

process for ventilation management. The architecture of the models was derived by 

the evaluated correlation coefficients, based on real physiology data, (section  5.5) 

and the experimental results of EVOFINE and FUN toolboxes against the 

mathematical function and the cart pole dynamic system (Appendix III.1 – III.2).  

The models were trained with the use of the training set which accounted for sixty 

percent (60%) of the recorded patient data. The data set of the training set has been 

randomly selected from the patients’ database of five minutes trends. Since the 

architecture of the models was different for each lung pathology category, namely 

Normal, COPD and ALI-ARDS, different models were developed and trained. 

The resulted models were tested against the evaluation and the training set in terms 

of rmse (eq.II.1 ) and mean absolute error (mae, eq. 6.1a) as well as their percentage 

(eq. 6.1b & II.2) over the output variable range. 

 




 N

i
idataoutiFRBSout

N
mae

1

)()(1
  eq. 6.1a 

  100*
)min()max(

%
outout datadataabs

MAEmae    eq. 6.1b 

 
Furthermore we have developed and trained Artificial Neural Network (ANN) and 

ANFIS models, similar to those described in Appendix III.3 & III.4, in order to test 

our models performance against established approaches in modelling complex 

systems.  

Finally we have presented three ICU doctors with patient scenarios for the three lung 

categories and requested their clinical expertise on the appropriate ventilator settings. 

This test was performed so we statistically analyze the doctors’ responses and 

compare them against our models performance. Comparison was performed in terms 

of the variation of doctors’ suggestions against the mean absolute error of our 

models. 
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6.2 Models Architecture 

The basic models’ architecture was chosen based on the evaluation of the correlation 

coefficients, as it was presented in section 5.5. The basic architecture for each 

ventilator setting (output variable) is different for each lung’s pathology, as pointed 

out during the correlation analysis of the physiology measured data against the 

ventilator settings.  

Regardless of the development process the number and type of input variables is 

held constant for each lung pathology and ventilator setting. Additionally the range 

of the input and output variables is also maintained constant according to the 

analysis performed on the available data, presented in  Appendix VII, table VII.1. 

However the internal architecture of the models is described in the experiment setup 

of the EVOFINE and FUN toolboxes as well as the ANN and ANFIS methods. The 

choice of the final architecture of the models is based on the conclusions drawn by 

the trials performed against the mathematical and cart pole systems, as described in 

Appendix III.1 to III.5. Furthermore the final architecture is a compromise between 

conclusions drawn on trials, number of available training sets, and available 

computational resources. 

Taking into consideration the experimental conclusions, described in section III.5.1, 

it was decided to evolve our EVOFINE models for 100 generations, utilizing 

damping mutation rates. The number of generations was decided based on the 

restriction applied due to computation time. It was decided to used Triangular and 

Trapezoid MFs for describing the variables’ domains, and five MFs for each 

variable. 

Due to practical considerations the RB of each model was limited so as the 

maximum number of rules did not exceed four hundred. The percentage of the rules 

used in comparison to the total number of rules that described each system was 

variable. The variation is caused by the different architectures of the models, namely 

the different number of input variables participating in each model. According to eq. 

II.7b, the Full RB that completely describes the FRBS depends on the number of FSs 

and the number of variables. Since the number of FSs was held constant and the 

number of outputs was limited to one for each model, the number of inputs was the 

decisive variable for the Total number of rules. 

Performing the calculations for the model of the Pmax of the Normal lung’s category, 

based on the equations II.4b, II.7b and II.5 and table II.5 (Appendix II) we have: 



100 
  

 

Using eq. 3.4b      70)2*5(*)16(2**_  FSoiGaussianFS NNNL  

Using eq. 6.7b    1562556  iN
FSFullRB NN  

Using eq  6.5   62500078125*)116(*1  RoiR NNNL  

 

Thus to completely describe the RB of the Pmax of the Normal lung’s category, we 

need 15625 rules and a chromosome length that completely describes the system, 

equal to the sum of the Fuzzy Sets (LFS_Gaussian) and Fuzzy Rules (LR) chromosome 

(625070 elements). If we multiply this by the number of individuals in a given 

population (e.g. 100 individuals), then we require a large memory allocation for 

storing the structure of the chromosomes.  Since the size of the chromosomes was 

exceeding our computational resources we have decided to incorporate sub-

architectures of the Full RB. 

 

Table 6.1: Architecture –setup of EVOFINE models. 
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Vt 156 625 4 25 5 
RR 5 5 1 100 5 

FiO2 25 25 2 100 5 
Pmax 5 5 1 100 5 
Fmax 25 25 2 100 5 
PEEP 156 625 4 25 5 
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PD
 

Vt 156 3125 5 5 5 
RR 125 125 3 100 5 

FiO2 25 25 2 100 5 
Pmax 25 25 2 100 5 
Fmax 156 3125 5 5 5 
PEEP 156 3125 5 5 5 

N
or

m
al

 

Vt 156 3125 5 5 5 
RR 156 3125 5 5 5 

FiO2 25 25 2 100 5 
Pmax 391 15625 6 2,5 5 
Fmax 25 25 2 100 5 
PEEP --- --- --- --- --- 

 
In table 6.1 we present the internal architecture of the EVOFINE evolved FRBSs. 

Percentage of the Full RB ranges from 2.5 to 100% depending on the number of 

input variables participating in each model. The rest of the characteristics are 
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constant throughout the models. Column one presents the number of rules used for 

each model, column three describes the number of input variables used for each 

model according to table 5.5, and columns two and four present the number of the 

Full RB that describes the system and the number of rules used as a percentage of the 

Full RB respectively. All models use the same GAs setup; 100 individuals, 100 

generations, 0.7 damping mutation rate, 0.7 crossover rate, RWS. 

As already stated (paragraph 5.5), the PEEP models for the Normal lungs category 

has not been developed, due to the fact that none of the input variables exhibited 

correlation with PEEP variable. 

Similar to EVOFINE the basic architecture of the FUN models was the same, 

concerning the number and type of input variables for each ventilator setting, 

according to table 5.5. The setup of FUN for each model is presented in table 8.3. 

The FUN models architecture is closely related to the architecture of experiment 8, 

presented in section III.2, table III.7. The fuzzy setup common to all FUN models is 

the type of MFs and the number of FS for each input – output variable. The 

Triangular – Trapezoid MFs have exhibited better results compared to Gaussian 

MFs, for similar NN architectures as presented in the trials of table III.7. Based on 

the conclusions drawn from section III.5.1, we have maintained the number of FSs to 

a value of five (5), so as to avoid resembling an ANN by assigning to each arithmetic 

value a “dedicated” MF. 

The ANN of FUN models is a feed-forward back propagation network (newff), with 

one hidden layer. Based on the NN architecture of experiment 8 in table III.7, we are 

using tansig and logsig transfer functions. The number of nodes in the input layer is 

variable, calculated by the number of input variables times the number of FSs 

assigned for each variable domain. Similarly the number of nodes for the output 

layer is equal to the number of FSs assigned to the output variable; this number is 

constant and equal to five (5) due to the constant number of FSs for all FUN models. 

The number of nodes in the hidden layer is variable and depends on the number of 

nodes of the input layers and consequently to the number of input variables and 

assigned FSs. The number of nodes must equal or exceed the nodes calculated by 

Kolmogorov’s theorem and at the same time should remain less than the number of 

training sets for an epoch. According to table 5.11, the available training sets (60%) 

for each lung category is 314, 113 and 76 for the COPD, ALI-ARDS and Normal 

lungs category respectively. The number of nodes for the hidden layer (NH1) is given 

by the following equation: 
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nNN INH
*

1
        eq. 6.2a 

Where NH1 is the number of hidden layer 1 nodes, NIN is the number of input layer nodes and n is a 

multiplier. 

 

Based on Kolmogorov’s theorem and the empirical assumption that the increased 

number of hidden nodes improves NN performance (to a limit, too many nodes leads 

to overtraining and lack of generalization) we have: 

  12**
1

 NNN ININH
n       eq. 6.2b 

    NNNN ININININ nn 12*12**     eq. 6.2c 

 

However due to the limitation of the available training set, we have: 

 

NNNNN INDSDSINH
nn  *

1
    eq. 6.2d 

Where NDS  is the number of available data sets for each category. 

 

Utilizing eq. 6.2d and 6.2c we have:   NNNN INDSININ
n 12*      eq. 6.2e 

 12*  NN INDS
n        eq. 6.2f 

 

A multiplier (n) given by equation 6.2f, satisfies eq. 6.2e as long as the training set is 

approximately four times higher than the number of inputs to the NN. If this is not 

applicable then n is given by equation 6.2c, as exhibited in table 6.2 for the tidal 

volume and respiration rate model. 

Applying the above equations (6.2c and 6.2d) to the number of NIN for each model 

we get the architecture of table 6.2 in terms of hidden nodes. Based on table 6.2 

calculations and table 5.5 basic architecture table 8.3 describes the FUN models 

architecture. All models share an equivalent NN architecture; namely traindx 

training function, tansig-logsig transfer function, newff NN type and 1000 training 

epochs. 
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Table 6.2: Calculation of FUN Hidden Layers nodes. 
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Vt 25 314 12,56 2,040 51 6,157 154 
RR 15 314 20,93 2,067 31 10,129 152 
FiO2 10 314 31,40 2,100 21 14,952 150 
Pmax 10 314 31,40 2,100 21 14,952 150 
Fmax 25 314 12,56 2,040 51 6,157 154 
PEEP 25 314 12,56 2,040 51 6,157 154 

A
LI

-A
R

D
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Vt 20 113 5,65 2,050 41 2,756 55 
RR 5 113 22,60 2,200 11 10,273 51 
FiO2 10 113 11,30 2,100 21 5,381 54 
Pmax 5 113 22,60 2,200 11 10,273 51 
Fmax 10 113 11,30 2,100 21 5,381 54 
PEEP 20 113 5,65 2,050 41 2,756 55 

N
or

m
al

 

Vt 25 76 3,04 2,040 51 1,490 51  
RR 25 76 3,04 2,040 51 1,490 51  
FiO2 10 76 7,60 2,100 21 3,619 36 
Pmax 30 76 2,53 2,033 61 1,246 61 
Fmax 10 76 7,60 2,100 21 3,619 36 
PEEP ….. ….. ….. ….. ….. ….. …. 

 
Table 6.3: Architecture –setup of FUN models based on calculations from table 6.2 
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Vt 5 4 20 55 5 
RR 5 1 5 51 5 

FiO2 5 2 10 54 5 
Pmax 5 1 5 51 5 
Fmax 5 2 10 54 5 
PEEP 5 4 20 55 5 
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Vt 5 5 25 154 5 
RR 5 3 15 152 5 

FiO2 5 2 10 150 5 
Pmax 5 2 10 150 5 
Fmax 5 5 25 154 5 
PEEP 5 5 25 154 5 

N
or

m
al

 Vt 5 5 25 51 5 
RR 5 5 25 51 5 

FiO2 5 2 10 36 5 
Pmax 5 6 30 61 5 
Fmax 5 2 10 36 5 
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Similar to the EVOFINE and FUN architectures the ANN basic architectures is 

given by the table 5.5. We have decided to test three different ANN models for the 

problem of modelling the ventilation management process. The first model which 

will be named for now on as ANN Kolmogorov, use equations 6.2a to 6.2f to 

calculate the number of the nodes in the hidden layer. The number of nodes is 

presented in table 6.4. The second model uses similar architecture as the ANN 

Kolmogorov, but it was trained with scaled input and output variables to the range of 

zero (0) to one (1). This model will be termed for this thesis as ANN Normalized. 

The third model was designed with an empirical architecture and will be termed as 

ANN empirical. 

 

Table 6.4: Calculation of hidden layer node number for the ANN. 
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Vt 5 314 62,80 2,200 11 28,545 143 
RR 3 314 104,67 2,333 7 44,857 135 
FiO2 2 314 157,00 2,500 5 62,800 126 
Pmax 2 314 157,00 2,500 5 62,800 126 
Fmax 5 314 62,80 2,200 11 28,545 143 
PEEP 5 314 62,80 2,200 11 28,545 143 

A
LI

-A
R

D
S 

Vt 4 113 28,25 2,250 9 12,556 50 
RR 1 113 113,00 3,000 3 37,667 38 
FiO2 2 113 56,50 2,500 5 22,600 45 
Pmax 1 113 113,00 3,000 3 37,667 38 
Fmax 2 113 56,50 2,500 5 22,600 45 
PEEP 4 113 28,25 2,250 9 12,556 50 

N
or

m
al

 

Vt 5 76 15,20 2,200 11 6,909 35 
RR 5 76 15,20 2,200 11 6,909 35 
FiO2 2 76 38,00 2,500 5 15,200 30 
Pmax 6 76 12,67 2,167 13 5,846 35 
Fmax 2 76 38,00 2,500 5 15,200 30 
PEEP ….. ….. ….. ….. ….. ….. …. 

 
 

The ANN Kolmogorov is a feed-forward back propagation network (newff), with one 

hidden layer, based on the NN architecture of experiment 6 in table III.9. The 
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number of nodes in the input layer is variable, equal to the number of input variables. 

Similarly the number of nodes for the output layer is equal to the number of the 

output variables; this number is constant and equal to one (1). The number of nodes 

in the hidden layer is variable and depends on the number of nodes of the input 

layers and the available training sets as shown in table 6.4. The NN was trained for 

1000 epochs. 

The architecture of the ANN Kolmogorov for each category is presented in table 6.5. 

 

Table 6.5: Architecture of ANN Kolmogorov & Normalized  models for all 

categories. 
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Vt 5 5 143 1 
RR 3 3 135 1 

FiO2 2 2 126 1 
Pmax 2 2 126 1 
Fmax 5 5 143 1 
PEEP 5 5 143 1 
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Vt 4 4 50 1 
RR 1 1 38 1 

FiO2 2 2 45 1 
Pmax 1 1 38 1 
Fmax 2 2 45 1 
PEEP 4 4 50 1 

N
or
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Vt 5 5 35 1 
RR 5 5 35 1 

FiO2 2 2 30 1 
Pmax 6 6 35 1 
Fmax 2 2 30 1 
PEEP --- --- --- --- 

 
 
The architecture of the ANN Normalized was similar to the ANN Kolmogorov in 

terms of layers and number of nodes. The difference between the two models was 

that the ANN Normalized was trained with the normalized training set, which was the 

available training set scaled in the range from 0 to 1. The ANN Normalized uses 

tansig and purelin transfer functions. The choice of the transfer functions was based 

on trials that suggest that tansig and logsig functions at the output nodes do not 

perform adequately since available data are scaled in the 0 to 1 range.  
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The ANN empirical was designed based on the architecture of experiment 6 in table 

III.10, which exhibited the best performance in modelling the cart pole system. It has 

two hidden layers. The number of nodes in each layer is given by the following 

equations: 

 

 21 DSH roundN     eq. 6.3a 

 212 HH NroundN     eq. 6.3b 

 

The ANN empirical utilized the normalized training set for each category for training 

purposes. The NN was trained for 1000 epochs. The resulted architecture is 

described in table 6.6. 

 
Table 6.6: Architecture of ANN empirical models for all categories. 
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Vt 5 5 157 78 1 
RR 3 3 157 78 1 

FiO2 2 2 157 78 1 
Pmax 2 2 157 78 1 
Fmax 5 5 157 78 1 
PEEP 5 5 157 78 1 

A
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Vt 4 4 61 30 1 
RR 1 1 61 30 1 

FiO2 2 2 61 30 1 
Pmax 1 1 61 30 1 
Fmax 2 2 61 30 1 
PEEP 4 4 61 30 1 

N
or
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Vt 5 5 38 19 1 
RR 5 5 38 19 1 

FiO2 2 2 38 19 1 
Pmax 6 6 38 19 1 
Fmax 2 2 38 19 1 
PEEP --- --- --- --- --- 

 
Similar to the EVOFINE, FUN and ANN architectures the ANFIS basic architecture 

is given by the table 5.5. Since the number of available training sets was relatively 

small and the ANFIS NN node number depends upon the number of model’s inputs 

and FSs, we have kept the number of FSs small for all models, equal to 2 (table 6.8).  
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Table 6.7 : Comparison table for ANFIS architecture for the COPD models. 

  Fuzzy Setup 
Evaluation 

Results 
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Vt 243 5 3 trimf 0,00095 0:05:08 
RR 27 3 3 trimf 0,03271 0:00:02 

FiO2 9 2 3 trimf 0,00124 0:00:01 
Pmax 9 2 3 trimf 0,03479 0:00:01 
Fmax 243 5 3 trimf 0,00000 0:05:08 
PEEP 243 5 3 trimf 0,00001 0:05:11 

C
O

PD
 

Vt 32 5 2 gausmf 0,00251 0:00:04 
RR 8 3 2 gausmf 0,03696 0:00:01 

FiO2 4 2 2 gausmf 0,00131 0:00:01 
Pmax 4 2 2 gausmf 0,04929 0:00:01 
Fmax 32 5 2 gausmf 0,00045 0:00:04 
PEEP 32 5 2 gausmf 0,00025 0:00:04 

 
 

Table 6.8: Architecture of ANFIS models. 
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Vt 32 5 2 
RR 8 3 2 

FiO2 4 2 2 
Pmax 4 2 2 
Fmax 32 5 2 
PEEP 32 5 2 
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Vt 16 4 2 
RR 2 1 2 

FiO2 4 2 2 
Pmax 2 1 2 
Fmax 4 2 2 
PEEP 16 4 2 
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Vt 32 5 2 
RR 32 5 2 

FiO2 4 2 2 
Pmax 64 6 2 
Fmax 4 2 2 
PEEP --- --- --- 
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Only two FSs were describing the variable’s domain, and we decided to use 

Gaussian MFs (gausmf). The choice of Gaussian MFs was based on trials performed 

on available training data both on Triangular and Gaussian MFs. In table 6.7, we 

present trials for the COPD category, for both the Gaussian and the Triangular MFs 

type. The increased number of MFs for the Triangular type results in a larger number 

of rules for the fuzzy system. Furthermore the computation time increases with the 

ANFIS complexity. Even though as results suggest (table 6.7), the increased number 

of MFs leads to an improved performance, based on the experience from the ANFIS 

toolbox the number of adjusted variables exceeds the available training set. As it was 

discussed in ANN models architecture, the large number of NN nodes will lead to 

loss of model’s generalizability. The ANFIS systems were trained for 5 epochs. 
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6.3 Training Process 

The following sections present the training process of the developed models for the 

Ventilation management process.  

6.3.1 Evolution of FRBS, for modelling the Ventilation 
Management Process. 

Based on the architectures of table 6.1, an original population of 100 individual 

FRBS for each model was randomly developed. As it is described in Appendix II, 

the coding was performed with the use of two chromosomes. To each chromosome 

for each generation we have applied evolutionary mechanisms. The performance of 

the FRBS was tested against the available training data set. During the evolutionary 

process the best chromosomes of each generation were stored in spreadsheet format 

in user specified directory.  

Figure 6.1 presents sample plots of the performance of the FRBS during the 

evolutionary process. Performance is measured in terms of rmse % as in eq. II.2 

(Appendix II). The use of the percentage allows direct comparison between systems 

that utilize different units of measurement. The arithmetic value of the error of the 

best individual in the last generation is displayed at the top of each figure. The 

figures display the best (min error), the worst (max error) and the mean performance 

of all individuals in a given generation. Convergence of the mean plot to the 

minimum error suggests that most of the FRBSs have evolved architectures very 

similar among them or very similar in terms of performance. 

Large deviations from the mean value, usually towards the opposite than the desired 

direction, are mainly attributed to the mutation process. However it is possible that 

crossover operation might result to an offspring with worst performance. 

In most of the evolution process presented in figure 6.1, the convergence occurs at 

generations above twenty (20). In plots of figures 6.1, we observe two different 

patterns of convergence of minimum and maximum error. The first pattern is where 

minimum and maximum errors converge, (FiO2 for COPD category). The second 

pattern is where there is no convergence of maximum error to the minimum, (VT for 

ARDS). This observation is attributed to the complexity of the FRBS. When 

complexity is high, thus large number of input variables and RB, the high variable 

mutation rates at the last generations affect overall performance. On the other hand 

when architectures of FRBS are simple, high mutation rates do not affect the 

chromosomes performance. 
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While the rmse % is a good measure for comparing performances it is not easily 

translated to a numerical value for a given variable. For this reason we provide the 

reader with a measure of error for each variable in order to make reading of figures 

more comprehensive (Table 6.9). 

 
Table 6.9: Indication of measure for the rmse %. 

Variable Min 
value 

Max 
value 

Range Value of 
0.1% 
rmse 

Value of 
0.5% 
rmse 

Value of 
1%    
rmse 

VT (ml/Kgr) 2 12 10 0,01 0,05 0,1 
RR (bpm) 5 30 25 0,025 0,125 0,25 
FiO2 0,25 0,8 0,55 0,00055 0,00275 0,0055 
Pmax (mbar) 40 90 50 0,05 0,25 0,5 
Fmax (L/min) 15 80 65 0,065 0,325 0,65 
PEEP (mbar) 0 15 15 0,015 0,075 0,15 

 
 

 
 

 
 
Figure 6.1: Graphical presentation of sample EVOFINE FRBSs evolution process. 
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6.3.2 Training Process of the FUN ANN 

As presented in Appendix II FUN toolbox utilized ANN for substituting the RB of 

the FRBS. The main characteristic of the FUN ANN is that there is an increased 

number of inputs and outputs to the system, equal to the number of inputs – outputs 

multiplied by the number of the assigned MFs.  

In order to understand the measure of the performance of the ANN developed for the 

FUN toolbox, one has to understand that the NN is trained to best map the 

membership degrees for the given number of MFs representing the input(s) and 

output(s) variables domain. Analytical, the training data set is automatically 

translated into membership degrees for each corresponding FS. If a SISO system is 

designed with five (5) MFs, then for each input and output value in the training set 

we get a corresponding five value array. Each value in the array is the membership 

degree to a given membership function.  

The training process of the ANN uses the mse as a measure of the ANN 

performance. The measure of performance for the ANN is the error (mse) between 

the membership degrees for each membership function of the calculated ANN output 

and the membership degrees for each membership function for a given output value 

of the training set. 

Since all input and output data are translated into membership degrees, ranging by 

default from zero (0) to one (1), there is no need to introduce normalized training 

data to the ANN. 

Figure 6.2 presents sample plots of the training progress of the FUN ANN. NN were 

trained with the available training set for each category for 1000 epochs. 

 

 
 

Figure 6.2: Graphical presentation of sample FUN ANN training process.  
 



112 
  

6.3.3Training Process of the ANN 

Three different ANNs have been trained (tables 6.5 & 6.6). The training of the ANN 

Kolmogorov was performed with the available training data set for each category. 

However the ANN Normalized and ANN empirical were trained with the scaled 

training set. The difference in the use of the training sets is also related to the 

interpretation of the mse that the ANN measures performance.  

In the case of the ANN Kolmogorov, the mse is in the same units of measurement as 

the models output if we calculate the square root of the performance value (rmse). 

Consider the performance of the ANN Kolmogorov for the Fmax in the COPD 

category set (table 6.12). The trained network achieved a performance of 30.47. 

Calculating the square root of this value we get an approximate rmse of 5.5 L/min. 

The use of the rmse gives us a more comprehensive approximation of the mean 

difference between the models output and the training set. In table 6.10 we provide 

the interpretation for some predefined values of mse in terms of rmse in order to 

make reading of figure 6.3 easier with the help of table 6.9. 

 

Table 6.10: Presentation of rmse interpretation for given mse values.  
(Valid for figure 6.5) 

. 
mse 10,00000 1,00000 0,50000 0,01000 0,00100 0,00010 
rmse 3,162278 1 0,707107 0,1 0,031623 0,01 

 
 

In figure 6.3 we observe mainly three “types” of training processes. The first type is 

a fast training of the ANN, which succeeds the goal performance before the 

maximum number of epochs available for the training. Example plots are the training 

of the FiO2 model for the Normal lungs category and the Pmax model for the ALI-

ARDS category. In these cases the ANN could easily map the relationship between 

input variables and model’s output. This could be attributed to the appropriate 

architecture of the ANN, to the existing relationship between input and output 

variables and the sufficient representation of this relationship to the training set. 
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Figure 6.3: Graphical presentation of sample ANN Kolmogorov training process. 
 
The second type is the training process which has constant improvement in 

performance but does not succeed in achieving the training goal. Example plot is the 

training of VT model for the Normal category (fig. 6.3). Continuous improvement 

suggests that the target could be achieved if the ANN was allowed to be trained for 

more epochs. The relationship between input and output variables exist, but the type 

of relationship is more complicated and thus more training epochs or improved 

architectures of the NN should be implemented. 

The third type is the training process where there is a fast improvement in ANN 

performance during the first few epochs, but the performance remains relative stable 

for the rest of the training process. Example plot are the training of the RR model for 

the ALI-ARDS category. Although in some cases performance is considered 

appropriate for the task, as in the training of RR for the Normal model (performance 

is mse=1.935, or rmse=1.39 bpm, table 6.11), the training process posses questions 

on the appropriateness of the ANN architecture, the number and type of input 

variables and the existence of a relationship between them, and the good 

representation of input and output variables to the training set. 
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The following paragraphs attempt to produce logical assumptions on the effect of 

each of the above factors in ANN performance: 

 ANN architecture: ANNs were developed on an architecture that performed 

well during the tests on the cart pole system and the mathematical function. 

One could argue that although architecture performs well on a specific 

problem it does not guarantee good performance on modelling a different 

system. However the ANN Kolmogorov and the ANN Normalized have 

exactly the same architecture but utilize different training set; the un-

normalized and the normalized set respectively. If the architecture was the 

underlying reason for their performance, then in both cases the ANN should 

exhibit the same problems during training. Examining the RR and Pmax 

results (table 6.11) for the Normal models, we observe that the ANN 

Normalized performed very well in comparison to the ANN Kolmogorov. 

Thus the draw backs observed in the training process could not be attributed 

to the architecture with certainty. In this case the improvement in 

performance could be attributed to the use of scaled input and output values 

which overcomes the problem of training NN with a large variation in inputs 

values. 

 Existing Relationship between inputs and outputs: The type and number of 

inputs participating in each model was chosen based on correlation between 

available inputs and the output in question. If such a relationship was false, 

then the ANN tries to map a non existence relationship, leading to a poor 

performance during training. Similar to the logical assumptions of the 

previous paragraph, if the type and number of inputs to an ANN were not 

appropriate for the model, then in all cases the ANN should not be able to 

adequately map the relationship. However observing the training 

performance of the Fmax for the COPD category (table 6.12), we do not 

observe similar difficulties in training. This observation leads us to the 

logical assumption that the type and number of input variables were 

appropriately chosen for the models.  

 Training Set representative of the modelled system: The training set was 

generated with the use of a randomization process from all the available – 

recorded data. Randomization process on each own should eliminate bias in 

choice among the available data. However since the randomization 

algorithms are pseudo-random generators it could be the case of introducing 
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bias in our training set. However since the same training sets were used in all 

ANN for the same lung categories, the same type of problematic training 

should occur in all the applied ANN. Since this is not backed up from the 

available training data, it should not be considered as an important factor for 

the training performance. 

 Number of input variables participating in the model: In the case of RR and 

Fmax models for the ALI-ARDS, we have identified a single variable as 

input to the models (table 5.15). ANN Kolmogorov has exhibited very poor 

training process for these models as expected (table 6.13). However the use 

of the normalized training sets has shown that the problem of modelling a 

SISO system was overcome. 

 Scaled (Normalized) training sets: We have implemented linear scaling of all 

the available input – output training sets. Data were linearly scaled in the 

domain of zero (0) to one (1), where zero was the minimum value and one 

was the maximum value of the scaled variable. ANN Normalized and 

empirical have used the normalized training set for their training process. The 

theoretical advantage of improving performance by reducing large variations 

in the input data when input data are presented to the NN, has been supported 

by the training performance of the “normalized” ANNs. The performance of 

training results of ANN Kolmogorov and Normalized which utilize similar 

architectures (tables 6.11 to 6.13), support the appropriateness of the scaled 

inputs. 
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6.3.4Training Process of the ANFIS 

The ANFIS models were developed according to table 6.8 architecture. Models were 

trained for 5 epochs. 

Overall performance of the training process is excellent (tables 6.11 to 6.13). 

However training performance of ANFIS models in Normal category suggests 

perfect mapping of the relationship between inputs and outputs. The underlying 

reason for this is the small number of data sets in Normal category (Table 5.11). The 

small number of sets and the complexity of the models could have result into 

overtraining of the system. However the architecture of the ANFIS is minimum in 

terms of FSs; two (2) FSs for each input variable. Since the number of FSs is 

minimum, the size of RB is also maintained as small as possible.  
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Table 6.11: Perform
ance, Norm

al Category, Training Set. 

 

EVO
FIN

E 
FU

N
 

Bisector 

FU
N

 
W

eighted 
A

verage 

FU
N

 N
ear 

M
axim

a 
AN

N
 

N
orm

alized  
AN

N
 

K
olm

ogorov  
AN

N
 

em
pirical  

A
N

FIS 

 
EVOFINE MAE 

EVOFINE MAE % 
EVOFINE rMSE 

EVOFINE rMSE % 
Training Time 

FUN MAE 
FUN MAE % 
FUN rMSE 

FUN rMSE % 
FUN MAE 

FUN MAE % 
FUN rMSE 

FUN rMSE % 
FUN MAE 

FUN MAE % 
FUN rMSE 

FUN rMSE % 
Training Time 

NN  MAE 
NN MAE % 
NN rMSE 

NN rMSE % 
Training Time 

h:min:sec 
NN mae 

NN mae % 
NN rMSE 

NN rMSE % 
Training Time 

NN mae 
NN mae % 
NN rMSE 

NN rMSE % 
Training Time 
ANFIS MAE 

ANFIS MAE % 
ANFIS rMSE 

ANFIS rMSE % 
Training Time 

Vt (ml/kgr) 

0.08 

0.81 
0.09 

0.88 
0:14:00 

0,75 
7,51 
0,75 
7,52 

0,73 
7,23 
0,73 
7,32 

0,27 
2,72 
0,72 
7,22 

0:00:05 

0,08 
0,76 
0,10 
1,00 

0:00:02 

0,02 
0,18 
0,03 
0,34 

0:00:05 

0,01 
0,11 
0,02 
0,16 

0:00:07 

0,00 
0,00 
0,00 
0,00 

0:00:01 

RR (BPM) 

0.25 

0.99 
0.61 

2.45 
0:14:00 

1,39 
5,57 
1,42 
5,68 

1,32 
5,29 
1,37 
5,49 

0,57 
2,29 
1,50 
6,01 

0:00:05 

0,15 
0,62 
0,25 
1,00 

0:00:05 

1,06 
4,22 
1,39 
5,57 

0:00:05 

0,02 
0,09 
0,03 
0,11 

0:00:07 

0,00 
0,00 
0,00 
0,00 

0:00:01 

FiO2  

0.00 

0.00 
0.00 

0.00 
0:06:00 

0,02 
4,35 
0,02 
4,39 

0,02 
4,24 
0,02 
4,31 

0,00 
0,83 
0,01 
1,95 

0:00:05 

0,00 
0,62 
0,01 
1,35 

0:00:01 

0,00 
0,56 
0,01 
1,73 

0:00:05 

0,00 
0,02 
0,00 
0,13 

0:00:06 

0,00 
0,00 
0,00 
0,00 

0:00:01 

PEEP 
(mbar) 

X 

X 
X 

X 
X 

X 
X 
X 
X 

X 
X 
X 
X 

X 
X 
X 
X 
X 

X 
X 
X 
X 
X 

X 
X 
X 
X 
X 

X 
X 
X 
X 
X 

X 
X 
X 
X 
X 

Pmax 
(mbar) 
1.33 

2.66 
1.48 

2.97 
0:24:00 

3,69 
7,39 
3,86 
7,72 

3,58 
7,16 
3,87 
7,74 

0,05 
0,10 
0,05 
0,11 

0:00:05 

9:42 
19:25 
11:31 
23:03 

0:00:01 

3,17 
6,34 
3,98 
7,96 

0:00:05 

1:08 
2:17 
1:12 
2:24 

0:00:06 

0,00 
0,00 
0,00 
0,00 

0:00:07 

Fmax 
(L/min) 

0.04 

0.06 
0.07 

0.11 
0:07:00 

3,17 
4,87 
3,42 
5,27 

3,26 
5,02 
3,41 
5,24 

0,45 
0,69 
1,09 
1,68 

0:00:05 

0,35 
0,54 
0,65 
1,00 

0:00:05 

2,95 
4,53 
4,37 
6,72 

0:00:05 

0,06 
0,10 
0,09 
0,14 

0:00:07 

0,09 
0,13 
0,02 
0,03 

0:00:01 

Mean Error 
% 
 

0.90 
 

 
 

  
5,94 

  
  

  
5,79 

  
  

  
1,32 

  
  
  

  
0,67 

  
  
  

  
3,17 

  
  
  

  
0,08 

  
  
  

  

0,03 
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Table 6.12: Perform
ance, CO

PD
 Category, Training Set. 

 

EVO
FIN

E 
Bisector 

W
eighted 

A
verage 

N
ear M

axim
a 

AN
N

 
N

orm
alized  

AN
N

 
K

olm
ogorov  

AN
N

 
em

pirical  
A

N
FIS 

 
EVOFINE MAE 

EVOFINE MAE % 
EVOFINE rMSE 

EVOFINE rMSE % 
Training Time 

FUN MAE 
FUN MAE % 
FUN rMSE 

FUN rMSE % 
FUN MAE 

FUN MAE % 
FUN rMSE 

FUN rMSE % 
FUN MAE 

FUN MAE % 
FUN rMSE 

FUN rMSE % 
Training Time 

NN  MAE 
NN MAE % 
NN rMSE 

NN rMSE % 
Training Time 

h:min:sec 
NN mae 

NN mae % 
NN rMSE 

NN rMSE % 
Training Time 

NN mae 
NN mae % 
NN rMSE 

NN rMSE % 
Training Time 
ANFIS MAE 

ANFIS MAE % 
ANFIS rMSE 

ANFIS rMSE % 
Training Time 

Vt (ml/kgr) 

0.22 

2.24 
0.38 

3.82 
0:35:00 

0,16 
1,55 
0,20 
2,03 
0,16 
1,59 
0,20 
2,03 
0,42 
4,19 
0,54 
5,42 

0:00:40 
0,10 
1,01 
0,13 
1,33 

0:00:15 
0,07 
0,74 
0,10 
1,01 

0:00:15 
0,06 
0,59 
0,08 
0,84 

0:00:50 
0,03 
0,28 
0,00 
0,03 

0:00:04 

RR (BPM) 

0.52 

2.08 
0.82 

3.29 
0:29:00 

0,58 
2,32 
0,90 
3,60 

0,50 
2,00 
0,77 
3,07 

0,60 
2,39 
0,85 
3,40 

0:00:45 

0,46 
1,85 
0,67 
2,69 

0:00:15 

0,51 
2,03 
0,74 
2,97 

0:00:15 

0,32 
1,29 
0,55 
2,20 

0:00:50 

0,43 
1,72 
0,04 
0,15 

0:00:01 

FiO2  

0.01 

1.89 
0.02 

4.05 
0:10:00 

0,02 
3,79 
0,03 
4,74 

0,01 
2,64 
0,02 
4,19 

0,03 
4,62 
0,05 
8,36 

0:00:36 

0,01 
1,62 
0,02 
3,51 

0:00:15 

0,01 
1,36 
0,02 
2,82 

0:00:15 

0,01 
1,38 
0,02 
3,09 

0:00:50 

0,01 
2,17 
0,00 
0,24 

0:00:01 

PEEP 
(mbar) 
0.50 

3.35 
0.55 

3.63 
0:32:00 

0,98 
6,54 
1,02 
6,79 

0,76 
5,07 
0,78 
5,19 

0,18 
1,20 
0,54 
3,60 

0:00:37 

0,16 
1,07 
0,24 
1,62 

0:00:15 

0,05 
0,34 
0,07 
0,47 

0:00:15 

0,10 
0,67 
0,15 
0,97 

0:00:50 

0,00 
0,02 
0,00 
0,00 

0:00:04 

Pmax 
(mbar) 
0.19 

0.39 
0.65 

1.29 
0:10:00 

1,54 
3,08 
1,69 
3,37 

1,49 
2,97 
1,67 
3,33 

0,10 
0,20 
0,17 
0,34 

0:00:34 

6:56 
13:53 
19:49 
15:39 

0:00:15 

0,19 
0,38 
0,75 
1,50 

0:00:15 

4:40 
9:21 
6:54 
13:48 

0:00:50 

0,38 
0,76 
0,05 
0,10 

0:00:01 

Fmax 
(L/min) 

1.11 

1.70 
2.79 

4.29 
0:32:00 

3,95 
6,07 
4,13 
6,35 

3,97 
6,11 
4,16 
6,41 

0,91 
1,40 
2,64 
4,06 

0:00:36 

0,84 
1,29 
1,54 
2,37 

0:00:15 

3,51 
5,39 
5,52 
8,49 

0:00:15 

0,56 
0,86 
1,17 
1,80 

0:00:50 

0,01 
0,01 
0,00 
0,00 

0:00:04 

Mean Error 
% 
 

1.94 
 

 
 

  
3,89 

  
  

  
3,40 

  
  

  
2,33 

  
  
  

  
1,24 

  
  
  

  
1,71 

  
  
  

  
0,86 

  
  
  

  

0,83 
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Table 6.13: Perform
ance, ALI-ARD

S Category, Training Set. 

 

EVO
FIN

E 
Bisector 

W
eighted 

A
verage 

N
ear M

axim
a 

AN
N

 
N

orm
alized  

AN
N

 
K

olm
ogorov  

AN
N

 
em

pirical  
A

N
FIS 

 
EVOFINE MAE 

EVOFINE MAE % 
EVOFINE rMSE 

EVOFINE rMSE % 
Training Time 

FUN MAE 
FUN MAE % 
FUN rMSE 

FUN rMSE % 
FUN MAE 

FUN MAE % 
FUN rMSE 

FUN rMSE % 
FUN MAE 

FUN MAE % 
FUN rMSE 

FUN rMSE % 
Training Time 

NN  MAE 
NN MAE % 
NN rMSE 

NN rMSE % 
Training Time 

h:min:sec 
NN mae 

NN mae % 
NN rMSE 

NN rMSE % 
Training Time 

NN mae 
NN mae % 
NN rMSE 

NN rMSE % 
Training Time 
ANFIS MAE 

ANFIS MAE % 
ANFIS rMSE 

ANFIS rMSE % 
Training Time 

Vt (ml/kgr) 

0.07 

0.74 
0.11 

1.05 
0:16:00 

0,66 
6,58 
0,67 
6,69 

0,58 
5,75 
0,59 
5,91 

1,52 
15,23 
1,59 
15,88 

0:00:08 

0,07 
0,74 
0,10 
1,00 

0:00:04 

0,02 
0,17 
0,02 
0,25 

0:00:10 

0,02 
0,19 
0,03 
0,29 

0:00:10 

0,00 
0,00 
0,00 
0,00 

0:00:01 

RR (BPM) 

0.95 

3.79 
1.16 

4.64 
0:05:00 

1,48 
5,94 
1,53 
6,11 

1,20 
4,81 
1,27 
5,09 

0,71 
2,84 
1,31 
5,26 

0:00:08 

0,23 
0,92 
0,67 
2,68 

0:00:08 

0,30 
1,21 
0,67 
2,68 

0:00:10 

0,30 
1,20 
0,67 
2,68 

0:00:04 

1,14 
4,55 
0,13 
0,54 

0:00:01 

FiO2  

0.00 

0.57 
0.00 

1.15 
0:08:00 

0,02 
2,86 
0,02 
3,60 

0,01 
2,34 
0,02 
2,89 

0,03 
5,57 
0,04 
7,00 

0:00:08 

0,01 
0,91 
0,01 
1,36 

0:00:03 

0,01 
2,11 
0,04 
7,75 

0:00:10 

0,00 
0,05 
0,00 
0,18 

0:00:10 

0,00 
0,03 
0,00 
0,01 

0:00:01 

PEEP 
(mbar) 
0.19 

1.28 
0.29 

1.89 
0:17:00 

1,03 
6,89 
1,08 
7,20 

0,92 
6,12 
0,99 
6,60 

1,90 
12,66 
2,14 
14,27 

0:00:08 

0,12 
0,78 
0,20 
1,31 

0:00:10 

0,14 
0,94 
0,25 
1,67 

0:00:10 

0,11 
0,72 
0,18 
1,19 

0:00:10 

0,07 
0,44 
0,01 
0,09 

0:00:01 

Pmax 
(mbar) 
1.72 

3.44 
2.58 

5.17 
0:06:00 

1,76 
3,52 
2,14 
4,29 

1,39 
2,78 
1,90 
3,79 

2,56 
5,11 
4,61 
9,23 

0:00:07 

7:17 
14:34 
11:07 
22:15 

0:00:03 

0,00 
0,01 
0,01 
0,02 

0:00:03 

0:29 
0:58 
1:11 
2:22 

0:00:02 

0,67 
1,34 
0,15 
0,30 

0:00:01 

Fmax 
(L/min) 

0.84 

1.29 
1.69 

2.61 
0:06:00 

3,88 
5,97 
3,96 
6,09 

3,53 
5,43 
3,65 
5,62 

0,66 
1,02 
1,96 
3,02 

0:00:07 

0,44 
0,68 
0,65 
1,00 

0:00:05 

0,82 
1,26 
1,93 
2,97 

0:00:10 

0,06 
0,09 
0,17 
0,25 

0:00:10 

0,24 
0,36 
0,05 
0,08 

0:00:01 

Mean Error 
% 
 

1.85 
 

 
 

  
5,29 

  
  

  
4,54 

  
  

  
7,07 

  
  
  

  
0,77 

  
  
  

  
0,95 

  
  
  

  
0,38 

  
  
  

  

1,12 
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6.4 Discussion on Final Architectures 

FUN and ANN methods altered the original architectures of models only in terms of 

training the NN based on the available training sets. On the other hand EVOFINE 

and ANFIS resulted in FRBSs for each lung category that exhibited optimum 

performance for the available training sets. Since the architecture of the EVOFINE 

and ANFIS FRBS resembles original architectures only in terms of settings (size of 

RB, Number of MFs etc, as presented in tables 6.1 and 6.8) the following figures and 

tables present samples of the resulted MFs and surface graphs for each FRBS.  

6.4.1 Presentation of Resulted Architectures for FiO2 model for 
the COPD category. 

Utilizing as a vehicle the FiO2 model for the COPD category the resulted 

architectures of all the modelling methods are presented. The FiO2 model for the 

COPD category is chosen due to the simplicity in terms of number of input variables 

(according to table 6.1 only two input variables). 

In order to provide some insight in the evolution process of the EVOFINE toolbox 

figure 6.4 and tables 6.14 and 6.15 describe the architecture of the evolved FRBSs of 

the FiO2 model for the COPD category. FiO2 COPD model evolution process is 

presented in figure 6.1 (bottom left). The performance of the last generation’s best 

individual has improved by approximately 5% in respect to the best individual of the 

first generation (figure 6.1, bottom left). Figure 6.4 presents graphically the input and 

output variables fuzzy sets as well as the models response to changes, while tables 

6.14 and 6.15 present the architectures of the best individual of the first generation 

and the best individual of the last generation respectively in terms of evolved fuzzy 

rules and numerical values of the fuzzy sets. 

EVOFINE has altered the original architectures both in terms of position and size of 

FSs (figure 6.4 and bottom of table 6.14 and 6.15), as well as the size and the type of 

Fuzzy Rules (top table 6.14 and 6.15). The change in models’ response is reflected in 

the surface mapping of the FRBSs output (figure 6.4 top right and bottom right). 

Trapezoid membership functions are described with four numbers (points), while 

triangular membership functions are described with three numbers (tables 6.14 & 

6.15bottom). 



121 
  

The size of the RB is reduced to 23 by applying zero weights to 2 rules in the final 

generation (rule 8 & 14, top of table 6.15). However as stated in Appendix II, the 

EVOFINE toolbox does not safeguard against duplicate or conflicting rules. A 

detailed explanation of the EVOFINE algorithm is provided in Appendix II. 

 

 
 

Figure 6.4: Graphical presentation of FiO2 COPD EVOFINE FRBSs for the best 
individual of the first generation (top) and last generation (bottom). 
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Table 6.14: Rules (top) and Fuzzy Sets (bottom) of FiO2 COPD EVOFINE FRBSs for 
the best individual of the first generation. 

Rule Inference Logic 
Rule 

Weight 

1 IF SpO2 is mf 1 AND OI is mf 3 THEN FiO2 is mf 5 1 
2 IF SpO2 is mf 1 AND OI is mf 4 THEN FiO2 is mf 5 0,3 
3 IF SpO2 is mf 1 AND OI is mf 2 THEN FiO2 is mf 5 1 
4 IF SpO2 is mf 2 AND OI is mf 1 THEN FiO2 is mf 5 0,6 
5 IF SpO2 is mf 2 AND OI is mf 4 THEN FiO2 is mf 4 0,9 
6 IF SpO2 is mf 1 AND OI is mf 2 THEN FiO2 is mf 2 0,1 
7 IF SpO2 is mf 4 AND OI is mf 4 THEN FiO2 is mf 2 0,5 
8 IF SpO2 is mf 3 AND OI is mf 5 THEN FiO2 is mf 5 0,6 
9 IF SpO2 is mf 1 AND OI is mf 5 THEN FiO2 is mf 5 0,6 

10 IF SpO2 is mf 5 AND OI is mf 1 THEN FiO2 is mf 1 0 
11 IF SpO2 is mf 2 AND OI is mf 2 THEN FiO2 is mf 2 0,5 
12 IF SpO2 is mf 1 AND OI is mf 3 THEN FiO2 is mf 5 0,7 
13 IF SpO2 is mf 4 AND OI is mf 1 THEN FiO2 is mf 5 1 
14 IF SpO2 is mf 2 AND OI is mf 5 THEN FiO2 is mf 1 0,7 
15 IF SpO2 is mf 2 AND OI is mf 2 THEN FiO2 is mf 1 0,5 
16 IF SpO2 is mf 2 AND OI is mf 3 THEN FiO2 is mf 3 0,3 
17 IF SpO2 is mf 4 AND OI is mf 2 THEN FiO2 is mf 2 0,3 
18 IF SpO2 is mf 2 AND OI is mf 1 THEN FiO2 is mf 1 0,4 
19 IF SpO2 is mf 1 AND OI is mf 4 THEN FiO2 is mf 2 0,8 
20 IF SpO2 is mf 2 AND OI is mf 5 THEN FiO2 is mf 5 1 
21 IF SpO2 is mf 1 AND OI is mf 2 THEN FiO2 is mf 5 0,3 
22 IF SpO2 is mf 4 AND OI is mf 1 THEN FiO2 is mf 4 0,2 
23 IF SpO2 is mf 3 AND OI is mf 5 THEN FiO2 is mf 4 1 
24 IF SpO2 is mf 1 AND OI is mf 4 THEN FiO2 is mf 1 0,5 
25 IF SpO2 is mf 4 AND OI is mf 5 THEN FiO2 is mf 4 1 

 

Variable Membership 
Function 

Membership Functions Coding 
point 1 point 2 point 3 point 4 

SpO2 

mf1 80,00 80,00 80,63 84,69 
mf2 80,00 86,09 89,43   
mf3 85,00 88,56 93,16   
mf4 90,00 94,01 99,81   
mf5 96,86 97,99 100,00 100,00 

OI 

mf1 100,00 100,00 118,51 195,81 
mf2 100,00 266,44 295,36   
mf3 225,00 362,64 457,92   
mf4 350,00 476,62 538,04   
mf5 504,38 537,54 600,00 600,00 

FiO2 

mf1 0,25 0,25 0,27 0,34 
mf2 0,25 0,38 0,47   
mf3 0,39 0,52 0,62   
mf4 0,53 0,69 0,75   
mf5 0,70 0,74 0,80 0,80 
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Table 6.15: Rules (top) and Fuzzy Sets (bottom) of FiO2 COPD EVOFINE FRBSs for 
the best individual of the last generation. 

Rule Inference Logic   Rule 
Weight 

1 IF SpO2 is mf 1 AND OI is mf 3 THEN FiO2 is mf 3 0,5 
2 IF SpO2 is mf 4 AND OI is mf 2 THEN FiO2 is mf 1 0,5 
3 IF SpO2 is mf 4 AND OI is mf 2 THEN FiO2 is mf 2 0,7 
4 IF SpO2 is mf 5 AND OI is mf 1 THEN FiO2 is mf 4 0,1 
5 IF SpO2 is mf 1 AND OI is mf 1 THEN FiO2 is mf 3 0,3 
6 IF SpO2 is mf 1 AND OI is mf 4 THEN FiO2 is mf 3 0,8 
7 IF SpO2 is mf 3 AND OI is mf 2 THEN FiO2 is mf 1 0,1 
8 IF SpO2 is mf 4 AND OI is mf 4 THEN FiO2 is mf 3 0 
9 IF SpO2 is mf 1 AND OI is mf 3 THEN FiO2 is mf 1 0,8 

10 IF SpO2 is mf 1 AND OI is mf 5 THEN FiO2 is mf 3 0,4 
11 IF SpO2 is mf 1 AND OI is mf 5 THEN FiO2 is mf 2 0,8 
12 IF SpO2 is mf 5 AND OI is mf 4 THEN FiO2 is mf 2 0,5 
13 IF SpO2 is mf 4 AND OI is mf 4 THEN FiO2 is mf 4 1 
14 IF SpO2 is mf 5 AND OI is mf 1 THEN FiO2 is mf 2 0 
15 IF SpO2 is mf 4 AND OI is mf 2 THEN FiO2 is mf 1 0,1 
16 IF SpO2 is mf 3 AND OI is mf 2 THEN FiO2 is mf 2 0,1 
17 IF SpO2 is mf 1 AND OI is mf 4 THEN FiO2 is mf 2 0,6 
18 IF SpO2 is mf 5 AND OI is mf 1 THEN FiO2 is mf 3 0,1 
19 IF SpO2 is mf 5 AND OI is mf 4 THEN FiO2 is mf 4 0,9 
20 IF SpO2 is mf 3 AND OI is mf 4 THEN FiO2 is mf 1 0,6 
21 IF SpO2 is mf 5 AND OI is mf 1 THEN FiO2 is mf 4 0,9 
22 IF SpO2 is mf 2 AND OI is mf 1 THEN FiO2 is mf 5 0,7 
23 IF SpO2 is mf 5 AND OI is mf 3 THEN FiO2 is mf 1 0,6 
24 IF SpO2 is mf 5 AND OI is mf 2 THEN FiO2 is mf 2 0,2 
25 IF SpO2 is mf 4 AND OI is mf 4 THEN FiO2 is mf 5 0,7 

 

Variable Membership 
Function 

Membership Functions Coding 
point 1 point 2 point 3 point 4 

SpO2 

mf1 80,00 80,00 81,07 84,01 
mf2 80,00 85,68 87,98   
mf3 85,00 89,34 93,91   
mf4 90,00 95,47 98,53   
mf5 95,98 97,60 100,00 100,00 

OI 

mf1 100,00 100,00 100,00 208,75 
mf2 100,00 266,67 326,24   
mf3 225,00 314,65 454,22   
mf4 350,00 442,71 600,00   
mf5 506,53 543,03 600,00 600,00 

FiO2 

mf1 0,25 0,25 0,30 0,39 
mf2 0,25 0,38 0,46   
mf3 0,39 0,57 0,65   
mf4 0,53 0,62 0,74   
mf5 0,72 0,74 0,80 0,80 
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Figure 6.5 and table 6.16 present in detail the resulted architecture of the FUN FiO2 

model for the COPD category; the basic architecture is provided in table 6.3. The 

FUN FiO2 resulted model for the COPD category is displayed in figure 6.5. Ten 

input variables (membership degrees for each membership function mf) are the NN 

inputs. Similarly the five NNs’ outputs are the membership degrees of the FiO2 

setting. For simplicity a subset of the node interconnections is presented in figure 

6.5. 

Table 6.16 presents all the node weights and biases for the resulted (trained) FiO2 

NN model for the COPD category. 

As described in detail in Appendix II, the input variables of the available data set are 

transformed into degrees of membership for each membership function. The 

transformed values are feed into the network as inputs. The trained NN predicts the 

desired output values in terms of membership degrees for the output variable, which 

in this case is the FiO2 ventilator setting for the COPD category. The NN substitutes 

the fuzzy rule decision making inference engine. However before suggesting 

appropriate ventilation settings a final step needs to be performed. Defuzzification of 

the NNs suggested membership degrees results into numerical suggestion. 
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Figure 6.5: Architecture of FUN model for FiO2 COPD category. 
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Table 6.16: FiO2 COPD FUN NN model’s node weights and bias. 

node No

Hidden 
Layer 
Bias 

Hidden Layer Node Weights 
 

Output Layer Node 
Weights 

Output 
Layer 
Bias 

SpO2 OI 
 

FiO2 

mf1 mf2 mf3 mf4 mf5 mf1 mf2 mf3 mf4 mf5 
 

mf1 mf2 mf3 mf4 mf5 
1 -0,02 -1,14 1,85 1,19 -0,22 -0,76 2,05 1,32 -2,01 2,11 0,49 -0,02 -0,43 -0,33 0,06 -0,15 -2,83 
2 -3,65 1,35 2,07 -1,29 -2,25 1,60 1,38 -0,28 -0,90 1,58 -0,68 0,04 0,31 0,01 -0,05 -0,23 1,33 
3 2,98 -0,57 -0,62 -2,75 1,42 -0,31 -1,77 0,54 -0,43 2,75 0,06 -0,29 0,19 0,21 -0,34 -0,15 -0,12 
4 -5,23 2,34 1,93 -2,31 -0,01 -0,30 2,00 0,58 0,55 1,44 -0,20 0,33 0,14 -0,24 -0,22 -0,14 1,30 
5 -0,25 -0,93 -0,57 2,85 1,49 1,47 -1,52 2,29 -0,11 -0,29 -0,10 0,06 0,08 0,37 -0,33 0,34 -2,84 
6 -5,80 1,71 0,56 2,11 0,41 -1,57 0,89 0,83 -1,44 1,57 2,24 0,12 -0,18 0,37 0,22 -0,35
7 0,71 -1,71 -1,70 0,80 0,88 -1,61 1,70 0,55 2,23 -0,38 1,85 -0,45 0,13 0,41 -0,06 -0,19
8 -3,57 1,37 0,88 -1,57 0,83 1,66 -1,90 0,28 -1,92 1,83 1,38 -0,30 -0,09 0,43 0,07 0,15
9 -1,78 0,59 -1,62 0,52 1,05 -2,02 -1,02 0,93 0,81 -2,26 2,21 -0,01 0,15 0,19 0,07 0,35

10 -0,38 -1,08 0,91 1,86 2,14 2,73 1,14 -0,20 -1,05 -0,66 -0,95 0,37 -0,44 0,16 0,20 0,25
11 3,22 -2,36 0,57 -0,07 -2,58 2,60 0,79 -0,77 0,19 -0,67 0,05 0,01 -0,04 0,03 -0,19 0,39
12 2,21 -0,31 1,17 -2,19 0,37 1,85 -0,35 -1,24 2,18 -2,24 0,33 -0,24 -0,01 0,02 -0,42 0,18
13 2,95 -1,42 1,35 -2,25 -1,64 -0,02 -2,26 0,93 1,25 0,04 1,65 0,39 -0,23 0,29 0,08 -0,29
14 -1,10 1,72 1,60 -1,75 1,10 1,68 -1,60 -1,80 -1,54 -0,58 -0,51 0,05 0,17 0,18 0,43 -0,21
15 7,39 -1,50 1,46 -1,50 -1,33 -1,69 -0,36 -1,04 -1,90 -1,25 -1,92 -0,32 -0,09 -0,06 -0,20 -0,31
16 -3,89 1,00 2,25 0,03 1,20 0,49 -0,78 -2,09 -1,55 1,80 1,73 -0,25 0,00 0,47 0,37 0,33
17 0,30 0,03 -1,77 -2,17 0,10 -1,72 0,61 2,04 -2,28 0,54 0,74 0,44 -0,11 0,32 0,12 -0,31
18 1,51 -0,32 1,87 -1,18 1,45 1,56 -1,57 1,62 0,63 -2,07 -1,44 -0,10 -0,12 -0,23 -0,01 -0,26
19 4,92 -1,62 -0,26 0,71 -0,51 -1,84 1,26 1,46 -2,22 -1,21 -2,10 0,34 0,04 -0,09 -0,24 -0,10
20 -2,52 1,87 -0,52 1,93 -1,80 0,35 2,09 -1,11 0,85 -2,07 0,07 0,10 0,09 -0,32 -0,20 0,36
21 0,28 -2,80 -0,30 1,33 -0,20 1,29 -1,33 2,04 0,20 2,00 0,29 0,46 0,06 0,10 -0,29 0,37
22 -0,30 -2,25 0,52 2,68 -0,89 -0,54 -0,78 1,94 1,25 0,01 1,32 0,16 0,25 -0,42 -0,06 -0,25
23 -4,12 2,20 1,75 -0,84 -2,21 0,70 -0,09 0,38 1,96 -0,60 1,74 -0,05 0,17 -0,15 0,14 -0,08
24 1,04 -1,99 -1,76 -1,45 1,22 0,83 1,66 1,72 1,17 -1,35 1,06 -0,06 0,12 -0,02 0,24 -0,15
25 -1,22 1,79 1,17 -1,71 1,55 1,97 -0,79 -1,53 -1,08 -0,29 -1,82 -0,26 0,07 0,30 0,40 0,11
26 -2,64 1,85 1,15 1,07 1,93 -1,79 -1,26 1,22 -1,36 -1,65 0,87 0,16 -0,09 0,44 0,30 0,20
27 -1,20 1,23 -1,23 -1,87 1,24 1,60 -1,13 1,34 -2,01 1,58 -1,23 0,45 0,16 0,39 -0,36 0,07
28 -2,55 0,97 1,86 1,47 -0,65 -0,38 1,99 -2,01 -1,28 -1,43 1,61 -0,33 0,16 -0,14 -0,20 0,38
29 -2,79 1,06 -1,72 2,01 0,01 -1,55 1,99 -0,50 2,40 -0,12 -0,91 -0,38 0,21 -0,08 0,10 -0,39
30 1,46 0,44 -1,80 -0,75 2,43 -1,05 -2,32 -0,69 -1,94 0,52 -0,73 -0,24 -0,18 -0,11 -0,12 0,16
31 -1,67 -0,22 1,76 2,25 1,99 0,69 -1,83 -0,25 1,94 -1,02 0,36 -0,12 0,09 0,22 0,25 -0,01
32 0,29 -1,73 2,02 2,07 -0,93 1,68 1,49 -1,19 -1,15 0,65 -0,90 0,28 -0,27 0,36 -0,13 -0,28
33 1,91 -1,92 -0,60 -1,51 0,84 2,20 -0,02 -1,23 2,14 -1,72 0,64 0,01 -0,42 -0,22 -0,01 -0,02
34 4,78 -1,18 -0,52 -1,76 0,60 -1,71 0,86 -1,14 -2,03 1,84 -1,95 0,13 0,05 0,10 0,05 -0,06
35 -3,12 1,90 -1,23 -0,25 -2,36 0,76 -0,69 0,81 1,81 2,24 0,74 0,38 -0,19 0,16 -0,24 -0,10
36 2,88 -0,67 2,26 0,65 -2,00 0,58 -0,39 1,43 -1,71 -1,66 -1,77 0,06 0,30 -0,30 -0,34 -0,36
37 1,67 -1,32 -1,87 -1,70 0,24 1,14 1,84 1,31 1,02 -2,30 0,70 0,25 0,22 -0,35 -0,43 0,12
38 0,48 0,54 -2,75 -1,43 0,70 -0,96 2,27 -0,57 -1,23 1,23 -1,32 0,05 -0,61 -0,05 0,19 -0,36
39 0,77 -1,76 2,07 -2,49 0,12 0,40 1,86 1,76 -0,70 0,16 -0,70 -0,18 0,08 0,17 -0,45 0,26
40 -2,06 1,93 -1,35 2,43 -2,00 0,93 -0,76 -0,39 -0,73 -0,09 1,94 0,19 0,19 0,48 -0,28 0,12
41 -4,54 -0,29 1,52 1,50 2,29 -0,19 1,13 -0,12 1,21 2,18 1,98 0,24 0,19 0,05 -0,21 -0,12
42 -0,56 1,69 1,98 -0,73 1,62 -0,17 0,87 -1,82 -2,39 -0,14 -1,33 0,26 0,01 -0,38 0,36 0,19
43 -1,08 2,44 2,35 -1,81 -1,28 1,15 0,69 -1,10 -1,04 -0,71 -0,55 0,12 0,13 0,16 0,16 -0,17
44 -1,75 -1,44 2,07 2,10 1,02 0,35 2,42 0,20 -1,73 0,02 0,92 -0,28 -0,15 0,36 0,20 -0,02
45 -0,75 2,48 0,97 0,43 -1,76 0,70 -1,48 -1,97 -1,45 1,51 0,12 0,08 -0,18 0,00 -0,09 0,23
46 0,53 0,52 -2,42 -0,88 -0,41 1,59 1,14 -1,96 0,03 -2,31 1,25 -0,14 0,28 0,56 0,14 -0,26
47 -0,67 -0,97 1,41 1,63 0,70 1,26 1,97 0,33 -2,17 0,88 -2,02 0,21 -0,38 0,04 0,30 -0,23
48 1,82 -1,72 0,41 1,85 1,39 -2,12 -2,41 1,49 -0,68 -0,07 -0,64 0,44 -0,07 -0,33 -0,18 -0,38
49 2,16 -2,03 1,15 -0,38 1,58 1,35 -0,77 -1,99 -1,20 -1,82 1,47 -0,01 -0,04 -0,44 0,03 0,22
50 1,60 -2,10 -1,58 0,56 0,71 2,33 -1,33 2,14 -0,60 -0,77 -0,96 -0,32 0,25 0,11 0,08 -0,27
51 0,05 -1,38 -0,42 1,78 -1,38 1,02 1,33 -2,74 -0,13 1,63 1,13 0,22 -0,17 -0,20 -0,03 -0,22
52 5,73 -1,64 -1,18 0,35 0,83 -1,97 -1,76 -1,81 -1,60 -1,82 0,59 -0,39 0,12 0,01 0,18 -0,19
53 -3,10 1,71 0,75 1,83 -2,55 -0,38 0,67 1,97 -1,17 1,31 0,64 -0,25 0,07 -0,09 -0,11 0,23
54 4,25 -0,43 -0,39 -1,61 -2,47 1,75 -0,20 -0,16 -1,92 0,57 -2,27 -0,25 -0,32 0,12 0,21 0,08
55 0,40 0,52 1,35 -0,35 1,60 1,56 -1,77 -2,77 -0,78 -1,57 0,36 -0,29 -0,11 -0,35 -0,20 -0,01
56 3,94 -0,97 1,09 -2,12 -0,19 0,11 -2,81 -1,18 1,34 -1,88 -0,01 -0,03 -0,24 -0,20 0,25 0,21
57 1,05 2,68 -0,13 -0,01 -0,15 -0,81 -2,28 0,86 -2,43 -1,35 -0,78 0,51 -0,12 -0,52 -0,13 -0,12
58 1,74 -1,36 -0,13 -0,29 -0,27 -1,92 2,44 1,70 -0,13 0,23 -2,57 -0,05 -0,04 -0,34 0,15 -0,34
59 0,50 -1,25 -2,14 1,13 0,57 1,55 0,22 -0,49 2,28 -2,33 0,60 0,04 0,19 -0,18 -0,40 -0,15
60 1,60 -1,88 -1,59 1,76 -2,23 0,43 1,53 0,47 1,48 -1,22 -0,93 0,12 0,30 -0,31 -0,15 -0,30
61 -1,50 0,75 -1,87 -1,29 2,43 -0,13 1,45 1,42 -2,02 0,17 1,23 -0,16 -0,10 0,03 -0,15 -0,39
62 -1,18 -1,52 1,62 0,02 1,88 -1,63 0,33 -1,83 1,95 1,68 0,64 -0,29 0,53 -0,20 0,39 -0,23
63 -0,27 0,65 1,81 -1,72 -1,96 0,83 1,86 -1,41 -1,31 -0,75 1,55 -0,02 -0,03 -0,02 0,29 -0,24
64 2,76 0,61 0,42 1,61 0,26 -1,90 -0,42 -2,22 -0,88 -2,64 -1,51 0,40 0,17 -0,26 0,00 0,31
65 -0,18 1,84 1,52 -0,68 -0,89 -1,05 1,47 -1,91 -1,36 -1,09 2,12 -0,03 0,19 -0,43 0,28 0,22
66 0,71 -1,72 1,36 -1,48 -1,95 -1,76 1,44 0,22 1,74 0,17 1,41 -0,12 -0,31 0,34 -0,09 -0,30
67 -1,77 -1,84 1,23 -0,75 1,70 1,92 0,80 1,75 0,24 1,10 -2,08 -0,15 0,20 -0,19 -0,45 0,17
68 3,08 -1,90 -2,54 1,86 -0,80 -1,54 -1,74 0,90 0,12 -0,66 0,69 -0,35 0,08 0,01 -0,20 -0,08
69 0,44 1,70 1,97 -2,09 0,87 -1,54 -0,24 0,15 1,17 -2,01 -1,27 -0,12 0,24 -0,14 0,08 0,04
70 -2,02 0,03 0,06 -0,63 -1,52 -0,44 2,29 1,35 2,18 -1,52 2,15 -0,27 -0,27 -0,12 0,38 -0,04
71 -1,39 1,69 -0,93 -2,13 1,78 -1,69 1,18 1,05 2,08 -0,64 0,26 0,25 0,23 -0,28 -0,01 0,19
72 0,07 -0,88 1,39 -2,75 2,47 -0,01 0,43 0,70 -0,43 -1,80 0,92 -0,08 0,26 0,28 0,08 -0,37
73 -2,53 2,07 -2,07 1,69 -0,31 1,39 2,12 0,29 -1,35 -0,11 1,30 0,15 -0,22 0,14 0,33 0,34
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74 -1,52 0,79 1,01 0,70 1,78 -0,98 -1,40 2,31 1,79 -2,14 -0,62 -0,02 -0,27 -0,58 0,03 0,06 
75 0,70 0,28 0,38 -1,72 -0,33 0,93 1,39 -1,61 2,26 -2,69 -0,29 0,14 -0,20 0,37 0,12 -0,04 
76 2,84 0,53 -0,20 -1,38 -1,95 2,04 -1,99 -1,82 -1,39 1,16 -0,70 0,38 -0,32 0,17 0,39 0,20 
77 -2,18 1,20 2,36 2,21 0,71 -0,62 0,70 -1,20 0,63 0,81 -2,36 -0,34 0,34 -0,04 0,11 0,09 
78 -0,22 2,71 -1,46 -0,05 0,54 -2,46 0,31 2,19 -0,58 -0,60 0,14 0,24 0,00 -0,34 0,19 0,36 
79 -3,00 2,04 -1,09 1,78 -1,43 0,45 1,61 1,15 2,29 0,41 -1,07 -0,30 -0,01 0,23 -0,14 -0,03 
80 -3,60 1,46 -0,08 2,27 -0,86 2,00 2,18 -0,90 1,91 -0,50 0,16 -0,09 -0,43 0,14 -0,01 0,21 
81 2,75 0,47 -1,03 0,91 0,33 -1,00 -3,02 -1,35 1,91 -0,77 -1,93 -0,01 0,54 -0,46 -0,50 0,21 
82 -2,81 -1,09 0,38 -1,81 -0,46 1,87 1,89 -0,71 1,63 1,78 1,83 -0,24 -0,28 -0,21 0,47 -0,07 
83 -1,80 -0,34 0,14 -2,08 1,77 1,67 1,09 2,19 -1,15 -1,43 1,29 0,07 -0,06 -0,01 -0,20 0,29 
84 2,17 -1,21 -2,58 1,02 -0,18 -0,03 -0,75 1,72 -1,15 0,88 -2,55 0,12 0,18 -0,33 0,09 0,21 
85 -0,36 0,06 0,91 -1,17 1,71 -0,80 -2,99 0,09 0,23 2,42 1,01 -0,12 -0,63 -0,13 -0,05 0,24 
86 1,35 -0,61 1,37 1,23 -2,23 -0,78 -0,64 -1,33 1,28 -2,62 1,13 -0,24 0,10 -0,36 -0,01 -0,37 
87 -3,37 1,00 1,78 -0,18 -0,63 1,61 0,55 -1,18 -0,19 3,19 1,51 0,21 0,42 -0,25 0,44 -0,27 
88 3,52 1,59 -1,99 1,07 -1,47 -1,81 -0,60 -1,70 -1,95 -0,28 0,97 -0,09 -0,01 -0,26 -0,13 -0,08 
89 2,29 0,79 1,20 0,91 -2,43 -0,19 -1,91 -1,13 -2,18 1,61 -0,04 0,53 -0,40 -0,29 0,19 0,09 
90 3,15 -1,86 0,36 -0,99 2,12 -0,70 -2,32 -0,23 -1,82 -1,86 -0,17 0,23 0,12 0,27 -0,34 0,18 
91 0,52 -2,28 -0,60 -1,54 1,06 1,33 -0,65 1,25 -1,31 2,20 -1,41 0,00 -0,28 -0,08 0,27 -0,25 
92 2,50 2,58 0,88 -0,82 -2,53 0,59 0,24 -0,91 -1,04 -0,59 -1,92 0,05 0,35 -0,35 0,26 0,12 
93 -0,85 1,36 1,84 0,38 2,51 -0,42 -0,44 1,35 -2,39 -1,31 -0,18 0,33 0,07 -0,12 0,14 -0,22 
94 0,24 -1,65 -1,46 0,76 1,05 -2,02 1,16 -1,06 1,38 -1,68 1,91 0,34 0,08 -0,18 0,27 0,20 
95 -0,58 -0,83 1,04 -0,46 -2,42 -1,37 1,91 1,66 -1,70 1,37 0,50 -0,14 0,30 0,29 -0,16 0,07 
96 -1,57 -1,16 -1,67 1,88 1,00 -1,58 1,67 -0,91 -0,40 2,43 0,55 0,33 0,04 0,27 -0,05 0,35 
97 1,86 1,55 0,18 -1,76 0,25 -2,36 -2,30 -0,94 0,98 0,85 1,45 -0,31 0,10 0,06 -0,30 0,26 
98 -3,03 -0,37 2,50 2,50 -1,47 -1,79 0,42 -0,05 0,88 1,43 0,53 -0,24 0,41 0,35 0,10 -0,35 
99 1,84 -0,98 -1,78 -1,36 0,14 -2,54 -0,57 1,38 0,02 2,13 -1,36 -0,01 0,26 0,19 0,16 -0,20 

100 1,44 -2,20 -1,86 0,35 0,32 0,93 1,88 -1,05 0,79 -1,83 -1,84 0,05 0,00 0,16 0,13 -0,24 
101 -2,39 -2,01 0,34 1,34 -0,22 0,75 1,06 2,26 -0,08 2,10 -2,10 -0,26 -0,07 0,24 -0,06 -0,04 
102 3,52 -0,10 2,06 -1,88 -1,51 0,06 -0,81 -1,41 -1,24 -1,98 -1,74 -0,12 0,20 -0,37 -0,30 -0,38 
103 0,66 -1,31 -1,68 -2,09 0,57 0,21 -0,72 2,06 -2,14 0,96 1,30 0,39 0,30 -0,27 0,21 -0,36 
104 -0,72 0,50 1,57 1,98 -1,30 -1,84 0,47 0,98 2,05 0,69 -1,95 0,25 -0,07 0,24 0,27 -0,12 
105 4,18 1,95 -1,69 -1,21 -1,92 -1,05 0,91 -1,77 0,78 -1,83 -0,59 0,03 -0,12 -0,25 0,04 -0,31 
106 3,35 -1,73 1,35 0,46 -1,29 -2,46 -1,86 -0,08 -2,29 -0,30 -0,67 0,39 0,51 -0,06 -0,04 0,05 
107 0,05 1,78 -0,20 -0,88 1,56 0,67 -2,06 -1,74 2,12 1,15 -1,22 0,50 -0,30 0,13 0,17 0,29 
108 -2,50 1,71 1,38 2,13 0,67 1,67 1,36 -1,82 0,53 -1,56 1,09 0,13 -0,46 -0,19 0,03 0,04 
109 3,12 -0,67 1,50 -1,27 -0,62 -1,62 -0,73 -2,18 -1,74 1,18 -2,01 -0,17 0,06 0,03 0,18 0,13 
110 -4,06 0,51 1,40 1,31 1,16 2,02 2,32 1,46 1,56 -0,61 -1,08 0,03 0,11 0,00 0,14 -0,20 
111 -0,82 1,87 -1,82 0,44 -1,76 2,08 1,04 1,56 0,38 1,38 -1,18 -0,33 0,05 -0,32 -0,27 0,25 
112 -0,60 -0,79 1,03 -0,80 1,87 -1,48 2,15 1,33 -2,08 -1,14 -1,15 -0,02 0,01 0,05 0,19 -0,09 
113 -0,50 0,13 0,04 2,65 -2,06 1,00 1,24 1,30 0,97 0,05 -2,21 0,31 -0,25 0,02 -0,04 0,30 
114 -1,06 0,17 -1,49 2,02 2,25 2,06 1,48 0,22 0,35 -0,98 -1,55 0,21 -0,20 0,19 -0,47 0,20 
115 -1,05 -1,39 -2,06 -1,68 -0,07 2,14 0,49 -0,56 1,41 -0,79 2,12 0,06 0,17 0,13 0,36 0,26 
116 -1,58 1,65 -0,50 -2,37 -0,12 2,02 2,31 -0,02 0,65 0,22 1,66 -0,16 0,18 0,20 0,37 0,26 
117 -1,49 0,18 -1,06 0,97 -0,46 0,97 2,32 1,32 2,30 1,18 -2,09 -0,03 0,15 0,14 0,21 -0,25 
118 -3,15 -2,15 -2,00 1,71 0,28 2,26 0,97 1,21 0,88 1,32 -0,49 -0,39 -0,48 0,00 0,03 0,24 
119 -1,27 -2,21 1,68 0,14 0,18 -1,53 -0,26 1,62 -1,90 -0,03 2,25 0,00 -0,36 -0,31 0,02 0,10 
120 0,65 -2,98 -1,51 -1,34 1,64 -0,15 -0,55 -0,78 1,23 1,41 -1,07 0,35 -0,12 -0,13 0,24 0,25 
121 -4,64 -0,40 1,78 1,65 2,43 -1,90 0,55 1,13 -0,13 1,90 -0,66 0,18 0,16 0,22 0,27 0,37 
122 4,24 1,61 -1,49 -0,94 0,91 -2,26 -2,22 -0,79 1,45 -1,14 -0,47 0,25 -0,21 0,02 0,14 0,08 
123 -1,20 -0,64 1,13 1,99 0,18 0,42 2,31 -0,05 -2,43 -1,85 -1,17 -0,01 0,42 0,45 0,44 -0,26 
124 2,95 2,55 1,11 -0,37 -1,57 -2,10 0,41 -0,48 -2,14 0,75 -1,04 -0,25 -0,37 -0,36 0,12 0,36 
125 1,03 -1,07 -0,75 -1,42 1,89 -0,64 -2,53 -1,96 1,83 -0,12 -0,03 -0,39 0,02 -0,18 -0,31 -0,11 
126 3,17 2,39 -2,23 -0,39 -1,47 -0,63 -1,52 -1,65 0,06 1,57 0,68 0,16 -0,23 -0,12 -0,32 0,03 
127 2,41 -1,83 1,25 -2,09 -0,92 -0,39 -1,41 0,29 -2,48 -1,37 0,96 -0,07 0,22 -0,15 0,17 0,11 
128 0,75 1,10 0,23 -1,47 -2,35 2,03 0,13 0,40 -1,57 1,57 1,79 0,03 0,08 -0,14 0,14 0,16 
129 -0,72 -2,29 -0,97 2,06 -0,04 -1,24 -0,76 -0,57 -1,32 0,68 2,51 -0,08 -0,05 -0,17 0,41 -0,15 
130 -1,81 1,30 -2,05 1,19 -0,60 0,41 0,10 2,23 0,33 2,13 1,93 -0,05 -0,10 0,12 0,23 -0,39 
131 -0,91 -0,09 0,47 -2,10 -0,87 -2,02 1,90 -1,87 -0,18 1,20 1,82 0,24 -0,04 0,45 0,42 0,28 
132 -1,35 -1,15 -1,68 -1,50 2,47 -2,19 0,42 -0,26 0,84 0,73 1,63 0,18 -0,09 -0,08 -0,28 -0,13 
133 1,70 -2,24 -2,62 0,61 -0,25 0,06 -0,30 -0,94 -0,45 -2,34 1,54 -0,30 -0,13 0,17 -0,01 -0,02 
134 2,48 2,06 0,16 1,86 1,40 -0,92 -2,04 -1,83 -1,55 0,33 -0,77 0,21 -0,14 -0,32 -0,02 -0,26 
135 2,05 0,93 -1,93 -1,81 1,31 2,06 -1,78 -0,87 -0,65 1,58 0,80 -0,07 0,09 -0,24 -0,38 -0,11 
136 0,26 -1,37 0,22 -1,73 0,71 0,65 -2,02 -1,02 2,64 -1,71 -0,84 0,47 0,00 -0,36 0,24 -0,14 
137 0,58 -1,34 -0,70 -0,91 -0,81 0,14 -1,33 -1,68 -2,16 2,47 1,47 0,03 0,12 -0,31 -0,09 0,02 
138 0,47 2,73 0,87 2,16 -2,22 0,40 -0,24 -1,53 -0,35 0,81 0,37 0,01 -0,34 0,04 -0,06 -0,02 
139 -0,97 1,83 -0,71 0,97 1,22 -1,86 1,62 -0,95 1,75 2,23 -0,34 0,10 0,31 0,14 -0,08 0,35 
140 -1,14 -0,37 1,81 -2,15 2,93 -0,05 -1,26 -0,12 -1,64 0,02 -0,76 0,06 0,32 -0,11 -0,44 -0,06 
141 -2,75 -1,30 -1,89 -1,93 -0,89 0,45 0,55 1,88 1,54 2,06 0,94 -0,34 0,10 -0,15 0,05 0,30 
142 -1,95 0,80 -2,14 -0,49 1,75 1,14 2,05 2,11 0,48 1,28 0,99 0,03 -0,25 0,21 -0,31 -0,15 
143 0,40 -0,43 0,50 2,20 -2,04 -1,71 0,53 -1,12 0,81 -1,93 -1,76 0,03 0,36 -0,16 0,20 -0,04 
144 2,51 1,22 1,73 -0,04 -1,11 -1,51 -2,51 1,65 -1,38 1,33 0,42 -0,10 -0,04 0,40 -0,04 -0,28 
145 -1,69 -2,56 0,34 -0,55 -0,61 -0,22 -0,22 2,81 -0,69 1,80 -1,45 0,10 0,10 -0,44 0,28 0,25 
146 1,44 1,11 2,00 0,27 -1,58 -1,82 1,24 -1,83 0,59 2,14 -0,89 -0,04 -0,23 -0,49 0,07 0,05 
147 -1,88 0,12 0,45 2,14 2,12 1,49 1,27 1,62 1,39 -1,33 -1,26 -0,23 0,07 0,31 -0,44 -0,05 
148 1,73 1,42 0,31 0,21 -2,47 2,11 0,14 0,50 1,34 0,07 -2,55 0,26 -0,04 -0,42 0,29 0,39 
149 0,59 0,75 -1,04 0,38 2,42 1,57 -1,25 0,50 -1,26 2,57 -1,11 -0,17 -0,32 -0,42 -0,17 -0,35 
150 -0,29 -0,67 -2,04 1,85 0,81 -1,28 -0,80 -2,28 -0,85 1,96 -0,76 0,04 -0,26 -0,26 0,43 0,16 
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The final architectures of the trained NN of Kolmogorov, Normalized and Empirical 

models for the FiO2 ventilator setting for the COPD category are presented in tables 

6.17 to 6.19. Tables 6.17 to 6.19 present the resulted weights and biases for the 

Kolmogorov’s, Normalized and Empirical models respectively. In table 6.19, the 

weights of the second hidden layer are not given due to increased number of data 

(weights are described by a matrix of 157 X 79 elements) 

Figures 6.6 to 6.8, present the trained NNs architectures. The NNs are not described 

in detailed, in terms of interconnections and detailed node number. The transfer 

functions used are provided in table 6.5. NNs of figure 6.6 and 6.7 have the same 

architecture, 126 nodes in the hidden layer, however due to different training set the 

resulted weights and biases are different (tables 6.17 and 6.19). Empirical NN 

architecture (figure 6.8) is different. It uses two hidden nodes with 157 and 79 nodes 

respectively. 
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Table 6.17: FiO2 COPD NN Kolmogorov’s node weights and bias. 

Node No 
Hidden Layer 

Bias 
Hiden Layer Node Weights Output Layer 

Bias 

Output layer 
Node 

Weights 

SpO2 OI FiO2 
1 -101,47 0,53 0,19 0.4914 0,12 
2 -172,27 1,95 -0,15 

 
0,21 

3 135,90 -1,60 0,17 

 
-0,10 

4 311,26 -3,01 -0,06 

 
-0,94 

5 -151,12 1,08 0,19 

 
0,98 

6 311,62 -3,03 -0,06 -0,92 
7 197,82 -2,21 0,14 -0,90 
8 -11,01 0,35 -0,20 -0,77 
9 295,44 -3,06 0,03 -0,38 

10 310,52 -3,02 -0,05 0,42 
11 -145,15 1,03 0,18 -0,75 
12 125,30 -0,81 -0,19 0,02 
13 58,61 -0,85 0,19 -0,81 
14 -166,03 1,92 -0,15 0,39 
15 261,29 -2,37 -0,13 -0,45 
16 -307,10 3,13 -0,02 -0,08 
17 -241,71 2,14 0,14 0,29 
18 252,77 -2,27 -0,13 -0,93 
19 -301,33 3,12 -0,02 0,79 
20 122,92 -0,81 -0,19 0,93 
21 17,23 -0,45 0,19 -0,61 
22 -310,19 3,13 -0,02 -0,69 
23 -237,42 2,10 0,13 -0,56 
24 -252,71 2,74 -0,09 0,11 
25 -275,11 2,57 0,10 0,78 
26 250,00 -2,27 -0,13 -0,36 
27 112,90 -1,43 0,17 -0,10 
28 -140,71 1,03 0,19 -0,09 
29 302,29 -2,96 -0,06 0,18 
30 -139,97 1,71 -0,16 0,43 
31 -153,81 1,17 0,16 0,43 
32 -181,37 1,48 0,16 -0,49 
33 287,53 -2,76 -0,09 -0,77 
34 16,74 -0,48 0,19 -0,78 
35 55,86 -0,88 0,19 -0,77 
36 -304,13 3,13 -0,02 -0,30 
37 273,40 -2,59 -0,10 0,45 
38 228,70 -2,05 -0,16 -0,24 
39 -305,05 3,06 0,05 0,41 
40 116,46 -0,80 -0,20 -0,28 
41 269,11 -2,58 -0,16 -0,97 
42 -152,07 1,85 -0,16 -0,67 
43 -184,11 1,57 0,22 0,73 
44 216,43 -2,46 0,12 0,12 
45 280,88 -2,74 -0,11 -0,93 
46 244,20 -2,27 -0,16 -0,67 
47 -246,12 2,27 0,10 -0,66 
48 -231,05 2,60 -0,13 -0,81 
49 -256,11 2,42 0,14 0,51 
50 55,69 -0,18 -0,22 -0,51 
51 303,22 -3,08 -0,03 0,52 
52 -237,84 2,68 -0,10 0,08 
53 269,45 -2,57 -0,07 0,89 
54 232,30 -2,14 -0,15 0,98 
55 -290,88 2,88 0,04 -0,91 
56 283,60 -2,76 -0,01 0,96 
57 44,56 -0,83 0,18 -0,36 
58 -228,76 2,61 -0,11 -0,09 
59 273,80 -2,67 -0,12 0,43 
60 140,82 -1,12 -0,19 0,87 
61 -277,77 2,73 0,10 0,10 
62 -269,80 2,95 -0,11 -0,76 
63 238,86 -2,25 -0,14 0,05 
64 164,37 -1,39 -0,17 0,12 
65 255,32 -2,46 -0,14 -0,62 
66 153,36 -1,92 0,16 -0,38 
67 -222,08 2,05 0,15 

 
0,92 

68 -119,56 1,58 -0,21 

 
0,88 

69 -207,60 1,90 0,16 

 
-0,56 
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70 285,70 -3,09 0,03 

 
0,61 

71 -202,02 2,39 -0,14 

 
-0,46 

72 213,52 -2,49 0,15 

 
0,62 

73 -35,80 -0,03 0,19 

 
-0,17 

74 222,58 -2,58 0,12 

 
0,24 

75 -173,11 1,52 0,17 

 
0,10 

76 223,64 -2,10 -0,14 

 
0,03 

77 -106,38 1,47 -0,21 

 
-0,96 

78 270,42 -2,69 -0,10 

 
-0,14 

79 -254,70 2,88 -0,06 

 
-0,96 

80 53,07 -0,99 0,14 

 
-0,95 

81 276,83 -2,78 -0,09 

 
-0,05 

82 244,64 -2,80 0,08 

 
0,05 

83 -238,13 2,30 0,14 

 
0,91 

84 -278,86 2,82 0,08 

 
0,55 

85 62,03 -0,33 -0,19 

 
-0,68 

86 -58,44 1,04 -0,19 

 
0,24 

87 -35,44 -0,06 0,23 

 
0,49 

88 -253,81 2,89 -0,07 

 
-0,69 

89 227,12 -2,66 0,10 

 
0,17 

90 213,62 -2,03 -0,15 

 
0,86 

91 262,05 -2,62 -0,11 

 
-0,06 

92 161,58 -2,08 0,12 

 
0,56 

93 -160,37 1,43 0,18 

 
0,24 

94 -161,37 1,44 0,17 

 
-0,91 

95 256,48 -2,92 0,08 

 
-0,84 

96 52,35 -0,26 -0,19 

 
-0,06 

97 258,00 -2,59 -0,11 

 
-0,15 

98 272,66 -2,78 -0,08 

 
0,98 

99 285,25 -3,13 0,02 

 
0,09 

100 -119,64 1,00 0,20 

 
0,89 

101 -212,45 2,57 -0,09 

 
-0,78 

102 -280,66 2,91 0,06 

 
-0,66 

103 -96,68 1,46 -0,17 

 
-0,26 

104 140,31 -1,89 0,15 

 
0,37 

105 20,24 0,28 -0,20 

 
0,96 

106 -281,62 2,94 0,07 

 
-0,90 

107 -256,09 2,60 0,11 

 
-0,82 

108 234,36 -2,77 0,09 

 
-0,84 

109 272,98 -3,07 0,04 

 
0,36 

110 285,61 -3,03 -0,07 

 
0,83 

111 227,81 -2,26 -0,14 

 
-0,86 

112 261,70 -3,00 0,06 

 
0,18 

113 208,70 -2,55 0,12 

 
-0,55 

114 65,91 -1,18 0,18 

 
0,95 

115 173,90 -2,23 0,14 

 
-0,20 

116 234,96 -2,79 0,09 

 
0,03 

117 12,09 -0,64 0,19 

 
0,02 

118 187,00 -1,80 -0,16 

 
0,19 

119 -189,41 2,39 -0,12 

 
-0,26 

120 258,74 -2,67 -0,10 

 
-0,78 

121 -264,54 2,75 0,09 

 
0,22 

122 -230,66 2,33 0,13 

 
0,06 

123 -228,38 2,75 -0,09 

 
0,02 

124 -238,26 2,84 -0,07 

 
-0,72 

125 243,75 -2,88 0,08 

 
-0,36 

126 135,73 -1,24 -0,18 

 
0,02 
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Table 6.18: FiO2 COPD NN Normalized model’s node weights and bias. 

Node No Hidden Layer 
Bias 

Hiden Layer Node Weights 
Output Layer 

Bias 

Output layer 
Node Weights 

SpO2 OI FiO2 

1 20,58 -26,87 87,97 -0,02 0,10 
2 -65,14 56,04 44,13 0,12 
3 30,29 -38,05 77,45 -0,47 
4 -33,27 1,87 97,27 -0,10 
5 57,58 -39,68 -75,47 0,01 
6 -49,14 25,68 88,83 0,35 
7 57,85 -41,18 -73,55 0,16 
8 0,78 -4,89 97,01 -0,19 
9 -54,51 35,90 79,88 -0,10 

10 48,21 -56,34 43,15 0,04 
11 -58,46 44,47 68,84 -0,32 
12 -57,54 62,35 -12,43 -0,19 
13 23,59 -33,58 82,26 -0,09 
14 38,25 -48,67 61,58 -0,29 
15 55,27 -61,71 18,48 -0,09 
16 -3,72 11,23 -95,75 -0,24 
17 -60,01 62,67 7,67 -0,13 
18 46,27 -25,88 -88,68 -0,02 
19 54,27 -40,04 -75,00 0,39 
20 38,84 -15,28 -94,38 -0,28 
21 -40,82 18,47 92,97 0,40 
22 -51,79 36,88 78,81 0,17 
23 -60,09 60,73 25,16 0,06 
24 35,60 -48,55 61,82 -0,24 
25 53,39 -41,32 -73,35 0,31 
26 59,11 -55,98 -44,26 0,13 
27 52,58 -40,69 -74,18 -0,10 
28 9,17 -21,52 91,43 0,39 
29 -31,50 45,86 -66,55 0,19 
30 6,94 -19,46 92,53 0,25 
31 -41,65 55,35 -46,15 -0,25 
32 57,98 -58,24 -36,55 0,14 
33 56,94 -62,01 -16,08 -0,23 
34 20,58 -36,02 79,75 -0,34 
35 -57,12 60,56 26,11 0,08 
36 0,83 11,82 -95,58 -0,27 
37 50,55 -61,99 15,63 0,21 
38 20,00 -36,48 79,24 -0,42 
39 39,80 -55,46 45,81 -0,06 
40 49,16 -40,44 -74,52 -0,08 
41 -44,26 59,17 -32,94 0,09 
42 41,60 -57,46 39,50 -0,04 
43 -28,78 46,62 -65,27 0,05 
44 -27,11 7,03 96,67 0,27 
45 -40,25 56,98 -41,09 0,04 
46 -37,09 54,79 -47,82 0,33 
47 53,18 -53,89 -50,28 0,18 
48 -40,01 57,36 -39,79 -0,02 
49 11,64 -30,36 85,20 -0,43 
50 22,14 -41,79 72,68 0,20 
51 -50,93 62,74 3,28 0,36 
52 -52,71 61,12 22,50 0,26 
53 -32,76 18,74 92,91 0,23 
54 44,56 -61,36 21,48 0,23 
55 -21,84 3,55 97,13 -0,18 
56 -48,79 62,87 -1,25 -0,34 
57 20,94 -42,64 71,63 0,34 
58 5,36 -25,86 88,69 0,06 
59 -50,86 61,26 21,85 0,01 
60 -48,16 48,88 61,21 -0,24 
61 45,44 -43,50 -70,27 -0,21 
62 -46,18 62,70 -6,97 -0,05 
63 49,81 -55,95 -44,34 0,00 
64 -41,63 61,05 -23,20 -0,01 
65 47,21 -62,86 -2,86 -0,23 
66 3,32 18,06 -93,21 0,28 
67 -37,51 31,71 84,02 0,10 
68 16,62 1,94 -97,26 -0,11 
69 43,57 -43,66 -69,97 0,16 
70 25,86 -50,23 58,50 -0,06 
71 45,36 -48,91 -61,20 0,32 
72 34,88 -58,02 37,42 0,01 
73 -14,79 -6,00 96,86 -0,43 
74 14,44 6,71 -96,75 -0,11 
75 -30,25 55,05 -46,96 0,01 
76 -35,38 31,95 83,80 0,12 
77 46,54 -57,36 -39,81 0,03 
78 -38,91 61,46 -20,39 -0,37 
79 -36,77 35,48 80,26 0,46 
80 39,86 -41,87 -72,59 -0,01 
81 -12,09 39,46 -75,72 -0,20 
82 -42,53 48,56 61,78 -0,28 
83 -15,91 -7,98 96,51 -0,06 
84 -40,93 46,12 66,12 0,02 



132 
  

85 0,98 26,40 -88,31 0,35 
86 27,11 -54,75 47,80 -0,25 
87 42,94 -53,06 -52,20 -0,23 
88 35,40 -37,32 -78,34 -0,34 
89 17,72 -9,91 -96,09 0,05 
90 -41,26 62,78 4,80 -0,05 
91 2,53 26,32 -88,37 -0,08 
92 -39,17 46,67 65,19 0,11 
93 39,56 -48,13 -62,59 0,50 
94 33,20 -36,00 -79,77 0,02 
95 20,68 -51,21 56,43 0,02 
96 -41,89 58,78 34,54 0,46 
97 -40,90 61,95 16,49 0,06 
98 41,41 -59,25 -32,48 0,17 
99 35,29 -62,21 14,01 -0,09 

100 40,64 -61,06 -23,09 0,31 
101 -23,81 23,41 90,32 0,11 
102 -36,65 46,65 65,22 -0,29 
103 8,47 -41,52 73,07 -0,39 
104 -7,50 40,75 -74,10 -0,02 
105 0,99 -34,17 81,68 0,00 
106 -34,76 62,61 -8,68 -0,11 
107 -1,03 -32,57 83,24 0,13 
108 -30,08 36,73 78,97 -0,05 
109 -6,46 1,32 97,29 -0,01 
110 -15,52 14,32 94,75 0,02 
111 9,77 -44,80 68,26 0,14 
112 37,87 -58,46 -35,75 0,07 
113 4,18 30,72 -84,90 -0,08 
114 -7,42 4,26 97,08 0,18 
115 28,99 1,16 -97,29 0,06 
116 36,15 -54,69 -47,98 0,12 
117 -7,32 -28,30 86,89 -0,24 
118 -5,19 2,70 97,22 -0,27 
119 -35,30 54,34 48,91 0,15 
120 -6,61 43,89 -69,66 0,28 
121 -30,08 42,90 71,13 -0,41 
122 -21,75 -12,68 95,31 -0,15 
123 -33,91 62,38 12,05 -0,47 
124 27,28 -61,43 20,62 -0,09 
125 -13,91 17,51 93,46 0,01 
126 -15,66 20,52 91,98 -0,25 
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Table 6.19: FiO2 COPD NN Empirical model’s node weights and bias. 

Node No 
Hidden 
Layer 1 

Bias 

Hiden Layer 1 Node 
Weights Hidden 

Layer 2 
Bias 

Hidden 
Layer 2 
Node 

Weights 

Output 
Layer Bias 

Output layer 
Node 

Weights 

SpO2 OI FiO2 

1 51,39 -58,84 59,18 1,44 

M
at

rix
 1

57
 X

 7
9 

-0.0020 -0,42 
2 51,86 -59,44 57,72 -1,40 0,18 
3 -22,73 30,23 -98,03 1,37 0,21 
4 -50,04 20,11 104,07 1,32 0,38 
5 -38,55 47,68 -79,70 -1,29 -0,43 
6 -67,77 70,03 -6,73 -1,25 -0,08 
7 -37,52 47,09 -80,53 -1,22 0,28 
8 -56,12 63,92 -44,81 1,19 -0,25 
9 68,10 -70,16 1,52 -1,14 -0,18 

10 -41,94 52,09 -72,78 1,11 -0,40 
11 71,18 -65,42 -39,28 1,07 0,04 
12 -18,27 27,44 -99,97 -1,03 -0,27 
13 -38,14 49,06 -77,67 0,98 -0,44 
14 -63,68 46,59 81,22 -0,96 0,08 
15 41,78 -53,01 71,17 0,92 -0,33 
16 69,59 -62,33 -49,88 -0,87 -0,53 
17 63,59 -47,75 -79,58 0,85 -0,41 
18 49,62 -24,24 -101,93 0,82 0,39 
19 -69,40 66,16 36,18 0,77 0,18 
20 40,76 -53,11 70,99 -0,74 -0,49 
21 -52,24 63,20 -47,20 -0,69 0,51 
22 -62,86 48,54 78,43 0,66 0,42 
23 68,12 -62,80 -48,45 -0,63 -0,20 
24 -68,26 65,42 39,27 0,59 0,02 
25 -60,32 68,93 -20,29 0,55 -0,10 
26 -63,50 51,80 73,27 0,52 0,00 
27 -35,15 49,22 -77,42 0,48 0,09 
28 -62,99 70,06 -5,90 -0,45 0,29 
29 66,88 -68,05 -26,47 0,41 0,22 
30 37,22 -10,02 -107,51 0,37 -0,01 
31 64,70 -69,97 -8,21 0,33 -0,16 
32 32,49 -47,69 79,68 -0,29 0,37 
33 59,60 -46,99 -80,67 -0,26 0,27 
34 5,96 -18,72 104,69 -0,22 0,11 
35 -26,00 41,72 -87,34 0,19 0,58 
36 -60,57 50,27 75,75 0,15 -0,05 
37 -42,77 58,39 -60,24 -0,11 -0,24 
38 52,27 -35,76 -93,47 0,08 0,15 
39 -58,84 48,12 79,05 0,03 0,34 
40 59,76 -50,46 -75,45 0,00 0,20 
41 59,99 -70,05 6,32 0,03 0,59 
42 62,90 -69,61 -13,61 0,07 -0,30 
43 58,30 -48,84 -77,97 -0,11 -0,01 
44 11,69 -28,15 99,50 0,15 0,29 
45 -44,64 25,95 100,92 0,19 0,37 
46 -10,65 -1,08 108,61 -0,23 0,33 
47 31,25 -6,95 -108,08 0,26 0,54 
48 -54,60 68,67 -22,31 0,30 -0,06 
49 -4,73 21,30 -103,50 0,34 0,30 
50 24,57 -43,75 84,93 0,37 -0,28 
51 62,04 -64,05 -44,35 0,41 0,31 
52 -57,72 51,91 73,07 -0,44 -0,38 
53 5,60 9,67 -107,59 -0,48 0,17 
54 54,50 -46,23 -81,71 -0,52 -0,25 
55 15,81 -35,58 93,62 0,56 0,43 
56 26,14 -46,74 81,02 -0,59 -0,38 
57 60,58 -68,07 -26,39 -0,63 -0,36 
58 -1,09 -16,70 105,50 -0,66 -0,23 
59 -14,97 35,65 -93,56 0,70 0,16 
60 4,98 12,44 -106,90 0,74 0,07 
61 -52,05 68,86 -20,91 0,78 -0,51 
62 -0,88 -18,05 104,97 -0,81 0,47 
63 -58,18 59,38 57,89 0,85 -0,09 
64 -54,78 51,40 73,94 -0,89 0,21 
65 48,72 -40,11 -89,12 -0,92 0,27 
66 -30,19 52,90 -71,37 -0,95 0,20 
67 -26,42 6,53 108,15 1,00 0,33 
68 50,65 -68,94 20,27 1,04 -0,36 
69 45,50 -36,11 -93,15 1,08 -0,51 
70 48,87 -68,27 25,07 1,10 -0,52 
71 40,59 -28,76 -99,08 -1,14 -0,39 
72 44,19 -65,67 38,25 -1,18 -0,10 
73 46,96 -67,58 29,22 -1,21 -0,15 
74 39,14 -62,28 50,03 1,25 0,01 
75 -53,09 70,15 -2,41 1,29 0,24 
76 56,05 -68,68 -22,26 1,33 -0,35 
77 54,99 -59,23 -58,24 -1,37 0,26 
78 -37,75 26,76 100,41 -1,41 0,35 
79 -3,56 -19,42 104,38 -1,44 0,2645711 
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80 -9,81 -12,00 107,02 
81 -55,44 66,65 33,95 
82 40,95 -64,99 40,96 
83 23,42 -50,06 76,11 
84 49,81 -50,43 -75,55 
85 9,05 14,41 -106,31 
86 54,31 -66,67 -33,86 
87 -0,29 26,18 -100,78 
88 -47,08 46,69 81,09 
89 -21,82 49,84 -76,47 
90 44,27 -42,22 -86,76 
91 45,89 -45,65 -82,47 
92 17,16 -45,82 82,26 
93 -40,31 66,24 -35,83 
94 50,84 -58,24 -60,59 
95 37,34 -64,50 42,78 
96 -14,42 43,92 -84,70 
97 -8,97 -17,81 105,07 
98 -16,13 46,18 -81,79 
99 -46,51 50,54 75,34 

100 37,22 -33,88 -95,12 
101 -50,70 68,04 26,58 
102 -43,46 45,74 82,37 
103 8,45 -39,30 89,98 
104 50,28 -66,37 -35,24 
105 49,12 -60,60 -54,76 
106 -30,86 61,42 -52,53 
107 -38,01 66,79 -33,30 
108 49,02 -62,88 -48,22 
109 17,11 -49,61 76,82 
110 4,20 26,92 -100,31 
111 19,85 -52,68 71,75 
112 7,52 23,59 -102,30 
113 20,93 -13,40 -106,62 
114 -15,70 49,33 -77,25 
115 -12,61 2,45 108,56 
116 1,04 32,11 -96,59 
117 -37,89 68,05 -26,48 
118 -42,63 70,04 -6,52 
119 -26,76 -1,46 108,60 
120 40,16 -69,45 15,54 
121 -33,23 65,72 -38,07 
122 11,07 -2,50 -108,55 
123 -40,31 69,73 -12,06 
124 44,72 -69,40 -16,07 
125 17,31 15,28 -106,02 
126 -1,16 -34,48 94,60 
127 -8,28 -26,63 100,49 
128 -37,77 69,21 -17,92 
129 -11,06 -23,91 102,12 
130 40,45 -52,55 -71,97 
131 30,32 -34,00 -95,02 
132 42,15 -57,84 -61,50 
133 -43,33 62,56 49,18 
134 -16,49 54,38 -68,64 
135 26,36 -29,02 -98,90 
136 32,04 -67,13 31,60 
137 -36,86 48,26 78,85 
138 12,67 24,41 -101,84 
139 -40,53 57,73 61,75 
140 -3,89 43,30 -85,48 
141 40,90 -60,18 -55,85 
142 -24,80 63,02 -47,75 
143 -12,85 52,87 -71,41 
144 28,81 -36,37 -92,89 
145 -8,55 -30,98 97,47 
146 32,86 -44,42 -84,09 
147 -22,54 62,14 -50,45 
148 36,72 -53,25 -70,73 
149 7,46 -5,85 -108,25 
150 -9,98 -30,64 97,72 
151 37,03 -55,60 -66,25 
152 34,09 -49,49 -77,00 
153 3,26 -45,66 82,48 
154 -22,45 -16,98 105,39 
155 -32,78 48,21 78,93 
156 22,34 17,67 -105,12 
157 -33,45 69,95 -8,48 
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Figure 6.6: FiO2 COPD NN Kolmogorov’s architecture. 
 
 

 
 

Figure 6.7: FiO2 COPD NN Normalized architecture. 
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Figure 6.8: FiO2 COPD NN Empirical architecture. 
 

The resulted architecture of FiO2 model for the COPD category is provided in figure 

6.9 and table 6.20. 

 

 
Figure 6.9: ANFIS FiO2 model for COPD category, resulted input fuzzy sets and 

systems’ response surface mapping. 
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Table 6.20: Inference Engine for ANFIS FiO2 model for the COPD category. 

Rule 

Inference Logic 
 

Rule 
Weight 

 

FiO2= a*SpO2 +b*OI + c 

a b c 

1 IF SpO2 is mf 1 AND OI is mf 1 THEN FiO2 is -0.08 -0.01 8.91 1 

2 IF SpO2 is mf 1 AND OI is mf 2 THEN FiO2 is 0.03 -0.003 -0.92 1 

3 IF SpO2 is mf 2 AND OI is mf 1 THEN FiO2 is -0.03 0.002 3.45 1 

4 IF SpO2 is mf 2 AND OI is mf 2 THEN FiO2 is 0.02 0.002 -2.09 1 

 

As it is described in Appendix IV, the Matlab (® Mathworks) ANFIS toolbox 

generates fuzzy inference engines of TSK type. The output of the ANFIS models is 

described by a mathematical function (as shown in table 6.20 for the FiO2 ventilator 

setting). The coefficients (a,b,c) applied to the function differ among different rules 

applied for a given input data set. Additionally the Matlab ANFIS toolbox adapts 

FSs not to a predefined domain but rather on the domain described by the training 

data set. 

 

6.4.2  Discussion on EVOFINE and ANFIS resulted Architectures 

In general sample resulted architectures shown in figures 6.10 to 6.19, present a 

smoother surface mapping for the ANFIS FRBSs compared to EVOFINE FRBSs. 

However the surface mapping of ANFIS is based on a sub-domain compared to 

EVOFINE mapping. This is attributed to the predefined domain used by EVOFINE, 

while ANFIS adapted domains to the range of input variables.  

A closer look at the mapping reveals that EVOFINE FRBSs always calculate output 

values, within the predefined limits. In contrast ANFIS FRBSs produce in several 

models, outputs which are outside the limits defined by the training sets, and in 

several cases the magnitude of the model’s output is potentially harmful to the 

patient. The following list presents the ANFIS FRBSs potentially problematic 

calculated outputs: 

 Pmax model the COPD category (fig. 6.10): suggests for a given numerical 

value of inputs, negative values for the Pmax ventilator setting.  

 PEEP model for COPD category (fig. 6.11), suggests for a given numerical 

combination of SpO2, PIP and Pplateau inputs, negative PEEP values.  



138 
  

 Fmax model for COPD category (fig. 6.12), suggests negative maximum gas 

flow for a numerical combination of SpO2 and R inputs. 

 VT model for ALI-ARDS category (fig. 6.13), suggests delivery of negative 

volumes for a numerical combination of OI, SpO2 and Ve inputs. 

 PEEP model for ALI-ARDS category (fig. 6.14), suggests extremely high 

values and additionally negative values of PEEP for a numerical combination 

of input values. 

 Fmax model for ALI-ARDS category (fig.6.15), suggest negative gas flow 

values for most of the surface mapping. 

 

The failure of the above ANFIS models to adequately map the surface area, could be 

attributed to lack of available data representing in whole of the inputs and outputs 

domain. 

 
 

 
Figure 6.10: Resulted ANFIS FRBS architecture for the Pmax for the COPD 

Category. 
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Figure 6.11: Resulted ANFIS FRBS architecture for the PEEP for the COPD 

Category. 
 

 
Figure 6.12: Resulted ANFIS FRBS architecture for the Fmax  for the COPD 

Category. 
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Figure 6.13: Resulted ANFIS FRBS architecture for the VT for the ALI-ARDS 

Category. 
 

 
Figure 6.14: Resulted ANFIS FRBS architecture for the PEEP for the ALI-ARDS 

Category. 
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Figure 6.15: Resulted ANFIS FRBS architecture for the Fmax for the ALI-ARDS 

Category. 
 
 
EVOFINE models (fig. 6.16 to 6.19) suffer from flat response. The flat response of 

the model is attributed to a simplification of the full architecture in terms of full RB.  

It is clear that when the full RB was applied, the surface mapping did not exhibit flat 

areas. However the full RB was used only in simple models, where the number of 

participating input variables was small. Furthermore the flat response of EVOFINE 

models could be attributed to non-representation of the specific area to the training 

data set. Example surface plots are: 

 

 VT model for Normal Category (fig. 6.16). The models utilized only 5% of 

the full RB architecture. Flat areas suggest no response thus any rules 

dictating the response of the model. 

 FiO2 model for Normal Category (fig. 6.17). In this case the full RB was 

applied (25 rules). There are no flat areas in the surface mapping of the 

resulted model. 

 Pmax model for the Normal Category (fig. 6.18). In this case we observe that 

for a given combination of inputs (HR and PaO2 or OI and PaO2), the 

systems output is constant. One could argue that the specific inputs were not 

appropriately chosen for the model. However since the rules applied to this 

model represent only 2.5% of the full RB, it is expected that the system will 

remain “unconscious” for a given combination of inputs variables. If the 

choice of inputs was incorrect, then in all the models developed (ANN, FUN 

and ANFIS) for the same ventilator setting, response should be constant. 

Thus one could not attribute the constant response to the choice of input 

variables. 
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 PEEP model for ALI-ARDS category (fig. 6.19). In this case a subset (25%) 

of the full RB (625 Rules) was used for the development of the model and 

subsequently some rules do not apply. 

 

 
Figure 6.16: Resulted EVOFINE FRBS architecture for the VT for the Normal 

Category. 

 
Figure 6.17: Resulted EVOFINE FRBS architecture for the FiO2 for the Normal 

Category. 
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Figure 6.18: Resulted EVOFINE FRBS architecture for the Pmax for the Normal 

Category. 
 

 
Figure 6.19: Resulted EVOFINE FRBS architecture for the PEEP for the ALI_ARDS 

Category. 
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6.5 Models Performance 

The developed models performance was measured against the evaluation set. The 

performance was measured both in terms of mean absolute error (mae) and root 

mean square error (rmse), as described by equations 6.1 and II.1 (Appendix II) 

respectively. While the mae gives us a direct and comprehensive measure of the 

mean error between the model’s output and the expected (data set) value, the use of 

the rmse provides us with a good comparison measurement between the training and 

the evaluation process. 

The EVOFINE FRBSs, FUN, ANFIS and the ANN Kolmogorov models were tested 

against the un-normalized data sets. ANN Normalized and empirical models were 

tested against the normalized data sets. The difference in the type of the training sets 

reflects the difference in the training process. The un-normalized and the normalized 

sets are different representations of the recorded variables. 

The model’s performance is numerically presented in tables 6.21 to 6.23 and 

graphically in figures 6.20 to 6.22. 

Comparison between different output variables could only be done with the use of 

percentage representations of errors (mae % and rmse %). The mean mae provides us 

with a measure of the overall performance of the toolbox for a specific lung category 

and data set. 
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Figure 6.20: Performance, Normal Category, Evaluation set. 

 

 
Figure 6.21: Performance, COPD  Category, Evaluation set. 

 

 
Figure 6.22: Performance, ALI-ARDS  Category, Evaluation set. 
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Table 6.21: Perform
ance, Norm

al Category, Evaluation Set. 

 

EVO
FIN

E 
Bisector 

W
eighted 

A
verage 

N
ear M

axim
a 

AN
N

 
N

orm
alized  

AN
N

 
K

olm
ogorov  

AN
N

 
em

pirical  
A

N
FIS 

 
EVOFINE MAE 

EVOFINE MAE % 
EVOFINE rMSE 

EVOFINE rMSE % 
  

FUN MAE 
FUN MAE % 
FUN rMSE 

FUN rMSE % 
FUN MAE 

FUN MAE % 
FUN rMSE 

FUN rMSE % 
FUN MAE 

FUN MAE % 
FUN rMSE 

FUN rMSE % 
  

NN mae 
NN mae % 
NN rMSE 

NN rMSE % 
  

NN mae 
NN mae % 
NN rMSE 

NN rMSE % 
  

NN mae 
NN mae % 
NN rMSE 

NN rMSE % 
  

ANFIS MAE 
ANFIS MAE % 
ANFIS rMSE 

ANFIS rMSE % 
  

Vt (ml/kgr) 

0.11 

1.10 
0.17 

1.72 
 

0,75 
7,54 
0,76 
7,55 

0,74 
7,44 
0,75 
7,48 

0,14 
1,37 
0,50 
4,99 

  

0,10 
1,02 
0,21 
2,15 

  

0,01 
0,13 
0,03 
0,27 

  

0,02 
0,17 
0,04 
0,36 

  

0,00 
0,00 
0,00 
0,00 

  

RR (BPM) 

0.16 

0.64 
0.41 

1.64 
 

1,46 
5,85 
4,48 
5,90 

1,41 
5,66 
1,44 
5,75 

0,33 
1,30 
1,14 
4,54 

  

0,17 
0,68 
0,28 
1,10 

  

0,85 
3,38 
1,06 
4,25 

  

0,06 
0,23 
0,17 
0,67 

  

0,00 
0,00 
0,00 
0,00 

  

FiO2  

0.00 

0.00 
0.00 

0.00 
 

0,02 
4,49 
0,02 
4,52 

0,02 
4,38 
0,02 
4,42 

0,00 
0,46 
0,01 
1,32 

  

0,00 
0,35 
0,00 
0,89 

  

0,00 
0,35 
0,00 
0,36 

  

0,00 
0,00 
0,00 
0,01 

  

0,00 
0,00 
0,00 
0,00 

  

PEEP 
(mbar) 

X 

X 
X 

X 
 

X 
X 
X 
X 

X 
X 
X 
X 

X 
X 
X 
X 
 

X 
X 
X 
X 
  
X 
X 
X 
X 
  
X 
X 
X 
X 
  
X 
X 
X 
X 
  

Pmax 
(mbar) 
1.44 

2.87 
1.52 

3.04 
 

3,96 
7,92 
4,06 
8,11 

3,93 
7,87 
4,09 
8,18 

0,05 
0,10 
0,05 
0,10 

  

0,42 
0,83 
0,46 
0,92 

  

2,58 
5,16 
3,15 
6,31 

  

0,09 
0,19 
0,28 
0,56 

  

0,01 
0,02 
0,01 
0,02 

  

Fmax 
(L/min) 

0.03 

0.05 
0.07 

0.10 
 

3,49 
5,36 
3,61 
5,56 

3,49 
5,37 
3,56 
5,48 

0,27 
0,41 
0,83 
1,28 

  

0,50 
0,77 
0,72 
1,10 

  

2,32 
3,57 
3,24 
4,99 

  

0,12 
0,19 
0,21 
0,32 

  

0,15 
0,23 
0,03 
0,05 

  

Mean Error 
% 
 

0.93 
 

 
 

  
6,23 

  
  

  
6,14 

  
  

  
0,73 

  
  
  

  
0,73 

  
  
  

  
2,52 

  
  
  

  
0,16 

  
  
  

  

0,05 
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Table 6.22: Perform
ance, CO

PD
 Category, Evaluation Set. 

 

EVO
FIN

E 
Bisector 

W
eighted 

A
verage 

N
ear M

axim
a 

AN
N

 
N

orm
alized  

AN
N

 
K

olm
ogorov  

AN
N

 
em

pirical  
A

N
FIS 

 
EVOFINE MAE 

EVOFINE MAE % 
EVOFINE rMSE 

EVOFINE rMSE % 
  

FUN MAE 
FUN MAE % 
FUN rMSE 

FUN rMSE % 
FUN MAE 

FUN MAE % 
FUN rMSE 

FUN rMSE % 
FUN MAE 

FUN MAE % 
FUN rMSE 

FUN rMSE % 
  

NN mae 
NN mae % 
NN rMSE 

NN rMSE % 
  

NN mae 
NN mae % 
NN rMSE 

NN rMSE % 
  

NN mae 
NN mae % 
NN rMSE 

NN rMSE % 
  

ANFIS MAE 
ANFIS MAE % 
ANFIS rMSE 

ANFIS rMSE % 
  

Vt (ml/kgr) 

0.27 

2.67 
0.55 

5.48 
 

0,16 
1,55 
0,20 
2,01 

0,16 
1,61 
0,20 
2,03 

0,42 
4,24 
0,56 
5,63 

  

0,16 
1,65 
0,54 
5,37 

  

0,11 
1,09 
0,19 
1,92 

  

0,08 
0,80 
0,12 
1,24 

  

0,64 
6,37 
0,40 
3,96 

  

RR (BPM) 

0.62 

2.49 
0.96 

3.82 
 

0,59 
2,37 
0,91 
3,63 

0,53 
2,12 
0,80 
3,19 

0,72 
2,89 
1,07 
0,27 

  

0,48 
1,92 
0,70 
2,81 

  

0,52 
2,09 
0,75 
3,00 

  

0,49 
1,96 
1,06 
4,22 

  

0,59 
2,36 
0,11 
0,44 

  

FiO2  

0.01 

2.15 
0.03 

5.78 
 

0,02 
3,86 
0,03 
5,41 

0,02 
2,77 
0,03 
4,71 

0,03 
5,12 
0,05 
9,46 

 

0,01 
1,89 
0,03 
4,95 

  

0,08 
14,76 
0,45 
81,56 

  

0,01 
1,60 
0,02 
3,84 

  

0,01 
2,08 
0,00 
0,30 

  

PEEP 
(mbar) 
0.52 

3.49 
0.73 

4.85 
 

0,97 
6,44 
1,01 
6,75 

0,76 
5,07 
0,79 
5,26 

0,23 
1,54 
0,71 
4,71 

  

4:47 
7:56 
7:40 
3:09 

  
0,10 
0,69 
0,21 
1,41 

  
4:21 
5:02 
10:43 
23:33 

  
0,08 
0,52 
0,03 
0,17 

  

Pmax 
(mbar) 
0.35 

0.69 
1.86 

3.72 
 

1,57 
3,15 
1,77 
3,54 

1,54 
3,07 
1,79 
3,57 

0,12 
0,24 
0,25 
0,49 

  

0,26 
0,52 
0,58 
1,15 

  

0,18 
0,36 
0,68 
1,37 

  

0,25 
0,50 
0,51 
1,02 

  

0,70 
1,39 
0,07 
0,13 

  

Fmax 
(L/min) 

1.61 

2.47 
4.61 

7.09 
 

3,96 
6,09 
4,10 
6,31 

4,00 
6,16 
4,18 
6,43 

1,13 
1,73 
2,91 
4,47 

  

1,00 
1,53 
1,83 
2,82 

  

3,89 
5,98 
6,09 
9,37 

  

0,72 
1,11 
1,26 
1,94 

  

0,41 
0,62 
0,30 
0,46 

  

Mean Error 
% 
 

2.33 
 

 
 

  
3,91 

  
  

  
3,47 

  
  

  
2,63 

  
  
  

  
1,47 

  
  
  

  
4,16 

  
  
  

  
1,20 

  
  
  

  

2,23 
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Table 6.23: Perform
ance, ALI-ARD

S Category, Evaluation Set. 

 

EVO
FIN

E 
Bisector 

W
eighted 

A
verage 

N
ear M

axim
a 

AN
N

 
N

orm
alized  

AN
N

 
K

olm
ogorov  

AN
N

 
em

pirical  
A

N
FIS 

 
EVOFINE MAE 

EVOFINE MAE % 
EVOFINE rMSE 

EVOFINE rMSE % 
  

FUN MAE 
FUN MAE % 
FUN rMSE 

FUN rMSE % 
FUN MAE 

FUN MAE % 
FUN rMSE 

FUN rMSE % 
FUN MAE 

FUN MAE % 
FUN rMSE 

FUN rMSE % 
  

NN  MAE 
NN MAE % 
NN rMSE 

NN rMSE % 
  

NN mae 
NN mae % 
NN rMSE 

NN rMSE % 
  

NN mae 
NN mae % 
NN rMSE 

NN rMSE % 
  

ANFIS MAE 
ANFIS MAE % 
ANFIS rMSE 

ANFIS rMSE % 
  

Vt (ml/kgr) 

0.15 

1.52 
0.37 

3.68 
 

0,64 
6,40 
0,66 
6,58 

0,55 
5,45 
0,57 
5,67 

1,52 
15,18 
1,61 
15,10 

  

0,08 
0,83 
0,12 
1,16 

  

0,07 
0,66 
0,13 
1,29 

  

0,06 
0,58 
0,13 
1,34 

  

0,07 
0,72 
0,03 
0,26 

  

RR (BPM) 

0.96 

3.85 
1.22 

4.88 
 

1,57 
6,29 
1,61 
6,43 

1,19 
4,76 
1,25 
5,01 

0,43 
1,70 
0,95 
3,80 

 

0,30 
1,20 
0,71 
2,82 

  

0,30 
1,22 
0,71 
2,83 

  

0,30 
1,21 
0,71 
2,82 

  

1,14 
4,55 
0,17 
0,67 

  

FiO2  

0.00 

0.68 
0.01 

2.05 
 

0,02 
3,12 
0,02 
3,59 

0,01 
2,34 
0,01 
2,65 

0,03 
4,98 
0,04 
6,45 

  

0,01 
1,36 
0,02 
3,78 

  

0,08 
13,80 
0,38 
69,62 

  

0,00 
0,03 
0,01 
1,82 

  

0,00 
0,10 
0,00 
0,06 

  

PEEP 
(mbar) 
0.28 

1.86 
0.46 

3.07 
 

0,96 
6,38 
1,02 
6,81 

0,84 
5,62 
0,94 
6,24 

1,79 
11,93 
2,07 
13,82 

 

3:23 
22:35 
5:11 
10:35 

  
0,16 
1,08 
0,26 
1,75 

  
3:49 
1:30 
6:02 
16:17 

  
1,04 
6,93 
0,43 
2,89 

  

Pmax 
(mbar) 
1.26 

2.52 
1.96 

3.92 
 

1,52 
3,04 
1,85 
3,70 

1,11 
2,22 
1,55 
3,10 

2,46 
4,91 
4,05 
8,11 

  

0,27 
0,54 
0,41 
0,82 

  

0,00 
0,01 
0,01 
0,02 

  

0,02 
0,04 
0,05 
0,09 

  

0,54 
1,07 
0,15 
0,31 

  

Fmax 
(L/min) 

0.60 

0.93 
1.24 

1.91 
 

3,98 
6,13 
4,03 
6,20 

3,68 
5,66 
3,78 
5,81 

0,42 
0,64 
1,19 
1,53 

  

0,68 
1,04 
1,36 
2,09 

  

0,67 
1,04 
1,46 
2,24 

  

0,52 
0,80 
0,88 
1,36 

  

0,27 
0,42 
0,07 
0,10 

  

Mean Error 
% 
 

1.89 
 

 
 

  
5,23 

  
  

  
4,34 

  
  

  
6,56 

  
  
  

  
0,99 

  
  
  

  
2,97 

  
  
  

  
0,62 

  
  
  

  

2,30 
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6.6 Intelligent Models Advice against Clinician 

Recommendations 

The graphical and numerical representation of the mean errors provides us with 

information about the overall performance of the developed models. In order to 

present more accurately the performance of the models in the following figures the 

graphical representation of the suggested output value (blue dashed line) and the 

relevant clinical decision (red solid line) for the evaluation data is presented.  

Clinical decisions made on ventilator settings occur at variable time intervals, 

depending on physiology status of the patient and on personnel availability. The 

intelligent models derive with suggestions in each data set presented to the model. 

The proposed models do not account for the temporal changes of the data set. The 

data sets present patient health status in 5 minute intervals, as it has already been 

discussed (section 5.3). The models output exhibits in most of the cases a variation 

around clinical decisions. This is attributed to the fact that models respond to 

changes in the physiology recorded values. 

Observing figures 6.23 to 6.39, as a general rule there no directionality of the 

models’ output against clinicians’ choices. The models’ outputs follow in general the 

variation of clinicians’ choices.  

Important observations in EVOFINE models performance against evaluation sets are 

as follows: 

 Fig. 6.23, Tidal volume (ALI-ARDS), shows a peak value in the opposite 

direction of clinicians’ suggestions. 

 Fig. 6.24, Tidal volume (COPD), shows large deviations from the suggested 

clinical decisions. 

 Fig. 6.30,  FiO2 (COPD), in one occasion, the suggestion is in the opposite 

direction to clinician’s advice. 

 Fig. 6.34, Pmax (Normal) has a slightly elevated out in comparison to 

clinicians advice. 

 Fig. 6.36, Fmax (COPD) is producing in three occasion’s very low advice on 

ventilation flow. 

 Fig. 6.39, PEEP (COPD), is constantly suggesting larger PEEP values 
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Important observations in FUN models performance against evaluation sets are as 

follows: 

 Fig. 6.23, modelling the VT for ARDS category performance is poor the 

advices of the FUN model were implemented in the opposite direction to 

clinicians’ decisions. 

 Bisector and Weighted Average techniques were constantly producing large 

errors, with mean errors for each category above 3% (fig. 6.25). It seems that 

most of the cases the trained ANN fires more than one membership degrees 

for each element in the data set, leading to a shift of the produced output. 

Since the NOM technique ignores the less important membership functions, 

this feature is not present in the simulation results of NOM FUN models. 

Important observations in ANN models performance against evaluation sets are as 

follows: 

 In the simulation of the ANN Kolmogorov models, the Fmax for COPD (fig. 

6.36) and the Pmax for the Normal category (fig. 6.34), the models’ output 

was constant. The characteristics of the model, such as architecture, number 

and type of input variable, do not provide us with an obvious reason for the 

constant response of the model. If the number and type of input variables was 

incorrectly chosen for the model, then the same deterioration in performance 

should occur also to the other ANN models. Since this is not the case, one 

could only assume that the type of ANN could not efficiently map the 

specific variable. 

 ANNs with only one input as in Pmax model for ALI-ARDS (fig. 6.32), have 

inadequate architectures. However the performance of the trained ANN in 

such simplified architectures was better than other methods such as FUN; 

FUN was expected to have better performance in such SISO architectures 

due to translation of crisp values to N membership degrees prior to NN 

training. 

 ANN Models’ suggestions are very responsive to physiology variables 

changes. Output in most cases constantly fluctuates around clinical decisions, 

suggesting slight changes for improving ventilation. 
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Important observations in ANFIS models performance against evaluation sets are as 

follows: 

 ANFIS in general follows very closely clinical decisions. However in the 

case of PEEP model for ALI-ARDS category (fig. 6.38) suggestions could be 

hazardous to the patient. 

 Tidal Volume ANFIS model in COPD model (fig. 6.24), suggest negative 

volume. This is clinically impossible. 

 

The key observations from the models’ suggestions against the clinical advice are 

summarized to the following paragraphs: 

 In general EVOFINE, NN and ANFIS models have closely mapped clinical 

decision making pattern. However the models seem to be more responsive to 

variations of the physiology variables than the clinicians’ recommendations. 

This is shown as fluctuations of the models’ suggestions around clinical 

decisions (e.g. fig. 6.27). 

 FUN models’ performance depends highly on the defuzzification method. In 

many of the evaluated FUN models there is a directionality of the suggested 

settings (e.g. fig. 6.25). 

 In several cases, such as VT, RR, FiO2 and PEEP models for COPD category 

(figs 6.24, 6.27, 6.30 and 6.39 respectively) some models agree on different 

settings than the clinical advice. This suggests that the models have mapped 

in a similar way a given input – output relationship, described by the data set. 

The difference between the clinician and the models’ suggestions could be 

attributed to disagreement between models and clinicians or to the no 

availability of a clinician at the specific time, represented by the data set. The 

second assumption highlights the importance of the application of the 

evaluated models to the ventilation management process since the models are 

continuously available, adopting the ventilation strategy to physiology 

changes. 

 Although ANFIS models map closely clinical suggestions, in several cases 

they produce advice potentially hazardous to the patient (fig. 6.38 and 6.24). 

This problem has also been discussed in section 6.4.2, through the 

observation of the ANFIS surface mapping of the systems’ response. 
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Additionally since the details of the ANNs decision making process has not 

been explored (through rule extraction techniques), the same problem could 

potentially apply to some of the ANN models. Thus prior to clinical 

application of the evaluated models it is important to apply safeguarding 

algorithms against excess model’s advice. 
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Figure 6.23: Model’s Output (blue dashed)  vs. clinical decisions (red solid), for 

Tidal Volume in ALI-ARDS lung category. 
 

 
Figure 6.24: Model’s Output (blue dashed)  vs. clinical decisions (red solid), for 

Tidal Volume in COPD lung category. 
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Figure 6.25: Model’s Output (blue dashed)  vs. clinical decisions (red solid), for 

Tidal Volume in Normal lung category. 

 
Figure 6.26: Model’s Output (blue dashed)  vs. clinical decisions (red solid), RR in 

ALI-ARDS lung category.  
 



155 
  

 
Figure 6.27: Model’s Output (blue dashed)  vs.  clinical decisions (red solid), RR in 

COPD lung category.  
 

 
Figure 6.28: Model’s Output (blue dashed)  vs.  clinical decisions (red solid), RR in 

Normal lung category.  
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Figure 6.29: Model’s Output (blue dashed)  vs.  clinical decisions (red solid), FiO2 

in ALI-ARDS  lung category. 
 

 
Figure 6.30: Model’s Output (blue dashed)  vs.  clinical decisions (red solid), FiO2 

in COPD  lung category  
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Figure 6.31: Model’s Output (blue dashed)  vs.  clinical decisions (red solid), FiO2 

in Normal  lung category . 
 

 
Figure 6.32: Model’s Output (blue dashed)  vs.  clinical decisions (red solid), Pmax 

in ALI-ARDS  lung category.  
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Figure 6.33: Model’s Output (blue dashed)  vs.  clinical decisions (red solid), Pmax 

in COPD lung category.  
 

 
Figure 6.34: Model’s Output (blue dashed)  vs.  clinical decisions (red solid), Pmax 

in Normal lung category.  
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Figure 6.35: Model’s Output (blue dashed)  vs.  clinical decisions (red solid), Fmax 

in ALI-ARDS lung category.  
 

 
Figure 6.36: Model’s Output (blue dashed)  vs.  clinical decisions (red solid), Fmax 

in COPD lung category.  
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Figure 6.37: Model’s Output (blue dashed)  vs.  clinical decisions (red solid), Fmax 

in Normal lung category.  
 

 
Figure 6.38: Model’s Output (blue dashed)  vs.  clinical decisions (red solid), PEEP  

in ALI-ARDS lung category.  
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Figure 6.39: Model’s Output (blue dashed)  vs.  clinical decisions (red solid), PEEP  

in COPD lung category.  
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6.7 Patient Scenarios 

The evaluation of the developed models with the use of the evaluation sets, gives us 

the accuracy of predictions of the models against real data. However the recorded 

data represent choices made by ICU clinicians based on their expertise and 

experience and could not be considered as the only solution to a medical decision 

making process. 

In order to examine whether the intelligent models suggestions are within the experts 

disagreement span, patient scenarios were developed. The scenarios were developed 

from the available recorded data and thus they reflect real patient cases. ICU doctors 

were provided with the basic lung pathology, Normal lungs, ALI-ARDS or COPD, 

with the demographic data related to ventilation settings and the time variations of 

the physiology variables similar to the inputs of our developed models. Doctors were 

asked to advice on the appropriate ventilation settings, similar to the outputs of our 

models. An example COPD patient scenario is presented in table 6.24.  

The scenarios were circulated to three ICU doctors of the NIMITS hospital. Each 

doctor made their decisions independently in order to avoid bias. The answers were 

statistically analyzed and are presented in table 6.25. 

As results in table 6.25 suggest and as we anticipated, clinical decisions exhibit 

variation among peers. This is mainly attributed to the differences in doctor’s 

experience and expertise, to the different approaches in ventilation management, to 

the lack of direct interaction with the patient and the lack of prescribed medications 

in the presented scenarios. 

The collected responses were analyzed based on the range of clinical decisions, and 

the standard deviation (SD) of answers as described by equations 6.3 and 6.4. 

 
minmax XXrange       eq. 6.3a 

    valuevalue MINMAXXXrange  /100*% minmax  eq. 6.3b 
    1

1
   nXXSD

n

i i      eq. 6.4 

 
Where: n is the available number of data, X  is the mean value and valuevalue MINMAX ,  is the ventilator 
settings maximum and minimum values in the recorded data as given in table AV.1. 
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The largest range in decisions is observed in Pmax and Fmax ventilator settings in all 

lung categories. The smallest range is observed in FiO2 settings. The use of % range 

allows direct comparison between different ventilator settings.  Although in 

numerical terms FiO2 range was small, expressed as a percentage displays large 

variations in Normal and ALI-ARDS  lung categories. In both cases in scenario 1, 

doctors have suggested settings with 18% difference between them.  

 

Table 6.24: COPD example of patient scenario. 

Sex Male Height 
1,75

m Weight 75Kgr   Age 48      

Time Sp
O
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15:30 94 71 69 7,4 203 36 0 26 18 61 44 354 
16:00 94 71 69 7,4 203 37 0 23 18 62 44 346 
16:30 94 71 69 7,4 203 35 0 26 17 62 44 369 
17:00 94 76 73 7,4 217 33 0 25 14 62 46 334 
18:00 92 76 73 7,4 217 35 0 28 16 71 46 351 
18:30 90 76 73 7,4 217 34 0 23 22 71 46 348 
19:00 94 76 73 7,4 217 37 0 26 19 65 46 351 
19:30 95 76 73 7,4 217 36 0 28 17 62 46 353 
20:00 95 76 73 7,4 217 36 0 26 19 58 46 324 
20:30 94 76 73 7,4 217 36 0 28 17 60 46 330 
21:00 93 76 73 7,4 217 37 0 22 18 64 45 340 
21:30 93 76 73 7,4 217 36 0 26 17 64 45 340 
22:00 93 76 73 7,4 217 35 0 28 17 64 45 360 
22:30 94 76 73 7,4 217 35 0 26 17 65 45 341 
23:00 94 76 73 7,4 217 38 0 27 19 64 45 362 
23:30 94 76 73 7,4 217 36 0 26 17 62 45 359 
0:00 94 76 73 7,4 217 36 0 26 17 63 45 360 
0:05 95 76 73 7,4 217 36 0 30 18 61 45 365 
0:10 94 76 73 7,4 217 35 0 30 18 61 45 353 
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Tidal Volume and RR exhibited small differences in the range of 5 to 10% with the 

exception of RR in Scenario 2 for ALI-ARDS and Normal lung category. However a 

numeric value of 1 ml/Kg for the tidal volume is translated as a difference of 75 ml 

for a patient of 75 Kg. 
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Doctors’ answers and analysis supports the argument that clinical decisions for the 

ventilation management process show large variations. Thus a measure of 

performance of a model should not only be the performance of the model against 

available data, but also in terms of providing results that are within the range of 

clinicians’ advice. 

 



165 
 

 

Table 6.25: ICU
 doctors responses to patient scenarios and statistical analysis. 

 

 

Vt 
(ml/Kg

r) 

Range 

% 
Range 

SD 

RR 
(bpm) 

Range 

% 
Range 

SD 

FiO2 

Range 

% 
Range 

SD 

PEEP 
(mbar) 

Range 

% 
Range 

SD 

Pmax 
(mbar) 

Range 

% 
Range 

SD 

Fmax 
(L/min

) 

Range 

% 
Range 

SD 

 

or 

1 
2 

3 
  

  
  

1 
2 

3 
  

  
  

1 
2 

3 
  

  
  

1 
2 

3 
  

  
  

1 
2 

3 
  

  
  

1 
2 

3 
  

  
  

Normal  

1 

7,00 

7,00 

7,50 

0,50 

5,00 

0,29 

16,00 

16,00 

16,00 

0,00 

0,00 

0,00 

0,60 

0,60 

0,50 

0,10 

18,18 

0,06 

6,00 

6,00 

6,00 

0,00 

0,00 

0,00 

50,00 

45,00 

40,00 

10,00 

20,00 

5,00 

50,00 

60,00 

50,00 

10,00 

15,38 

5,77 

2 

7,00 

8,00 

8,00 

1,00 

10,00 

0,58 

20,00 

16,00 

16,00 

4,00 

16,00 

2,31 

0,40 

0,40 

0,40 

0,00 

0,00 

0,00 

10,00 

8,00 

8,00 

2,00 

13,33 

1,15 

40,00 

45,00 

45,00 

5,00 

10,00 

2,89 

50,00 

60,00 

50,00 

10,00 

15,38 

5,77 

Normal 
mean 
values 

 

  

  

  

0,75 

7,50 

0,43 

  

  

  

2,00 

8,00 

1,15 

  

  

  

0,05 

9,09 

0,03 

  

  

  

1,00 

6,67 

0,58 

  

  

  

7,50 

15,00 

3,94 

  

  

  

10,00 

15,38 

5,77 

COPD 

1 

6,67 

7,33 

6,67 

0,67 

6,67 

0,38 

14,00 

14,00 

16,00 

2,00 

8,00 

1,15 

0,50 

0,50 

0,50 

0,00 

0,00 

0,00 

8,00 

7,00 

6,00 

2,00 

13,33 

1,00 

50,00 

50,00 

50,00 

0,00 

0,00 

0,00 

60,00 

65,00 

70,00 

10,00 

15,38 

5,00 

2 

5,45 

5,91 

5,45 

0,45 

4,55 

0,26 

12,00 

12,00 

14,00 

2,00 

8,00 

1,15 

0,50 

0,50 

0,50 

0,00 

0,00 

0,00 

8,00 

7,00 

7,00 

1,00 

6,67 

0,58 

60,00 

60,00 

55,00 

5,00 

10,00 

2,89 

60,00 

60,00 

65,00 

5,00 

7,69 

2,89 

3 

6,11 

6,11 

6,67 

0,56 

5,56 

0,32 

14,00 

12,00 

12,00 

2,00 

8,00 

1,15 

0,40 

0,40 

0,40 

0,00 

0,00 

0,00 

6,00 

8,00 

8,00 

2,00 

13,33 

1,15 

40,00 

50,00 

55,00 

15,00 

30,00 

7,64 

60,00 

60,00 

60,00 

0,00 

0,00 

0,00 

4 

6,67 

6,67 

7,73 

1,07 

10,67 

0,62 

12,00 

14,00 

12,00 

2,00 

8,00 

1,15 

0,40 

0,40 

0,40 

0,00 

0,00 

0,00 

6,00 

6,00 

6,00 

0,00 

0,00 

0,00 

50,00 

50,00 

55,00 

5,00 

10,00 

2,89 

60,00 

65,00 

60,00 

5,00 

7,69 

2,89 

COPD 
mean 
values 

  

  

  

  

0,69 

6,86 

0,40 

  

  

  

2,00 

8,00 

1,15 

  

  

  

0,00 

0,00 

0,00 

  

  

  

1,25 

8,33 

0,68 

  

  

  

6,25 

12,50 

3,35 

  

  

  

5,00 

7,69 

2,69 

ALI-ARDS 

1 

7,00 

7,00 

7,50 

0,50 

5,00 

0,29 

16,00 

16,00 

16,00 

0,00 

0,00 

0,00 

0,60 

0,60 

0,50 

0,10 

18,18 

0,06 

6,00 

6,00 

6,00 

0,00 

0,00 

0,00 

50,00 

45,00 

40,00 

10,00 

20,00 

5,00 

50,00 

60,00 

50,00 

10,00 

15,38 

5,77 

2 

7,00 

8,00 

8,00 

1,00 

10,00 

0,58 

20,00 

16,00 

18,00 

4,00 

16,00 

2,00 

0,40 

0,40 

0,40 

0,00 

0,00 

0,00 

10,00 

8,00 

8,00 

2,00 

13,33 

1,15 

40,00 

45,00 

45,00 

5,00 

10,00 

2,89 

50,00 

60,00 

50,00 

10,00 

15,38 

5,77 

ARDS 
mean 
values 

  

  

  

  

0,75 

7,50 

0,43 

  

  

  

2,00 

8,00 

1,00 

  

  

  

0,05 

9,09 

0,03 

  

  

  

1,00 

6,67 

0,58 

  

  

  

7,50 

15,00 

3,94 

  

  

  

10,00 

15,38 

5,77 

Mwan 
values 

 

  

  

  

0,73 

7,29 

0,42 

  

  

  

2,00 

8,00 

1,10 

  

  

  

0,03 

6,06 

0,02 

  

  

  

1,08 

7,22 

0,61 

  

  

  

7,08 

14,17 

3,75 

  

  

  

8,33 

12,82 

4,75 
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6.8 Models’ suggestions and Peers’ disagreement 

The performance of the models’ suggestions against clinical decisions has been 

presented and discussed in section 6.6. However as discussed in the previous section 

(6.7), the models’ suggestions have also to be evaluated against clinical 

disagreement. Since there is not a single solution to the problem of ventilation 

management, one has to examine whether the models’ suggestions are within clinical 

disagreement. 

For this reason the models’ suggestions were statistically evaluated against the SD of 

clinical disagreement on patient scenarios. The analysis was performed to identify 

the percentage of models’ suggestions which was within the peer disagreement 

range; peer disagreement is described by the SD of clinical decisions on patient 

scenarios which is presented in table 6.25. 

Tables 6.26a, 6.26b and 6.26c, present the statistical analysis of the models’ 

suggestions against clinical disagreement. The following tables present for each lung 

pathology (1st column), for each modelled ventilator setting (2nd column) the model’s 

(3rd column) suggestions outside the clinical SD as a percentage of the total 

suggestions (4th column). Column five provides the number of suggestions that were 

outside the clinical SD. The last column presents the total number of suggestions 

made by the tested models, which is equal to the number of the evaluation sets. 

The results of tables 6.26a, 6.26b and 6.26c are also presented graphically in figures 

6.40 to 6.43 for each modeling method and for all developed models (ventilator 

settings for all lung pathologies). 

EVOFINE, NN Normalized, NN empirical and ANFIS methods have succeeded in 

having less than 10% (above 90% success) of their suggestions outside clinical SD in 

9, 9, 12 and 10 respectively out of the 17 evaluated models. However the models 

were 100% successful (0% suggestions outside clinical SD) in few cases. ANFIS, 

NN empirical, NN Kolmogorov and EVOFINE provided all suggestions within 

clinical SD in 4, 4, 4 and 3 models respectively. 

Although FUN method was the worst among soft computing methods evaluated in 

terms of mean error between model’s suggestions and clinical decisions, the FUN 

NM models succeeded in having less than 10% (above 90% success) of their 

suggestions outside clinical SD in 8 out of the 17 evaluated models. 
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The evidence as described in tables 6.26a to 6.26c and figures 6.40 to 6.43, do not 

support that there is a ventilator setting more difficult to be modeled than the others. 

It can be seen (figures 6.40 to 6.43) that were a method has failed to provide 

suggestions within the clinical SD, another has succeeded. Examples are the 

EVOFINE and NN Kolmogorov and Normalized models for the Pmax setting of the 

Normal category which have failed to give suggestions within the SD, while for the 

same setting NN empirical, FUN NM and ANFIS have succeeded. However the only 

cases were the results suggest a difficulty in modeling by all methods, is the FiO2 

setting for the COPD lung category. All methods used for modelling the processes 

have failed; 100% of suggestions outside the clinical SD. However this is not 

attributed to the complexity of the modeled process but rather on the fact that 

clinician SD was zero, meaning there was no variation among peers (table 6.25). 

Although the results from tables 6.26a to 6.26c provide us with sufficient 

information on the overall performance of the methods, it is clinically important to 

examine whether there are suggestions potentially harmful to the patient. For this 

reason figures 6.44 to 6.60 present the scatter diagrams of clinical decisions vs. 

models’ suggestions. The blue dashed lines represent the clinical SD, thus models 

suggestions confined in the dash lines are acceptable. 

There are several cases where the error of the suggested settings is sufficiently high 

to pose a hazard to the patient. Example diagrams presenting such situations are the 

following: 

 In figure 6.60 we observe that ANFIS suggests few but very high PEEP 

values which are not clinically acceptable. 

 In figure 6.57 we observe that ANFIS suggests very high flow rates, while 

EVOFINE is suggesting low flow rates.  While in the case of ANFIS the 

suggestions are not clinically acceptable, the EVOFINE suggestions require 

further clinical evaluation. 

 In figure 6.51 the NN Kolmogorov suggests FiO2 settings not only clinically 

unacceptable but outside the variable domain. In the same figure we observe 

that all models are constantly providing suggestions of smaller FiO2 values. 

 In figure 6.48, ANFIS model suggest very low values of RR. Although all 

models provide several answers outside the clinical SD, the difference in 

numerical value is not significant. 
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 Several suggested tidal volume (VT) settings for EVOFINE and NN 

Normalized models (figure 6.45), are higher than the clinical decisions. 

ANFIS model in the same figure suggests tidal volume settings which are 

hazardous to the patient. 

 Similarly in figure 6.59, we observe that FUN NM model suggest zero PEEP 

values, while EVOFINE suggests very high values of PEEP, potentially 

hazardous to the patient. 

 

As discussed in sections 6.4.2 and 6.6, and shown in the above paragraphs, models 

could suggest values outside the clinical SD and in several occasions outside the 

clinically acceptable limits. Thus it is crucial for a clinical decision support system to 

safeguard against excessive advice. 
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Table 6.26a: Models’ suggestions outside peer disagreement (peer SD), for VT and FiO2 ventilator settings. 

Category Variable Model 

% of 
suggestions 

outside 
clinical SD 

Number of 
suggestions 

outside 
clinical SD 

Total No of 
suggestions Category Variable Model 

% of 
suggestions 

outside 
clinical SD 

Number of 
suggestions 

outside 
clinical SD 

Total No of 
suggestions 

ARDS 

Vt 

EVOFINE 11,84 9 

76 ARDS 

FIO2 

EVOFINE 2,63 2 

76 

FUN BIS 96,05 73 FUN BIS 76,32 58 

FUN WA 96,05 73 FUN WA 38,16 29 

FUN NM 94,74 72 FUN NM 57,89 44 

NN emb 6,58 5 NN emb 3,95 3 

NN Kolm 10,53 8 NN Kolm 19,74 15 

NN Norm 9,21 7 NN Norm 9,21 7 

ANFIS 10,53 8 ANFIS 1,32 1 

COPD 

EVOFINE 40,95 86 

210 COPD 

EVOFINE 100,00 210 

210 

FUN BIS 46,19 97 FUN BIS 100,00 210 

FUN WA 47,14 99 FUN WA 100,00 210 

FUN NM 55,71 117 FUN NM 100,00 210 

NN emb 7,62 16 NN emb 100,00 210 

NN Kolm 13,81 29 NN Kolm 100,00 210 

NN Norm 13,81 29 NN Norm 100,00 210 

ANFIS 18,10 38 ANFIS 100,00 210 

Normal 

EVOFINE 6,00 3 

50 Normal 

EVOFINE 0,00 0 

50 

FUN BIS 100,00 50 FUN BIS 100,00 50 

FUN WA 100,00 50 FUN WA 96,00 48 

FUN NM 6,00 3 FUN NM 6,00 3 

NN emb 2,00 1 NN emb 0,00 0 

NN Kolm 0,00 0 NN Kolm 0,00 0 

NN Norm 2,00 1 NN Norm 4,00 2 

ANFIS 0,00 0 ANFIS 0,00 0 

 



170 
  

Table 6.26b: Models’ suggestions outside peer disagreement (peer SD), for RR and Pmax ventilator settings. 

Category Variable Model 

% of 
suggestions 

outside 
clinical SD 

Number of 
suggestions 

outside 
clinical SD 

Total No of 
suggestions Category Variable Model 

% of 
suggestions 

outside 
clinical SD 

Number of 
suggestions 

outside 
clinical SD 

Total No of 
suggestions 

ARDS 

RR 

EVOFINE 61,84 47 

76 ARDS 

Pmax 

EVOFINE 65,79 50 

76 

FUN BIS 97,37 74 FUN BIS 100,00 76 

FUN WA 97,37 74 FUN WA 65,79 50 

FUN NM 23,68 18 FUN NM 44,74 34 

NN emb 18,42 14 NN emb 0,00 0 

NN Kolm 18,42 14 NN Kolm 0,00 0 

NN Norm 18,42 14 NN Norm 25,00 19 

ANFIS 65,79 50 ANFIS 50,00 38 

COPD 

EVOFINE 36,67 77 

210 COPD 

EVOFINE 8,57 18 

210 

FUN BIS 29,05 61 FUN BIS 95,71 201 

FUN WA 29,05 61 FUN WA 95,71 201 

FUN NM 33,33 70 FUN NM 11,90 25 

NN emb 27,62 58 NN emb 18,57 39 

NN Kolm 40,95 86 NN Kolm 9,52 20 

NN Norm 30,00 63 NN Norm 22,86 48 

ANFIS 30,00 63 ANFIS 25,24 53 

Normal 

EVOFINE 6,00 3 

50 Normal 

EVOFINE 90,00 45 

50 

FUN BIS 100,00 50 FUN BIS 100,00 50 

FUN WA 100,00 50 FUN WA 100,00 50 

FUN NM 10,00 5 FUN NM 0,00 0 

NN emb 2,00 1 NN emb 2,00 1 

NN Kolm 100,00 50 NN Kolm 100,00 50 

NN Norm 6,00 3 NN Norm 98,00 49 

ANFIS 0,00 0 ANFIS 2,00 1 
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Table 6.26c: Models’ suggestions outside peer disagreement (peer SD), for Fmax and PEEP ventilator settings. 

Category Variable Model 

% of 
suggestions 

outside 
clinical SD 

Number of 
suggestions 

outside 
clinical SD 

Total No of 
suggestions Category Variable Model 

% of 
suggestions 

outside 
clinical SD 

Number of 
suggestions 

outside 
clinical SD 

Total No of 
suggestions 

ARDS 

Fmax 

EVOFINE 2,63 2 

76 ARDS 

PEEP 

EVOFINE 0,00 0 

76 

FUN BIS 97,37 74 FUN BIS 0,00 0 

FUN WA 97,37 74 FUN WA 0,00 0 

FUN NM 3,95 3 FUN NM 5,26 4 

NN emb 3,95 3 NN emb 0,00 0 

NN Kolm 2,63 2 NN Kolm 0,00 0 

NN Norm 6,58 5 NN Norm 0,00 0 

ANFIS 5,26 4 ANFIS 6,58 5 

COPD 

EVOFINE 16,19 34 

210 COPD 

EVOFINE 1,43 3 

210 

FUN BIS 95,71 201 FUN BIS 1,90 4 

FUN WA 95,71 201 FUN WA 1,43 3 

FUN NM 12,38 26 FUN NM 8,57 18 

NN emb 10,48 22 NN emb 1,90 4 

NN Kolm 100,00 210 NN Kolm 0,48 1 

NN Norm 13,81 29 NN Norm 0,95 2 

ANFIS 5,71 12 ANFIS 1,43 3 

Normal 

EVOFINE 0,00 0 

50 

FUN BIS 90,00 45 

FUN WA 94,00 47 

FUN NM 4,00 2 

NN emb 0,00 0 

NN Kolm 6,00 3 

NN Norm 2,00 1 

ANFIS 0,00 0 
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Figure 6.40: Percentage of EVOFINE suggestions outside SD of peer disagreement. 
 

 
 

Figure 6.41: Percentage of FUN suggestions outside SD of peer disagreement. 
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Figure 6.42: Percentage of NNs suggestions outside SD of peer disagreement. 
 

 
Figure 6.43: Percentage of NNs suggestions outside SD of peer disagreement. 
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Figure 6.44: Scatter diagram of models’ vs. clinical decisions for VT Normal 

 
Figure 6.45: Scatter diagram of models’ vs. clinical decisions for VT COPD 

 
Figure 6.46: Scatter diagram of models’ vs. clinical decisions for VT ARDS 
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Figure 6.47: Scatter diagram of models’ vs. clinical decisions for RR Normal 

 
Figure 6.48: Scatter diagram of models’ vs. clinical decisions for RR COPD 

 
Figure 6.49: Scatter diagram of models’ vs. clinical decisions for RR ARDS 
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Figure 6.50: Scatter diagram of models’ vs. clinical decisions for FiO2 Normal 

 
Figure 6.51: Scatter diagram of models’ vs. clinical decisions for FiO2 COPD 

 
Figure 6.52: Scatter diagram of models’ vs. clinical decisions for FiO2 ARDS 
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Figure 6.53: Scatter diagram of models’ vs. clinical decisions for Pmax Normal 

 
Figure 6.54: Scatter diagram of models’ vs. clinical decisions for Pmax COPD 

 
Figure 6.55: Scatter diagram of models’ vs. clinical decisions for Pmax ARDS 
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Figure 6.56: Scatter diagram of models’ vs. clinical decisions for Fmax Normal 

 
Figure 6.57: Scatter diagram of models’ vs. clinical decisions for Fmax COPD 

 
Figure 6.58: Scatter diagram of models’ vs. clinical decisions for Fmax ARDS 
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Figure 6.59: Scatter diagram of models’ vs. clinical decisions for PEEP COPD 

 
Figure 6.60: Scatter diagram of models’ vs. clinical decisions for PEEP ARDS 
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7. Discussion 

7.1 Discussion key subjects 

The presented results in chapter 6 of the models performance will be discussed 

taking the following key points into consideration: 

 Discussion on methods for limiting the number of input variables to the 

models. 

 Choice of methods for developing the models. 

 Toolboxes’ efficiency in developing models. 

 Evaluation of models against available data sets. 

 Comparison of models performance. 

 Comparison of models performance against clinical scenarios. 

 Comparison of the presented approach to other authors. 

 

7.1.1 Discussion on methodology for limiting input variables 

The problem of limiting the number of input variables to the models was addressed 

with the use of basic statistical analysis. 

The identification of important physiology variables and ventilator settings was 

performed with the use of a developed questionnaire. The questionnaire was 

circulated to three general hospitals in Athens, Greece and responses were collected 

from eighteen (18) ICU doctors. The results were statistically analysed and variables 

that scored high were chosen for recording. 

Following the recording phase of real patient data, patients were classified with the 

assistance of an experienced ICU clinician, into three major categories related to the 

ventilation management process. The three categories were the ALI-ARDS, the 

COPD and the Normal lungs category. 

Collected data were re-sampled into five (5) minute trends and they were analyzed in 

terms of correlation coefficients. This analysis was performed to further reduce the 

number of inputs for our models from the set resulting from the questionnaire, and 

thus simplify the architecture, reduce training time and produce more accurate 

results.  
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There are alternative methods for addressing the problem of models architecture and 

limitation of the problem’s search space. We present some of them in the following 

paragraphs as well as the arguments for not introducing them in our research: 

 One should collect the total of available data and create models as close to 

human decision making with all the available data: As a general argument 

this approach could be implemented. But a question is raised, which patient 

related data would form a good representation of clinicians’ decision making 

process. Should all measured variables be incorporated to our models? If so 

should the drug administration process be also recorded? Should patient’s 

case mix (present of multiple illness), and followed by a specific relevant 

importance to ventilation management be incorporated? Doctor/ patient 

interaction, translated from verbal or acoustic – sensory inputs from the 

patients should be properly encoded and introduced to the research? The list 

of possible candidates to the model is far too big for the purpose of the 

current research. Furthermore the resulting models would require 

considerable processing power for training and evaluation purposes. In 

contrast we decided to elicit from unstructured conversations and related 

bibliography, the most important variables that could be numerically 

recorded. Then we identified the most important according to ICU clinicians 

experience and expertise, and finally we mathematically calculated and 

evaluated by experts the relationship between the recorded data and the 

ventilator settings, based on the assumption that each ventilator setting is 

chosen with a subset of the available data. 

 Expert ICU doctors should be involved in the choice and evaluation process 

of the available data: A major drawback of relying on individuals for 

eliciting expert knowledge is that results are highly biased from their 

theoretical and empirical background. Although this problem could be 

overcome by increasing the number of clinical participation into the research, 

the following practical problems arise: First the active participation of many 

ICU doctors from different hospitals requires motivation and dedication for 

the purpose of the research, and second one has to elicit a golden standard 

from multiple clinical decision making patterns. Since conflict in decision 

making process among clinical personnel exists, such a task is highly difficult 

and time consuming.  For this reason it was decided to elicit the experts 
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experience and expertise with the use of statistical tools that would minimize 

the individuals’ bias in our research. However since experts knowledge in the 

field should not be ignored, we have incorporated their knowledge in every 

step of the method, but rather than relying on few experts we decided to 

evaluate their opinion with statistical methods. During the development of 

the questionnaire the ICU staff of Ag. Olga general hospital provided the 

basic variables. The responders to the questionnaire suggested the importance 

of the physiology variables and their responses were analyzed. In this way it 

was managed to minimize individual biases in the final results. Furthermore 

clinicians from three different hospitals evaluated the strength of the 

relationships that were derived from the collected data, based on the 

correlation analysis between physiology variables and ventilator settings. 

Thus experts participated in every step of the research but their opinion was 

counterbalanced with the use of statistical analysis. 

 Limiting the number of variables into the models could be performed with 

methods that exclude human bias: It is true that one could implement 

Principal Components Analysis, GAs or another well established method for 

identifying relationships between physiology data and ventilator settings. 

However one could not exclude experts’ opinion on the resulted 

relationships. For this reason at some point ICU doctors should evaluate 

results concerning the strength and the existence of relationships. The 

specific argument requires further investigation in future research, since it is 

possible that different techniques would provide us with different 

relationships between input and output data. However since ICU doctors 

evaluated the correlation results, and based on their majority voting the input 

variables were chosen for our models, the possibility of utilizing input data 

irrelevant to our research was minimized. 

 

7.1.2 Artificial Intelligent Methods for model development 

It was decided to develop the models with methods that allow development without 

the feedback from experts, based on available data sets. In this way it was anticipated 

that the resulted models would elicit and incorporate both the experience and the 

expertise of the medical staff. ICU doctors were consciously excluded from the 
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design and architecture of the models since eliciting information from experts in 

complex systems is a difficult and time consuming task and also a source of bias to 

the research. 

Two main AI methods are established in modelling complex systems, namely Fuzzy 

Logic and Artificial Neural Networks. Although Fuzzy Systems have proven their 

efficiency in modelling complex systems they require expert’s feedback during the 

development and tuning phase. Alternatively one could incorporate other AI 

methods that provide the capability to FRBSs to adapt, tune or train for a specific 

task.  

We have decided to evaluate the use of GAs and ANN in evolving and training 

FRBS, and at the same time apply ANN to model the ventilation management 

process. The following paragraphs briefly discuss the methods we have used and the 

limitations of each method: 

 ANFIS method: ANFIS has been successfully tested in relevant medical 

applications (Kwok H.F. 2003). However the ANFIS toolbox of Matlab (® 

Mathworks) has the following limitations: It can only implement Sugeno type 

FRBS, the number of output variables is limited to one and the number of 

rules is dictated by the available input(s) membership functions. Although 

these features are limitations in terms of design flexibility, ANFIS method 

has the advantage of optimizing FRBS structure both in terms of RB and FSs. 

 Evolution of FRBS with the use of GAs (EVOFINE toolbox): EVOFINE 

toolbox utilizes GAs for evolving FRBSs based on their performance against 

an available training data set. One of the main draw backs of the method is 

the use of a subset of the RB due to increased complexity and limited 

computational resources. However as we have exhibited in experimental 

trials, a subset of the RB could adequately map a complex system. 

Furthermore the computation time for evolving complex FRBSs is higher 

than the other methods. The advantage of the EVOFINE toolbox is that it 

evolves both the RB and tunes the FSs of the FRBSs assuming no prior 

knowledge on the architecture. 

 ANN driven FL (FUN toolbox): FUN toolbox substitutes the RB of the 

FRBSs with an ANN. One of the drawbacks of FUN toolbox is the use of 

predefined FSs in terms of number, position and shape. Due to the design of 

the FUN toolbox, the ANN adapts to model a given training set consisting of 
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membership degrees for each input – output values. Thus the ANN output is 

numerical values of membership degrees. We have shown that different 

defuzzification methods provide us with different performance for the same 

ANN trained model. 

 ANNs: ANNs are widely used in modelling complex systems in a variety of 

medical and non-medical applications. We have shown that the use of 

normalized training sets advance the ANN performance when the input 

domains have a large magnitude variation among input – output variables. 

The main drawback of ANNs is that the resulting model is a “black box” for 

the evaluator and the developer. The elicitation of NN’s operating principles 

requires the application of rules extraction methods.  

 
The following paragraphs discuss other relevant AI methods as alternatives to those 

used in our research: 

 Chromosome Coding techniques: Apart from the main coding approaches 

such as Pittsburgh, Michigan and Iterative approaches, there are several other 

approaches disseminated to the research community (Jamei M. 2004). All of 

them exhibit positive and negative features as discussed in the Appendix IV. 

However our approach was different. The RB and the FSs were coded into 

two separate chromosomes utilizing different coding; integer and real coding 

respectively. The FRBS was fully customizable from the EVOFINE toolbox 

allowing the user to perform trials with different architectures in a simple and 

straight forward manner. Additionally the coding of two separate 

chromosomes is translated as autonomous evolution of each chromosome. 

Thus possible deterioration of the architecture of one chromosome might be 

counter balanced by the improvement of the other. However the opposite is 

also true; improvement in one chromosome could be counter balanced by 

deterioration of the other. The best FRBSs from each generation are stored 

for the user, so it is possible to go back in time and examine the system’s 

performance. We have incorporated rule weights into the coding, so the 

evolution process optimizes the structure and the weight of each rule, so 

incorporating rule minimization when weights are zero (0). We have adapted 

the Sheffield’s’ GA toolbox in order to exchange only complete rules during 

crossover. We have introduced damping mutation rates and experimentally 
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exhibited that they perform faster, resulting in better individuals and 

decreased computation time. Additionally it is planned for the future to 

advance the EVOFINE toolbox in such way to search for the optimum 

combination of RB and FSs chromosomes, rather than treating each pair as a 

single FRBS. The performance of our approach is backed up by experimental 

data on non linear mathematical function and the cart pole system (Appendix 

III). 

 Elicitation of the RB of an FRBS: Several methods have been proposed for 

the automatic elicitation of the RB of a FRBS (Liu F. 2006. Jamei M. 2004, Wang 

L.X, Mendel J.M, 1992, Chen C.L, Chen Y.M, 1993). In our approach we have used 

the well established GAs method as well as the NN driven FRBS. While the 

first optimizes randomly constructed RBs, and the quality of the final 

outcome is partially attributed to this randomization and on the processing 

power available (number of individuals’, chromosomes’ length and training 

generations), the NN driven FRBSs method has the advantage of developing 

a model for the total number of rules for a FRBS, at least representative for 

the rules dictated by the available training sets. Furthermore our FUN toolbox 

allows the development of Mamdani type NN driven FRBSs. 

 FRBS vs. ANN: Theoretically both methods could equally map a complex 

search space (Bukley JJ et al 1993). However there is no evidence of their 

comparative performance in applications on modelling medical support 

systems for highly complex tasks such as the ventilation management 

process. Even though they have been applied in similar problems, the quality, 

quantity and type of data sets was not the same, leading to expected 

differences in the outcomes. For this reason we decided to test both 

architectures against a given problem. Results, as it is discussed further in the 

next sections, suggest that performance is highly affected by the setup details 

of each method rather than the method on each own. 
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7.2 Models’ Performance 

7.2.1 EVOFINE models’ performance 

Chapter 6 presented the performance of the developed models against the clinical 

decisions of domain experts. The FRBSs were evolved for 100 generations. Evolved 

FRBSs have been tested against the training and evaluation sets, in terms of mae and 

rmse, and their equivalent percentage in the range of the available variables, which 

was also the input and output domain of the model’s variables. 

The number of input variables and consequently the RB as a percentage of the total 

rules describing the system does not seem to have a profound effect on the 

performance of the models. With the help of the table 5.15, we observe that the RR 

model for Normal, ALI-ARDS and COPD categories have 5,1 and 3 inputs 

respectively and the corresponding percentage of the full RB is 5, 100 and 100% 

(table 6.1). Although the Normal RR model used the less complex architecture in 

terms of RB, its performance is superior to the other categories. Figure 7.1 presents 

the overall (mean) performance of the models for each patient category. The results 

suggest that Normal category was modelled more accurately than the other two. This 

could not be attributed to the simplicity and small number of the available data. 

Although RR in Normal category was modelled with a 5 % of the full RB, as 

opposed to 100% for COPD & ARDS, the corresponding number of rules was higher 

than the other two categories; 156, 125 and 5 rules for Normal, COPD and ARDS 

respectively. The increased number of rules seems to have resulted into a more 

accurate mapping of input – output relationships. 

An important drawback of the use of GAs is the increased computational time. 

Figure 7.2, presents the training time for a hundred generations (100) and a hundred 

individuals (100). COPD was the slowest among the models mainly due to the large 

number of available data sets. Additionally, the number of input variables to a 

model, and as a result the size of the RB, affected the computation time. Pmax model 

for the Normal category used 6 inputs and 391 rules. As shown in figure 7.2, it has 

the slowest training time among other categories. Although training time is not 

crucial for the initial training, it becomes crucial during systems maintenance, due to 

retraining when new data sets are available. 
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Figure 7.1:Mean % mae of EVOFINE models. 
 
 

 
 

Figure 7.2:Training time of EVOFINE models; y axis is time hours:min:sec 
 
As theory of GAs and results from the experiments carried out for the mathematical 

function (table III.1, Appendix III), the performance of an evolved FRBS is expected 

to improve with increased number of evolution generations. One could re-run the 

experiments for a larger number of generations in order to develop more efficient 

models in expense of computation time. Figure 7.3 shows the evolution of RR for the 

ALI-ARDS category for 100 (top) and 500 (bottom) generations. Computation time 
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is approximately 6 and 26 minutes respectively, while performance has improved 

from 4.64 to 4.15 % rmse.  

  

 
Figure 7.3: Evolution of RR (ALI-ARDS) for 100 (top) and 500 (bottom) generations. 
 
We were tempted, mainly because of the results of the ANN models that used the 

normalized training set, to examine the performance of an evolved FRBS with the 

use of normalized training sets. We have carried out two experiments. The evolution 

process of the FRBSs with the use of un-normalized and the normalized training sets 

is presented in figure 7.4 for two models. Results are not supporting that the 

performance is further improved, in reality it deteriorates, and for this reason we did 

not evolved the models with the use of the normalized training sets.  

 



189 
  

 
Figure 7.4: ( left) VT (top) and RR (bottom) model for ARDS category with the use of 

the un-normalized training set ( right) VT (top) and RR (bottom) model for ARDS 
with normalized training set. 

 
Evaluation of EVOFINE’s models against clinical disagreement (section 6.8) has 

shown that 9 out of 17 evolved FRBS (approximately 53% of the models) were 

producing suggestions within clinical SD for more than 90% of the cases. 

Additionally 4 of the 17 evolved models produced advice within clinical SD for all 

the presented data sets. 

In terms of clinical decisions potentially hazardous to the patient we have identified 

three cases which require further evaluation in the future. These are the models of 

PEEP for COPD (fig. 6.59), the tidal volume for COPD (fig. 6.45) and the Fmax for 

COPD category (fig. 6.57). 
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7.2.2 FUN models’ performance 

The ANN of FUN models was trained for 1000 epochs with the translated, fuzzified, 

data sets. The output produced during the simulation of the FUN models was the 

degree of memberships for the output linguistic variables. 

Since defuzzification process is important in terms of produced crisp output values, 

we decided to explore different defuzzification techniques. Bisector, Weighted 

Average and Near (Smallest) of Maxima (NOM or SOM) were introduced to the 

model as defuzzification methods. While the first two produce a crisp output based 

on the output linguistic variables which are fired by the Inference Engine logic, the 

SOM takes into consideration the prevailed linguistic variable. Although techniques 

such as Center (middle) of Maxima could also been used for this purpose, they tend 

to produce constant outputs for symmetrical linguistic functions. On the other hand 

the SOM technique is affected not only by the specific linguistic variable but also by 

the degree of membership, as exhibited in the following figure. 

 

 
Figure 7.5: Near of Maxima or Smaller of Maxima SOM (bottom) defuzzification 

technique vs. Middle of Maxima MOM (top). 
 

The developed FUN models were tested against the evaluation set. Figure 7.6 

presents the mean % mae of the models for all the patient categories. 

The defuzzification technique of SOM (NOM) has in general produced more 

accurate results.  

The computation time for the training of the FUN toolbox (fig. 7.7), was a fraction of 

the computation time of the EVOFINE toolbox. COPD required more time for the 

training again due to the large data set available.  
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Figure 7.6: Mean % mae of FUN models. 

 

 
Figure 7.7:Training Time for FUN models. 

 
Additionally to the mean performance of the FUN models against clinical decisions, 

the performance of the models in terms of clinically acceptable was evaluated in 

section 6.8. 

FUN models utilizing the NM defuzzification method have provided suggestions 

within clinical SD in 8 out of the 17 developed models (47% of the developed FUN 

models). The FUN models utilizing BIS and WA defuzzification techniques failed to 

produce advices within clinical SD. Only 11% of the developed models provided 

suggestions that were above 90% within the clinical SD.  

FUN models’ exhibited a tendency to provide smaller numerical values than the 

clinical decisions (fig. 6.41 to 6.60). The magnitude of disagreement between 

clinical advice and models’ suggestions requires further investigation in the future. 
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7.2.3 ANN models’ performance 

We developed and tested three ANN models. The ANN Kolmogorov models utilize 

the architectures of table 6.5 and fig. 6.6, and they were tested with the five (5) 

minute data sets. The ANN Normalized has exactly the same architecture as the ANN 

Kolmogorov but it was trained with the scaled data sets. The ANN empirical used 

double hidden layer architecture and it was also tested with the scaled data set (table 

6.6 and fig. 6.8). All NNs were trained for 1000 epochs. 

Since the recorded physiology variables have different domains, pH for example 

ranges from 7.3 to 7.6 while OI ranges from 100 to 600, it was expected that an 

ANN utilizing the recorded training set could not adequately map the solution. This 

assumption is experimentally verified. The ANN Kolmogorov exhibited the worst 

performance among the trained ANN in the majority of the simulations. In cases 

where the ANN Kolmogorov model performed similar to the other ANN the input 

variables that participated in the model exhibited similar domains.  

As the number of inputs to an ANN model increases, so does the complexity of the 

model. However the increased number of variables, assuming that the ANN 

architecture is adequate and the data set appropriate, should increase the accuracy of 

predictions 

 
 

  
Figure 7.8:Mean  % mae of ANN models. 

 

The ANN empirical performed better in all patient categories (fig. 7.8). This is 

mainly attributed to the use of two hidden layers. The use of scaled inputs 

(normalized training sets), has improved the performance of the ANNs. However 
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due to the increased architecture of the double hidden layer ANN, the computation 

time has been increased (fig. 7.9). Computation time depends on the number of 

trainings sets for each category, and the achievement of the training goal prior to the 

predefined number of epochs (e.g. training of ANN Kolmogorov Pmax for ARDS 

category fig. 6.3 and ANN Kolmogorov RR for ARDS). 

 

 

 
Figure 7.9: Computation time of ANN models. Top ANN Kolmogorov, middle ANN 

normalized, bottom ANN empirical. 
 

Section 6.8 presents the evaluation of NNs’ models against the clinical disagreement. 

Both of the NN empirical and Normalized were 100% successful (0% suggestions 

outside clinical SD) in 4 out of 17 developed models (23,5% of the trained models). 

However the models were above 90% successful in 9, 8 and 12 out of the 17 

developed models for the Normalized, Kolmogorov and Empirical NN respectively 

(53%, 47% and 70,6% of the developed models). In terms of models’ suggestions 
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within clinical SD, NN empirical were the best models among all evaluated methods. 

Although NN empirical suggested in several cases settings outside the clinical 

deviation (fig. 6.40 to 6.60), there were no suggestions identified as hazardous to the 

patient. However this is not true for the other two trained NNs. NN Kolmogorov 

suggested FiO2 settings outside the variables range (fig. 6.51, COPD category), 

while NN Normalized suggested tidal volume settings close to double the clinical 

decision (fig. 6.45, COPD category). 
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7.2.4 ANFIS models’ performance 

ANFIS models were trained for 5 epochs based on the architectures of table 6.7. 

ANFIS models’ performance was numerically shown in tables 6.21 to 6.23 and 

graphically presented in figures 6.23 to 6.39. In this section we present the summary 

of the ANFIS models in terms of mean % mae and computational time. 
 

  
Figure 7.10:mean  % mae of ANFIS models 

 

The evaluation of the ANFIS resulting FRBSs against evaluation data sets reveals 

that, as expected, Normal lungs category was the easiest to model, similar to the 

other methods applied. 

Although the evaluation results suggest that in almost all models the ANFIS method 

adequately maps the relationship between input(s) and output variables, the surface 

graphing presented in figures 6.10 to 6.15, reveals that under a given set of input 

values some of the models could suggest clinically unacceptable outputs. The cases 

where the ANFIS models could potentially result into clinically unacceptable 

suggestions are identified and described in section 6.4 and 6.8. The existence of such 

suggestions by the ANFIS models is attributed to the available data sets. The 

available data do not cover all possible arithmetic combinations that provide us with 

the surface mapping of a controllers output.  

Figure 7.11 describes the mean % mae of all the models in each category both for the 

evaluation and the training set. As it was already discussed the Normal category was 

more efficiently mapped compared to COPD and ARDS category, due to the small 
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number of available data, which might have caused loss of generalizability of the 

ANFIS models. 

The small number of epochs used for training the ANFIS models has resulted into 

small computational times (fig. 7.11). ANFIS has outperformed all other methods in 

terms of computation time and could only be compared to FUN models. 

 

  
Figure 7.11: Computation time for ANFIS models. 

 
Evaluation of the ANFIS method against clinical disagreement (section 6.8) has 

revealed that 10 out of 17 (59%) ANFIS models were providing answers within 

clinical SD above 90% of their suggestions. Additionally 4 out of 17 (23,5%) ANFIS 

models were 100% successful in terms of providing all suggestions within clinical 

SD. 

Although mean performance of ANFIS against clinical SD was the second best 

among all methods, in several occasions the suggestions were identified as hazardous 

to the patient. ANFIS models provided hazardous suggestions in PEEP settings for 

ARDS (fig. 6.60), in Fmax settings for COPD (fig. 6.57), in RR settings for COPD 

(fig. 6.48), and in tidal volume for COPD (fig. 6.45). 
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7.3 Methods Comparison 

The AI methods were compared in terms of performance and in terms of 

computation time. Furthermore the results were evaluated against to the responses of 

ICU doctors to the clinical scenarios. 

Figure 7.12 presents the mean absolute error expressed as a percentage (% mae) of 

all the methods applied in the different lung pathologies. 

As it is suggested by the previous sections COPD category was the most difficult to 

model, since the overall performance of most models was degraded in comparison to 

the other categories. 

The ANN empirical that utilized double hidden layer architecture and the normalized 

training set exhibits superior performance over the other methods in most patient 

categories. 

While ANFIS, EVOFINE and ANN Normalized models compete for the second best, 

the mean performance of the models against all categories and sets (fig. 7.12), 

suggests that the ANN Normalized has exhibited a slightly better performance in the 

evaluation data sets. Thus the use of ANN trained with the normalized training set 

have been shown to perform better than the other AI methods. However the GA 

evolved FRBSs maintain their generalizability when they are applied to the 

evaluation set. Similarly the ANN empirical and Normalized maintain their 

performance when applied to evaluation set with small deterioration. ANN 

Kolmogorov and ANFIS on the other hand deteriorate their performance when they 

are simulated against the evaluation set (figs 7.12 & 7.13 and tables 7.11 to 7.13 and 

7.14 to 7.16). Although ANFIS did not excel in terms of performance, this is mainly 

attributed to the simplicity of the models architecture as described in table 6.8. The 

restriction on FS participating for each input, and consequently on the RB of the 

fuzzy system is dictated by the small size of the training set. To achieve good 

generalization toward unseen data, the size of training data set should be at least as 

big as the number of modifiable variable in ANFIS. The number of modifiable 

variables is given by the “premise” modifiable variables plus the “consequent” 

modifiable variables, as described in Appendix IV (IV.4.4). FUN models exhibit the 

worst performance, even against the ANN Kolmogorov model. The only case where 

the FUN models perform better than the ANN Kolmogorov is the NOM FUN model 

for the Normal category. 
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The training process of the EVOFINE models required more computational 

resources and computational time (fig. 7.15). This is an important drawback of the 

use of GAs, since the development of the models is restricted by the computational 

resources. As stated in early paragraphs the training of all models was not matched. 

Models that trained ANN were allowed to run for one thousand of epochs (1000) 

while the EVOFINE models were evolved for one hundred generations (100), and 

ANFIS models for five (5) epochs. The evolution process of the models for longer 

generation is expected to produce more efficient models. The ANFIS development 

process is the most efficient one, among the tested methods in terms of 

computational time.  

Computation time is not as important in the training phase of a decision support 

system, but rather during the maintenance phase were generated systems have to be 

re-trained when new datasets are available. 
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Figure 7.12:Mean % mae of models tested against the evaluation set. 
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Figure 7.13:Mean % mae of models tested against the training set. 
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Figure 7.14:Mean % mae of models in all categories and in all data sets. 

 
 

 

 
Figure 7.15: mean models’ training time in seconds for all categories and in all data 

sets. 
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Addressing the initial research question, whether the ventilation management process 

could adequately modelled, it was found that examining the resulting models only by 

comparing their performance against “unseen” data sets is insufficient. As it was 

suggested early in the research, the complex task of ventilating ICU patients does not 

have a unique solution. The clinicians’ ventilation strategy is based on their expertise 

and experience, as well as the available physiology measurements.  If the process of 

ventilation management was well defined then there would have been no need of 

specialized ICU personnel, and doctors could be substituted by nurses with suitable 

guidelines. 

Although comparing medical decisions to the models output is a straight forward 

method of evaluating performance, the performance of models in terms of agreement 

to a single clinical decision is not on its own an absolute measure of performance. Of 

equal significance is to investigate whether models’ suggestions are not exceeding 

medical disagreement. For this reason the performance of the models was evaluated 

in terms of identifying whether the produced suggestions were within the range of 

medical decision making (Table 7.1). 

An important aspect of evaluation of Clinical Decision Support Systems is the 

potential of providing suggestions hazardous to the patient. For this reason in section 

6.8 the performance of the models’ suggestions was evaluated in terms of potential 

hazardous suggestions to the patient. As it is shown in table 7.1, NN empirical 

models were 70.6% successful in providing suggestions above 90% within the 

clinical SD. Similarly the second best method was ANFIS with 59%, followed by 

EVOFINE and NN Normalized with 53% success. However ANFIS models were 

providing all suggestions within the clinical SD in 23.5% of the developed models, 

similar to EVOFINE and ANNs models. 

Although table 7.1 suggests that ANFIS, EVOFINE and ANNs have a similar 

performance, it is important to point out that none of the NN empirical models was 

identified to provide suggestions potentially harmful to the patient. Although the 

same is true for FUN models, there is tendency to suggest lower values than clinical 

decisions which requires further investigation. ANFIS and NN Kolmogorov suggest 

in several occasions settings hazardous to the patient. 
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Table 7.1: Comparison of Models’ performance in terms of providing suggestions 
within clinical SD. 

Modelling method Percentage of Models 

that provided 

suggestions within 

clinical SD in excess 

of 90% of suggestions 

Percentage of Models 

that provided 

suggestions within 

clinical SD in all 

suggestions 

Percentage of models 

that produced 

potentially hazardous 

advices 

EVOFINE 53% 11.8% 17.6% 

FUN BIS 11% 5.8% Lower suggestions to 

clinician, requiring 

further investigation. 

FUN WA 11% 5.8% 

FUN NM 47% 23.5% 

NN Empirical 70.6% 23.5% 0% 

NN Normalized 53% 23.5% 5.8% 

NN Kolmogorov 47% 23.5% 5.8% 

ANFIS 59% 23.5% 23.5% 
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7.4 Comparison to other authors 

As it is already stated in the chapter 3, several authors have published their work in 

the area of modelling respiration physiology and/or ventilation management. This 

section presents the methods and results of similar approaches (summary table is 

located at Appendix V, Table V.1 ), and presented work is discussed in comparison 

to other authors.  

It is obvious from the fitness function used by authors, that comparing different 

models in terms of performance is difficult. The method commonly used for 

measuring performance is the comparison between the models output and a “gold” 

standard. However the gold standard is not always the clinical decisions, but often 

the response of a simulator (e.g. Kwok H.F, 2004). Our approach was the direct 

numerical comparison in terms of mean error between clinical suggestions and 

model’s suggestions. The clinical decisions were considered the reference point 

since their adjustments maintained patients in breathing comfort. Furthermore the 

use of different hospitals for the recording and development of the data base should 

eliminate possible biases in terms of ventilation strategy. 

Although direct comparison is difficult, we observe that benchmarking of models for 

the same author (e.g. Liu F, 2006), suggest that ANN perform very well. The models 

proposed by Liu et al (Liu F, 2006), performs with rmse of 1.13 to 7.39 for the FiO2. 

Additionally we can calculate Kwok (Kwok H.F, 2003) rmse by calculating the root of 

the mse reported. Kwok’s performance in terms of rmse exhibits minimum 2.56 and 

maximum 9.32 values (for changes in FiO2). Similarly our models for ARDS, COPD 

and Normal lungs have performed with minimum 0.00,  in all three cases and a 

maximum rmse 0.38, 0.45 & 0.02 respectively. The superiority in performance could 

be attributed to the architecture and to the increased number of recorded hours. Our 

models are pathology specific, and the number and type of participating variables is 

deducted from the data sets. 

The number of ventilation settings adjusted by the authors’ models’ varies. Most of 

the models are concerned with a single output (dominating variable is the FiO2), with 

a maximum of five output variables (Tehrani TF 2008, Jandre F.C, 2004). Our approach 

has modelled six ventilator settings. The development of individual models for each 

variable reduced the problems complexity. 
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Important in the development of the models is the database. Most of the authors 

incorporate into the data sets real patient data. Patient data are introduced either as 

row recordings (e.g. Schaublin J, 1996, Chen A.H, 2007), or as patient scenarios (e.g. Wang 

A, 2006). Furthermore, authors either process scenarios directly or through a 

respiratory model (e.g. Kwok H.F, 2004). The use of simulators introduces possible 

errors to the process. Errors could be caused by the inaccurate response of the 

patient’s model or the insufficient representation of a specific patient by the model. 

Additionally, the holistic modelling of the ventilation management process requires 

modelling of different patient types. Authors in their effort to overcome the non 

specificity of their models have performed model fitting prior to application (Allerod 

C et al, 2008). We have incorporated three common pathologies into our models, 

however other authors have introduced different patient categories such as post-

operative (Martinoni E.P, 2004), pneumonia (Kwok H.F, 2004), infants (Sun Y, 1994, 

Laubscher T.P, 1994), and animal studies (Chapman F.W, 1985, Jandre F.C, 2004), Fuzzy 

systems, ANFIS and ANN, are the three most common approaches, in recent 

publications, for modelling ventilation management. The appropriateness of the 

latter two is based on their ability to develop trained systems directly from available 

data. However it is common for authors to approach the problem by implementing 

classical feedback controllers (Chapman F.W, 1985, Tehrani F, 2005). The drawback of 

such systems is the need of a target value. The target value has to be representative 

of the patient’s health status and the ventilation process. However a single variable 

could only be an estimate of the appropriateness of the ventilation settings. 

Furthermore the target value could not be set on normal ranges since it is usually 

pathology and patient specific; permissive hypercapnia is an example. Thus expert 

knowledge is required not only in the development phase but also during application. 

In our research we have modelled the ventilation process of sedated, thus passive 

patients, ventilated in control mode. Several authors have modelled weaning (e.g. 

Chen A.H, 2007), BIPAP (Liu F, 2006) and Pressure Support ventilation (e.g. Dojat M, 

2000). 

Published work in the field mainly suffers from subjective decisions on the models 

architecture and/or decision making process. Subjectivity is introduced in the 

following phases of development: 

 Identification of system’s inputs and outputs. The decision of physiology 

variables and ventilator settings is based on experts’ feedback, available 
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mathematical models and relevant published research. Unfortunately none of 

the presented papers provides a systematic unbiased method for selecting the 

variables appropriate for the task. Experts’ knowledge is biased by 

experience and expertise, which exhibits a large variation among individuals 

and hospital settings. Mathematical models are biased from their inability to 

holistically model respiration physiology for all patient categories.  

 Decision making engine. Knowledge based engines, and fuzzy rule systems 

(Tzavaras A 2005, Schaubin J 1996, Bouadma L 2005, Rutledge GW 1993, Kwok HF 2004, 

Shahasvar N 1995) depend on experts feedback, published knowledge and 

available protocols for designing the decision making engine. As discussed 

above, experts’ introduce bias to the development process. Protocols are not 

universally accepted by clinicians.  On the other hand the use of self adopting 

– learning tools such as neuro-fuzzy and ANN (Chen AH 2007, Liu F 2006, Kwok 

HF 2003, Wang A 2006), overcomes the problem of external feedback on 

decision making process. Unfortunately the published work that makes use of 

such technologies suffers from subjective decisions on the variables 

participating in the models (as discussed above). Alternatively authors use 

mathematical models for designing the DSS (Martinoni EP 2004, Laubscher TP 

1994). Mathematical models are constrained from the available knowledge on 

respiration physiology. 

 

Finally there is a difference in what the authors actually model. Modelling the 

respiration physiology does not provide us with a model of the process. Modelling 

the process is more often applied by a combination of knowledge base systems and 

inference engines (Shahsavar N, 1995 Shahsavar N, 1989, Betal S.Y, 2005). In our research 

we claim to have modelled the ventilation management process without 

incorporating knowledge base and qualitative representations. The process was 

modelled in two steps. First the identification of the models architecture (input-

output variables) for a given pathology, based on analysis of clinicians’ induced 

changes to ventilation settings, and second the development of models, trained with 

real patient data. Our attempt was to develop systems that incorporate experience, 

expertise and strategy. 

 



207 
  

8. Conclusions 

8.1 Evaluation findings 

The models’ were preliminary evaluated against the evaluation data set. Models’ 

suggestions were compared in terms of error against the clinical decisions. 

Evaluation has shown that ANNs utilizing the normalized - scaled recorded data 

performed better. The second best methods were the ANFIS and the Genetic 

Evolution of FRBSs. However the EVOFINE toolbox evolved FRBSs for one 

hundred generations (100) while the ANNs were trained with one thousand epochs 

(1000), mainly due to restriction of GAs computation time. Results on the 

mathematical function tests and on a single ventilation variable suggest that the 

evolution of FRBSs for more generations would produce more efficient FRBSs and 

probably more competitive results to the ANNs. Additionally ANFIS FRBS were 

developed with a simple architecture in terms of FSs, limiting their performance. The 

use of simple ANFIS FRBSs architectures was dictated by the small size of the 

training set. The FUN models performed worse than the ANFIS, ANN and the GA-

FRBSs. Although we investigated the effect of different defuzzification techniques, 

none of them was competitive to the other AI methods. 

One of the important findings of the research was that although the soft computing 

methods present different advantages and disadvantages in modelling ventilation 

management process the choice of a method is equally important to the adaptation of 

the systems architecture to the specific needs of a given problem.  

The models’ output was also evaluated against the clinical decisions made on real 

patient scenarios. The comparison was made between the models’ suggestions and 

the clinical disagreement, expressed by the SD (tables 6.25 and 6.26a to 6.26c). As 

presented in section 7.3, table 7.1, NN empirical model was the most efficient model 

both in terms of suggesting settings within the clinical SD (at least 90% of the 

produced suggestions) in 70.6% of the developed models, but also in terms of not 

producing potentially hazardous suggestions for the patient. EVOFINE, NN 

Normalized and ANFIS have performed similarly; all three methods were capable of 

providing above the 90% of their suggestions, within the clinical SD in 53%, 53% 

and 59% of the developed models respectively. However ANFIS models under a 

given set of input values could result to suggestions that are potentially dangerous to 
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the patient in 23% of the developed models. The same hazard was identified for 

EVOFINE and NN Normalized models but for a significantly lower percentage 

(17.6% and 5.8% respectively). Many of the FUN models were producing lower 

ventilator settings than the clinicians’ decisions. The deviation from clinical 

decisions was not identified as an obvious hazard and requires further clinical 

evaluation. 

Since the identification of the appropriate models’ architecture is an empirical 

search, tests have been performed to establish empirical guidelines. Tests were 

performed on the cart pole problem and on the mathematical function. The 

architectures with the optimum performance to the previously mentioned 

benchmarking problems were adapted to the ventilation management process 

modelling. Important findings of these experiments include: The use of damping 

mutation rates in developing FRBSs with GAs perform better than constant mutation 

rates; FRBS can be adequately modelled with a subset of the full RB; There is a 

balancing point for the number of FS describing its variable domain so as the system 

does not become deterministic but also there are sufficient FSs for partitioning the 

variables domain; In NN driven FL systems the defuzzification method plays an 

important role in the decision making performance of the model; We have developed 

an empirical algorithm for ensuring that the ANN nodes do not exceed the available 

training sets, for avoiding overtraining of the ANN, but at the same time the number 

of nodes satisfy Kolmogorov’s theorem in order to adequately map the relationship 

between input and output variables; Complex ANFIS models require large training 

sets. To overcome this problem when training sets are limited, one has to reduce the 

FRBS complexity in expense to the models performance.  

However since the architecture of a model is problem specific it could be the case 

that other architectures could perform better. This is also an important aspect that 

requires further investigation in future work. 

 

8.2 Future work 

Although it was attempted to approach the process of ventilation management 

methodologically there are suggestions for undertaking future work. 

The research was concerned with ICU patients ventilated in control mode. However 

in order to holistically approach the ventilation management process, one should 
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consider assist modes and weaning process. Additionally in an automated process of 

ventilation management, the model should be able to identify lung pathology and 

automatically categorize the patient in one of the categories, and thus apply the 

appropriate model. Preliminary research has been carried out in this field, could be 

found in one of our publications (Tzavaras A, 2008). 

Increasing the available data sets will potentially result into a more complete 

database. Additionally the large number of available data sets would allow the future 

researcher to increase the complexity of the models architecture, resulting into 

improved models’ performance. This is an important issue in the case of ANN and 

ANFIS methods. 

Limitation of the input variables to the models could also be performed with 

techniques such as Principal Component Analysis and Genetic Algorithms. 

Undertaking such a task would allow comparison of results against correlation 

analysis, and could possibly suggest different models’ architectures. 

Patients could be classified into sub-categories rather than the major three we have 

suggested. This would make models more pathology specific and potentially more 

accurate in their decision making process. 

The developed models suggest ventilator settings based on a physiology variables 

data set which describes a specific time instance. However future research could 

incorporate temporal reasoning for adapting ventilator settings based on physiology 

trend analysis. 

Alternative AI algorithms could be applied on the same problem. As Liu and Kwok 

(Liu F 2006, Kwok 2003) have shown other methods could be used for modelling the 

ventilation process. Alternatively other techniques could be used for the evolution of 

the FRBSs (Jamei M.et al 2004).  

Furthermore an advanced GA for developing the FRBSs was suggested, based on 

EVOFINE toolbox. The proposed algorithm evolves independently the FSs and the 

RBs and assigns the performance to the FRBS according to the best combination of 

the available RBs in a generation with the available FSs. According to this method, 

the best mating pairs will be assigned with better fitness scores and thus the best 

FRBSs, which are described by the most appropriate combinations of RB and FSs, 

will have higher probability to advance to the next generation. 

Resulted models could be evaluated by ICU clinicians. Examination of the systems 

decision making process could exclude potentially dangerous suggestions by the 
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models, allowing the models to be tested in the ICU setting. Although this is 

relatively straightforward to inference engines (GA-FRBS and ANFIS), the same is 

not true for models based on ANN (ANN and NN driven FRBS). In the case of ANN 

it is important to establish a methodology for allowing clinicians to understand its’ 

decision making process. 

 

8.3 Contribution of research 

The presented approach has contributed in the field of IDSS applied in ventilation 

management in the following ways: 

 Real patient physiology and ventilator settings data were collected and 

categorized in three lung pathologies. The produced database will be 

available for the research community. 

 Statistical analysis of experts’ opinion and evaluation of the collected data 

has suggested different architectures for three basic lung pathologies and six 

ventilator settings models. The proposed architectures could be used by other 

authors for evaluating different soft computing methods. 

 Different soft computing methods were applied and evaluated in ventilation 

management. The performance as well as the advantages and disadvantages 

of each method for their application in ventilation management have been 

identified.  

 The proposed approach to our best knowledge describes more holistically 

ventilation management compared to published work in the following ways: 

- It models the process rather than the physiology, developing intelligent 

models which embed the experience & expertise of the ICU personnel.  

- It is concerned with the decision making of multiple ventilation settings.  

-  It categorizes patients into different lung pathologies for developing 

models.  

-  It does not rely on pre-developed models for simulating human 

physiology but rather on real patient data.  

- It investigates the appropriateness of different AI methods, as opposed to a 

single method, for the task and compares their performance.  
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-  The results are not compared only between the models but also against 

clinical suggestions on real patient scenarios. 

 A new method for coding FRBS in chromosomes was suggested and 

evaluated. Results suggest that the proposed method evolves efficient FRBS 

assuming no prior knowledge of the architecture. The developed Matlab 

toolbox (EVOFINE), was not designed for the specific task and thus it can be 

applied to other modelling problems. 

 Research has shown that computation time of evolving FRBSs could be 

reduced without compromising performance. Experiment results have shown 

that one can overcome the problem of increased computational resources 

efficiently by evolving FRBSs with a subset of the total rules describing the 

system. Additionally utilizing damping mutation rates evolve faster FRBSs to 

an optimum solution, thus saving computation time. 

 

8.4 Final conclusions 

Concluding on our initial research question and research findings, we summarize the 

following: 

 The complexity of the ventilation management problem was significantly 

reduced with the application of statistical tools. ICU personnel feedback 

analysis has resulted into simplified models architectures for three lung 

pathologies.   

 The ventilation management process could be adequately modelled with the 

synergetic utilization of AI techniques. Results suggest that the majority of 

the NNs, EVOFINE and ANFIS models were producing advice within the 

clinicians’ disagreement. 

 The appropriate AI method for the task is, by performance order, the ANN 

empirical, the ANFIS and the genetically evolved FRBSs, followed by NN 

driven FRBS. Evaluation against clinical recommendations has shown that 

ANNs performed better; mean average error as percentage of the best three 

techniques was 0.16%, 1.29% & 0.62 for ANN empirical, 0.05%, 2.23% & 

2.30% for ANFIS and 0.93%, 2.33% & 1.89% for EVOFINE in Normal, 

COPD and ALI-ARDS categories respectively. Additionally evaluation 
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against clinical disagreement has shown that 70.6% of the NN empirical 

models were performing in 90% of their suggestions within clinical SD, 

while the percentages were 53%, 53% and 59% for the EVOFINE, ANFIS 

and NN Normalized models respectively. Additionally the NN empirical was 

not producing hazardous advices, while EVOFINE, ANFIS and NN 

Normalized were shown to produce potentially hazardous advice in 17.6%, 

23% and 5.8% of the developed models. Thus it is suggested that models 

should be safeguarded against “excessive” produced advice. 

  The main drawback of the ANN is that their input – output relationship is a 

black box. However it is possible and important prior to clinical evaluation to 

extract the NNs decision making logic with rule extraction techniques. GAs 

evolved FRBS require intense computational resources for competing with 

ANN. However the resulting model is transparent to the user. ANFIS 

requires a high number of training sets for delivering optimal results. In our 

research we were forced to utilize a very basic fuzzy architecture (only two 

FSs for each variable), due to lack of large amount of training sets. FUN 

models performance relies mainly on the defuzzification technique. The FUN 

performance in modelling ventilation management was the worst among soft 

computing techniques and for this reason it is not suggested as a vehicle for 

future research. 

 The choice of architecture of the applied AI is equally important to the choice 

of the soft computing technique. It could be the case that the developed 

models could improve their performance by adapting different architectures. 

However the choice of the appropriate architecture is a complex problem on 

its own, and is usually problem specific. 

 

To our best knowledge and efforts we have approached the ventilation management 

process holistically. We have shown the benefits and drawbacks of different 

intelligent decision support methods, and we have suggested future research 

approaches to the ventilation management process. 
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Appendix I: Ventilation monitored variables and 
clinical targets 
 

I.1 Blood Gases and pH 
 

Blood gases and pH measurements are important in ventilated patients for the 

evaluation of oxygenation, ventilation and acid-base balance. Measurements could 

be performed on arterial and venous blood, directly with invasive measurements or 

indirectly with non-invasive measurements.  

Partial pressure of oxygen in arterial and venous blood (PaO2 and PvO2), partial 

pressure of venous carbon dioxide (PaCO2 and PvCO2), and hydrogen ion 

concentrations (pH), are commonly measured in ICU. Invasive measurements are 

performed by directly sampling arterial or venous blood. Laboratory instrumentation 

is used for measuring the above variables. The advantage of this technique is 

accuracy of measurements. However for invasive measurements, patients are usually 

catheterized and there is a time gap between sampling and reporting on 

measurements. The normal adult values for blood gases are given in table I.1.  

 

Table I.1: Physiological values for blood gases (Marieb E.N. 1995). 

Variable (mm Hg) Normal Value  

PaO2 104 

PvO2 40 

PaCO2 40 

PvCO2 45 

 

Other technologies have been developed for providing a good estimation of blood 

gases utilizing non invasive measurements. Pulse oximetry (SaO2) and end tidal 

capnography (ETCO2), are commonly used.  

Pulse oximetry use light absorbance in two wavelengths to measure the 

concentration of oxygenated hemoglobin as a percentage of the total hemoglobin, 

giving a good indication of patient’s oxygenation. The relationship between PaO2 

and oxygen saturation of hemoglobin is described by a sigmoid curved, named 

oxyhemoglobin dissociation curve (Fig I.1). The affinity of hemoglobin for oxygen 
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increases with higher PO2. Unfortunately this is not the only factor affecting the 

affinity of hemoglobin. The molecule environment, changes the affinity. The change 

is graphically described by a shift to the left or right of the dissociation curve. Shifts 

to the right caused by acidosis, hypercarbia, hyperthermia and diphosphoglycerate 

(DPG), decrease the affinity. Shifts to the left caused by alkalosis, hypocarbia, 

hypothermia, decreased DPG and COHb increase hemoglobin affinity (Moyle J.T.B. 

1994). Thus a reading of oxygen saturation is not clinically reliable concerning 

oxygenation, unless other factors are known. 

 

 
Figure I.1: Oxyhemoglobin dissociation curve. Shift caused by pH changes. 

 

End tidal capnography, measures the concentration of carbon dioxide at the end of 

the expiration phase directly on the expired gases (main stream capnography), or by 

suctioning a sample of the expired gases (side stream). Measurement utilizes infrared 

light, where carbon dioxide exhibits absorbance peak. ETCO2 provides an estimation 

of alveolar PCO2 (PACO2). Under normal ventilation-perfusion ratio (V/Q), the PACO2 

approximates PaCO2. The difference between arterial and end tidal carbon dioxide 

pressures is usually smaller than 5 mmHg. 

However both methods have limitations. Pulsed oximetry has accuracy of +/-4%, 

and measurements assume that carbohemoglobin (COHb) and methehemoglobin 

(metHb) concentrations are low. Furthermore vascular dyes affect the accuracy of 

readings, and low arterial pressures contribute in false measurements. When the V/Q 

ratio changes, usually due to changes in dead space, ETCO2, may be less than 

arterial. Presence of other gases that exhibit similar absorption peaks to infrared 
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light, such as N2O used in anesthesia and humidity decrease the accuracy of the 

method. 

Trancutaneous PO2 and PCO2 (PtcO2 & PtcCO2), utilize polarographic and 

Severinghaus electrodes respectively to measure blood gases. Electrodes are attached 

to patient’s skin and heated to 44o C. Measured gases are different than actual blood 

gases. In adults PtcO2 is less than PaO2, and PtcCO2 is higher than PaCO2. To 

overcome this problem manufacturers incorporate a correction factor, so that the 

displayed values are approximating the real values. Due to increased local skin 

temperature frequent changes in electrode position are necessary. 

Since the driving force of gas exchange between alveolar gases and pulmonary 

arteries is the difference of partial pressures, one can improve oxygenation by 

changing alveolar concentrations. In atmospheric air and for normal breathing 

subjects the pressure gradient PAO2-PvO2 is 64 mmHg, while for PACO2-PvCO2 is -5 

mmHg. The mathematical relationship describing O2 partial pressure in alveoli is 

described in equation I.1 (Hess D.R., Kacmarek R.M. 2002). 

 

)/)1((*()(* 222222 RFiOFiOPaCOPPbFiOOP OHA    eq. I.1 

 
Where: 

FiO2  : inspired O2 fraction. 

PH2O  : water vapor pressure (47mmHg at 37o C) 

R : respiratory quotient (CO2 production / CO2 consumption) 

Pb : barometric pressure 

 

The alveolar oxygen tension depends mainly on concentration of inspired oxygen. 

Increasing FiO2 raises the driving force for diffusion of O2 to blood through the lung 

membrane. However use of FiO2 above 0.6 should be limited to short time due to 

oxygen toxicity. A simple method for calculating desired FiO2 is given by the 

following formula (Pilbeam S.P. 1986): 

 

)/)(()/)(( 2222 FiOPaOdesiredFiOPaOknown   eq I.2 

 

Clinicians try to maintain blood gases close to normal levels (normal range of PaCO2 

is 35-45 mm Hg, and PaO2 is 80-100 mmHg). In order to evaluate adequacy of 
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patient’s oxygenation they use oxygen-tension indices (Hess D.R., Kacmarek R.M. 2002). 

The following indices are commonly used: 

 

 Oxygenation Index (OI): is defined by the ratio of PaO2/FiO2. It is easy to 

use since there is no need for alveolar tension calculation. When the ratio is 

below 200 indicates ARDS, and ratio of 200 to 300 indicates lung injury. 

 Respiratory Index (RI): is given by dividing the gradient P(A-a)O2 by PaO2. 

Changes in PaCO2 will not affect the nominator since its value is included in 

alveolar tension calculation. 

 

PaCO2 as described by equation I.3 is determined by tissue CO2 production ( 2CO
o

V ), 

minute ventilation ( E
o

V ), and dead space/ tidal volume ratio (VD/VT). Dead space is 

the portion of minute ventilation that does not participate in gas exchange. Normal 

value of VD/VT ratio is between 0.2 and 0.4. Pulmonary embolism, mechanical 

ventilation, and hypo perfusion are the main causes of ratio increase. 

])/1[*/()863.0*( 22 TDE
o

CO
o

VVVVPaCO    eq I.3 

 

In order to maintain a normal PaCO2 when dead space or CO2 production increases, 

clinicians have to increase minute ventilation. If the level of minute ventilation is 

very high, at levels which might result in ventilation injuries, then PaCO2 is allowed 

to increase. This is termed as permissive hypercapnia. When alveolar ventilation 

decreases, PaCO2 elimination is maintained stable; at higher levels of PaCO2 

(Hickling K.G, 1998). Reduction of minute ventilation is counter balanced by the 

reduction of dead space and increased cerebral blood flow.  

Supra-atmospheric pressure at end expiration, referred to as PEEP, improves 

oxygenation by: preventing alveolar collapse, increasing functional residual capacity 

(FRC), and by decreasing intrapulmonary shunt. Excessive increase of PEEP may 

increase perfusion to well ventilated areas. 

Measurement of hydrogen ion concentrations are made invasively and expressed as 

pH. Hydrogen ion is used as an indicator of the acid-base balance in blood. Acid 

base balance is expressed by Henderson-Hasselbalch equation (Hess D.R., Kacmarek 

R.M. 2002) : 
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)*03.0/(]3log[1.6 2PacoHCOpH   eq I.4 

 

Respiration is the main mechanism for disposing bicarbonate acid; disposal rate is 10 

times higher than kidneys (West J.B, 2004). Changes in the numerator of eq I.4 are 

metabolic acid-base disturbances, while changes in the denominator are respiratory 

related. If PaCO2 increases then pH falls. The opposite is true when PaCO2 

decreases. Target pH value in ventilated patients is 7.35 to 7.45, if there is deviation 

below or above this level, we have acidosis and alkalosis respectively. Changes in 

pH can be compensated by changes in minute ventilation. Hyperventilation could 

decrease pH values, while hypoventilation will lead to increasing pH values. If renal 

and cardiovascular functions are adequate, pH values as low as 7.20 can be tolerated. 

However respiratory alkalosis should be avoided. 

 

I.2 Lung Mechanics and Work of breathing 
 

Respiratory passageway resistance (R), lung Compliance (C) and Elasticity (E) and 

alveolar surface tension, are factors that influence flow and volume delivery to the 

lungs.  Resistance to ventilation is due to the anatomical structure of the conductive 

airways, the tissue resistance of the lungs and adjacent structures. Resistance is 

defined as the change in pressure for a given flow (eq. I.6), and is usually expressed 

in cm H2O / (L/sec). In normal individuals the Resistance is about 0.6 to 2.4 cm H2O 

/ (L/sec). Lung Compliance is a measure of the change in lung volume that occurs 

with a change in intrapulmonary pressure and is measured in L/ cm H2O (eq. I.5), 

and describes the stretchability of the lungs and chest wall (Ganong W.F. 1975). 

Elastance (E) and Conductance (G) are the reciprocals of C and R respectively, but 

are less commonly used (Pilbeam S.P. 1986).  

 

C = ΔV / ΔP  eq. I.5 

R = ΔP / ΔF   eq. I.6 

Ε = 1/C   eq. I.7 

G = 1/R   eq. I.8 
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Respiratory system static compliance (CRS), it is the usual method for measuring 

respiratory system compliance. CRS is a good indicator of system’s compliance since 

dynamic compliance (eq I.5) is approximately linear except at the extremes of 

volume. CRS is defined as the change in volume at end inspiration (VT) over the end 

inspiratory pressure (Pplateau), minus total PEEP: 

 

)/( PEEPPVC totalplateauTRS    eq I.9 

 

Measurements of CRS require a passive patient, thus control ventilation. CRS is used 

to adjust ventilation strategy, either by changing the drug administration strategy 

(e.g. administration of bronchodilating drugs), or changing the minute ventilation. 

Reduced CRS is often an indication of hyperinflation, suggesting lower volume 

delivery. PEEP values that maximize CRS, allow for maximum oxygen transport with 

the lowest dead space (Shapiro R.S., Kacmarek R.M., 1998). 

CRS is actually the sum of chest wall (CCW) and lung compliances (CL) (eq I.10). 

Ventilation tubing compliance should be measured and subtracted from CRS. 

 

CWLRS CCC /1/1/1   eq I.10 

 

Respiratory system resistance (RRS) is the sum of lung (RL) and chest wall (RCW) 

resistance. RL is further divided into resistance airway (Raw) and tissue resistance 

(RLT). RCW and RLT have a small contribution to overall resistance. Thus clinical 

measurements focus on Raw. 

Resistance varies with respiration phase, lung volume and flow rate. Increased tidal 

volume expands airway diameter, thus decreasing resistance. At low flow rates 

resistance is linear, while at high flow rates turbulence and pressure friction losses 

increase, resulting in an exponential flow pattern. 

Inspiratory resistance (RI), is calculated with different methods. Usually clinicians 

monitor the maximal resistance which is given by the eq I.11. 

I
o

plateauI VPPIPR /)(   eq I.11 

Where: PIP, is Peak Inspiratory Pressure and I
o

V  is inspiratory flow. 
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In patients with ARDS an increase in RRS is observed at high volumes or high PEEP 

levels. When we measure RRS we include the endotracheal tube resistance (RET). RET 

should be subtracted for precise measurements of RRS. 

Expiratory resistance (RE), exceeds RI, showing large deviations in subjects with 

airflow obstruction. Increased RE may suggest problems in the expiratory circuit 

(valve or water condensation). Insufficient expiration time could lead to auto-PEEP. 

The simplest method to calculate RE is by the passive exhalation time constant 

method. The time constant, in analogy to electronics, determines the rate of change 

in the volume of a lung that is passively inflated or deflated, as shown in the 

following formula: 
/

*)(
t

T eVtV
  eq I.12 

For the respiratory physiology the time constant (τ) is given by the product of 

resistance and compliance. Thus once we have determined the compliance, we can 

utilize the time taken to passively exhale volume at a level close to 63% of VT to 

derive expiratory resistance as shown in eq I.13. 

RSE CR /   eq I.13 

 

Assessment of patient’s breathing workload is useful in determining the adequacy of 

ventilation support, improving patient-ventilator interactions in assist ventilation, and 

predicting ventilator dependence. 

The work of respiratory muscles is assessed by the mechanical work of breathing 

and the oxygen cost of breathing. The ratio of these two is the mechanical efficiency 

of the respiratory muscles. 

Work of breathing (WOB) is the work in joule (J), required to move 1L of gas 

through a pressure gradient of 10 cm H2O. In healthy adults, the work of breathing is 

approximately 0.5J/L. 

The inspiratory work of breathing during controlled ventilation is derived by the 

integral of the airway pressure versus volume (eq I.14a). The work is performed by 

the apparatus. When compliance, resistance and flow are constant, mean airway 

pressure is a good approximation of work (eq I.14b). 

 

dtVPW
IT o

0

*      eq I.14a 
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exRSTITRSinsp PCVTVRP  /*2/1/*
_

 eq I.14b 
Where : 

TI : inspiration time 

Pex : Expiratory pressure (total PEEP) 

 

During spontaneous breathing, the work is performed by respiration muscles. The 

work of the lung WL, can be measured if an estimation of pleural pressure (Pes) is 

available, using the following formula (Sasson C.S.H., Mahutte C.K., 1998): 

 

dtVPPW
IT o

esL  
0

*)(   eq I.15 

 

When a patient is ventilated in assisted mode, inspiratory work is calculated by the 

difference between ventilator work and assisted work. 

PEEP is an important determinant of WOB in spontaneous breathing. This is due to 

the fact that it places a threshold load to respiratory muscles, and also an elastic load 

due to hyperinflation. WOB has shown to increase from a mean of 0.48J/L without 

PEEP, to 1.7J/L with PEEP.  

Given minute ventilation can be achieved through a wide combination of ventilation 

frequency and tidal volumes. The optimal frequency is the one that minimizes the 

WOB (Sasson C.S.H., Mahutte C.K., 1998). 

During a patient’s ventilation, WOB imposed by the endotrachial tubing (ET) is 

substantial. Flow resistance both in inspiration and expiration imposes work 

amounting to 70-80% of the total work. During mechanical ventilation PEEP has 

two different effects. It might increase WOB due to thoracic over distension, or it 

could decrease it due to improved lung compliance, decreased airway resistance, and 

prevention of alveoli collapse. 

WOB is affected by ventilator settings. Trigger sensitivity is closely related to a 

patient’s efforts to breath. Also the type of trigger imposes different WOB to the 

patient. Pressure trigger WOB is greater than flow trigger. Similarly PEEP increases 

the muscle effort to trigger a breath. 

Once the inspiration is triggered, flow demand and ventilator capability to deliver 

affect WOB. In Pressure Support Ventilation (PSV), the larger the pressure gradient 
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the higher the flow delivered to the patient. When the delivered flow exactly matches 

patient’s demand, then no assistance is given to muscles work. Once the flow 

exceeds the demand, patient WOB is decreased. However increase of flow beyond a 

level, may cause resistance to inspiration by the patient and result in patient-

ventilator asynchrony. 

Ventilation mode play also important role. When a patient is under sedation or 

paralysis, WOB is zero. During SIMV the WOB is defined by the percentage of 

assistance. If assistance accounts for greater than 60% of total ventilation, then WOB 

is reduced to 50%. 

Oxygen cost of breathing (VO2resp), “is the difference between the resting total body 

oxygen consumption ( 2O
o
V ), and the total body consumption when breathing is 

altered” formula (Sasson C.S.H., Mahutte C.K., 1998). Measurement of 2O
o
V  is made by 

measuring oxygen concentrations in inhaled and exhaled volume (eq I.16). 

E
o

I
o

O
o

VFiOVFiOV ** 222    eq I.16 

In healthy individuals VO2resp is between 0.25 and 2.5 ml/L of ventilation, which is 

approximately 5% of total body oxygen consumption. Patients with COPD, 2O
o
V   resp 

is larger and strongly influenced by body weight. 

 

I.3 Volume, Pressure, Flow and respiration rate. 
 

A typical flow-pressure curve of volume controlled ventilation is shown in figure I.2. 

Constant flow is delivered to the patient during inspiration phase. Since flow is a 

constant volume varies linearly. End of inspiration time is triggered when a patient 

has received a specific volume. Airway pressure reaches its peak value (PIP), at the 

end of inspiration phase. A pause follows inspiration where there is no flow of gases 

to and from the lungs. During this phase, pressure drops to a plateau value, mainly 

due to redistribution of lung volume to other un-inflated areas. Expiration phase is 

performed by allowing the patient to exhale to atmospheric or PEEP pressure. In the 

example of figure I.2, exhalation is performed on supra-atmospheric level.  
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Figure I.2: Pressure & flow curves, recorded from ICU patient. 

 

During initiation of mechanical ventilation, ICU clinicians are concerned with 

appropriate ventilator settings. Initial settings and physiology variables are 

monitored closely in the first few hours in order to take corrective actions. 

General guidelines for initiation phase include: 

 Initial tidal volume (VT), may vary from 4 to 12 ml/Kg, depending on lung 

mechanical properties and patho-physiology. Normal lungs may be ventilated 

with VT between 10-12 ml/Kg, while individuals with a chronic or 

obstructive disease may require lower volumes, 4-8 ml/Kg. 

 Setting of pressure level is partially determined by desired VT. Sufficiently 

high maximum pressure should be chosen, to enable volume delivery. Plateau 

pressure should not exceed 30 cm H2O. 

 However both VT and Peak settings should be set so as to prevent lung 

injuries. Pressure limit usually exceeds peak by 5 to 10 cm H2O. Similarly a 

low pressure limit is established a few cm H2O below peak to act as an 

indication of significant circuit leaks. 

 Respiration rate (RR), is usually set between 8 to 15 breaths per minute 

(BPM). In the presence of obstructive disease, low rates between 8-10 BPM 

are chosen. Normal pulmonary mechanics are ventilated with RR of 8-12 

BPM. 
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 At the initiation phase, patients are ventilated with a FiO2 of 1 (100% O2). 

Due to oxygen toxicity, the FiO2 level should drop below 0.6, within a few 

hours from initiation. PEEP is initially set around 5 cm H2O, to increase 

FRC, unless cardiovascular instability is present. 

 Descending flow pattern improves VT distribution in comparison to constant 

flow. Peak flow should be adequate to insure inspiration time of 1 sec. 

The equation of motion for the respiratory system formula (Sasson C.S.H., Mahutte C.K., 

1998), describes the airway opening pressure (Pao) required to drive gas into the 

lungs. 

exRSRS
o

ao PCtVRVP  /)(*   eq I.17 

During controlled ventilation Pao reflects the mechanical properties of the respiratory 

system. For a given flow and VT, changes in compliance and resistance are reflected 

on PIP. Plateau pressure (Pplateau) is equal to alveolar pressure since there is no flow. 

Pplateau is the pressure needed to inflate lungs with a specific VT above end expiration 

pressure (Pex). 

Mean airway pressure (meanPao), is the Pao averaged over the entire respiratory cycle. 

Its value is important since it is correlated with arterial oxygenation and venous 

return.  

Valuable information is also derived from the pressure curve shape. In constant flow 

ventilation, the initial rapid increase in Pao indicates the pressure needed to overcome 

resistance. Increases in magnitude of the initial rise in Pao, suggest increased 

resistance. The following linear increase indicates the pressure to overcome 

compliance. Changes in the shape of the second portion are related to changes in 

CRS. 

During assisted ventilation the pressure curve provides information on the patient’s 

effort.  

Flow trace profile remains constant during flow controlled ventilation. However this 

change during pressure controlled ventilation is heavily influenced by lung 

mechanics. In pressure controlled ventilation the driving force of airflow into the 

lungs is the difference in pressures between airways and alveolar pressure. As these 

pressures become equal, flow drop to zero. The flow curve shape is a decelerating 

ramp. Changes in the deceleration slope suggest changes in mechanical properties. If 

a time limit is reached before the flow becomes zero, an increase in respiration 
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duration is suggested causing an increase in VT. Inspiration time (TI) could be altered 

using the formula (Hess D.R., Kacmarek R.M. 2002): 

))(5.0/()( fVVVT
o

pk
o

TI   eq I.18 
where: 

Vpk : is the peak flow (L/min) 

Vf :is the end inspiration flow (L/min) 

 

Persistence of end expiratory flow may indicate auto-PEEP. Auto-PEEP reflects the 

amount of air trapped in lungs above preset PEEP. Auto-PEEP usually suggests 

dynamic hyperinflation of the lungs; could be dangerous for the patient since it 

increases the risk of barotraumas, and WOB. 

Managing a zero end inspiration flow, could be also succeeded by increasing peak 

flow, as follows (Hess D.R., Kacmarek R.M. 2002): 

]*5.0/[)]*(*)5.0([ II
o

Tpk
o

TTfVVV   eq I.19 

 

Inspiration and expiration time relationship is an important consideration in 

mechanical ventilation. Usually the relationship is expressed as I/E ratio. Ratios that 

increase inspiration time (e.g. 1/1, 2/1), increase mean airway pressure, with positive 

results to oxygenation and decreased cardiac output. Short expiration times are not 

sufficient for exhaling total tidal volume, thus leading to auto-PEEP. Usually I/E 

ratios of 1/2 are used for adult ventilation. 

Advanced monitoring includes flow-volume and pressure-volume loops. Flow-

volume loops display flow (Y axis) as a function of volume X (axis). During passive 

ventilation inspiration flow shape is dictated by the ventilator (in flow control) and 

lung mechanics (in pressure control). Exhalation shape provides information on 

airflow obstruction. Pressure-volume loops display volume as a function of pressure. 

The slope of the curves is the lung-chest compliance. P-V loops are used for 

determining appropriate PEEP levels. However measurements are made with sedated 

patients and identification of the correct PEEP level might require curve fitting 

mathematics. 
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I.4 Cardiovascular variables 
 

Respiration physiology could not adequately describe tissue oxygenation without 

considering blood circulation. The integrated system of cardio respiratory unit 

includes ventricles, atriums, and arterial, venous and peripheral blood circulation. 

During mechanical ventilation clinicians monitor hemodynamic variables, invasively 

through catheters. Central venous pressure (CVP), pulmonary artery pressure (PAP), 

pulmonary capillary wedge pressure (PCWP) and cardiac output (CO), are 

commonly monitored. CVP is monitored with the use of a catheter located in the 

superior vena cava (right atrium RA). CVP reflects the performance of right atrium 

(RA), thus the blood supplied to the right ventricle (RV). 

Pulmonary pressures are monitored with a balloon tip catheter, capable of inflating 

and blocking blood circulation. Elevated PAP may indicate left-right shunt, left 

ventricular (LV) failure, mitral stenosis or pulmonary hypertension. 

Cardiac Output (CO) is commonly measured with the thermo-dilution method, 

where a cold solution (bolus) is ejected into the RA, changing blood temperature. 

The changes in temperature are measured downstream and are used for computing 

CO. CO is normalized to patient’s size by dividing it by body surface area (BSA). 

The ratio is called cardiac index (CI). Stroke volume is calculated by dividing the 

CO with the heart rate. 

The mechanisms of heart – lungs interactions are many. One could find a good 

description and literature survey in chapter 14 of the Marini & Slutsky book (Pinsky 

M.R., 1998). This paragraph will attempt to briefly describe the cardio-effects of 

positive pressure ventilation. 

Heart pump compensates for lung deficiencies by changing CO. When individuals 

breathe lung volumes below 10 ml/Kg, the heart rate increases. The opposite is true 

when lung volumes exceed 15 ml/Kg. This inspiration associated cardio acceleration 

is termed sinus arrhythmia (Pinsky M.R., 1998).  

Pulmonary vascular resistance is modified by mechanical ventilation. Reduction of 

pulmonary vascular resistance is succeeded by increasing PAO2, re-expanding 

collapsed alveoli, reversing acute respiratory acidosis, or decreasing central 

sympathetic tone. Changes in lung volume cause changes in airways and extra-
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alveolar vessels diameters. Decreasing volume leads to increasing vascular 

pulmonary resistance. If RV volume increases due to increased pulmonary vascular 

resistance, then ventricular interdependence will cause LV diastolic compliance to 

increase. 

Mechanical ventilation may affect hemodynamic operation. During positive 

ventilation pleural pressure (Ppl) increases during inspiration and decreases during 

expiration; reversed function compared to spontaneous breathing (Hess D.R., Kacmarek 

R.M. 2002). Pleural changes affect CVP. Increased Ppl causes a decrease in venous 

blood return. Clinicians monitor changes in CVP to evaluate ventilation. A large 

decrease in CVP suggests high WOB, while a large increase suggests high lung 

compliance relative to chest compliance. PEEP and mean airway pressure affect 

CVP. The degree to which the changes in lung pressure are transmitted to Ppl is 

related to the lung and chest compliance. The change in Ppl (ΔPpl) is described in eq 

I.20 

 

)/(/ WLLawpl CCCPP   eq I.20 
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Appendix II: Custom Toolboxes 

II.1 EVOFINE & FUN Matlab toolboxes 

We have designed and developed two custom Matlab (®Mathworks) toolboxes, 

namely EVOFINE and FUN.  

The EVOFINE toolbox ( EVolution Of Fuzzy INference Engines) is capable of 

evolving FRBS with the use of available training data. FUN toolbox ( FUzzy Neural) 

applies ANN for developing a trained RB of the FRBS based on available training 

data. 

In the following paragraphs we describe in detail the architecture of the toolboxes. 

Both architectures were designed as general purpose tools and not specific for our 

research, allowing future researchers to utilize them in similar research areas. Both 

toolboxes were evaluated for their performance prior to their application in our 

research. Evaluation was performed by developing FRBS for modelling a multi input 

single output (MISO) systems. Two approaches were used for evaluation. The first 

was to test performance against non linear mathematical function, and the second 

was to test performance against a benchmarking control problem namely the cart 

pole balancing dynamic system. 

 

II.2 Fuzzy System and Genetic algorithm 

We have designed and developed a Matlab (Mathworks ®) toolbox for automatically 

generating FRBS from available input(s) – output(s) data in Excel (®Microsoft) 

format. The toolbox utilizes a modified version of the University of Sheffield’s  GAs 

toolbox (Evolutionary Computation Research Group, 1994) for Matlab. 

Genetic Algorithms were chosen as the appropriate method for identifying the 

optimum structure of the fuzzy system, where no prior knowledge of the Knowledge 

Base (KB) was assumed. The system’s fuzzy inference engine is based on Mamdani 

architecture, and the centroid method was chosen as the appropriate defuzzification 

method. 

The EVOFINE toolbox allows the user to define fuzzy systems’ variables in addition 

to the  GAs settings, as shown in figure II.1. 
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User defined FRBS characteristics: 

 Number of Inputs. 

 Number of Outputs. 

 Number of Fuzzy Rules. 

 Number of Fuzzy Sets (membership functions) for input-output. 

 Type of membership functions (Trapezoid-Triangular or Sigmoid-Gaussian). 

 Domain of each input-output variable. 

 User defined GA settings: 

 Number of Generations. 

 Number of Individuals in each generation. 

 Mutation type could be either constant or variable (damping). 

 Mutation Rate. 

 Crossover Rate. 

 Use of scaling function as described in Goldberg (Goldberg D.E, 1989). 

 GAs selection type, either Roulette Wheel Selection (RWS) or Stochastic 

Universal Sampling (SUS). 

 

EVOFINE codes FRBS into two chromosomes. The first chromosome codes the 

membership functions in real format. The coding process depends on the selected 

membership function type. The second chromosome describes the fuzzy rules and 

rule weights. The coding process is described in detail in paragraph II.2.1. The 

chromosome pair (Fuzzy Sets & Rules) defines the KB of the FRBS. Each individual 

pair of the population is evaluated against the available data training set. The fitness 

function (error) of the GAs is described by equations II.1 & II.2, and describes the 

root mean square error (rmse) as a percentage scaled over the output range. While 

the mean square error (mse) provides a measure of model’s error against available 

data (Achiche S et al ,2004; Bowerman B.L), the rmse returns the error to the same units as 

the data. The representation of rmse as a percentage scaled over the variables range, 

allow us to compare the error between variables of different domains and units. The 

GAs target is to evolve individuals which minimize the error, thus best describe the 

system. 
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Where N: is the number of available training data. 
 
Figure II.1 describes the EVOFINE setup screens. The top window is the main 

menu. The main menu allows the user to define basic setup; store and test develop 

systems and observe the evolution process (fitness value and generation number). 

GA setup menu (fig. II.1, bottom left) is used for controlling the GAs process in 

terms of number of individuals in each generation, number of generations the 

algorithm will run and GA evolutionary variables. Fuzzy Setup (fig. II.1, bottom 

right), prompts the user to define basic fuzzy architecture such as number of rules 

and fuzzy sets for each variable, as well as correspond input variables to spreadsheet 

columns. 

 

 
Figure II.1: Snap shot of EVOFINE toolbox. 

 
The method validation was based on the ability of  EVOFINE to evolve FRBS that 

describe mathematical relationships, based on a defined input – output set, following 

a similar method to Achiche (Achiche S et al 2004), and model systems such as the cart 

pole system.  
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We have tested the systems performance against multi inputs – single output systems 

(MISO), utilizing the mathematical equation of z=sin(x*y) and the inverse cart pole 

system. 

 

II.2.1 Fuzzy Sets and Rules Coding. 

The chromosome coding was based on Pittsburg approach, where the fuzzy set - 

fuzzy rules pair described the system’s inference engine for each individual in the 

population.  

The Pittsburgh approach was chosen, because it evolves the entire fuzzy system, 

dealing efficiently with the competition – cooperation problem of the RB set. 

However the evolution of full FRBSs is penalized by the increased computational 

time. The Michigan approach was not adopted on the grounds that each individual 

represents a single rule. Since rules compete it is difficult to identify a credit policy 

that promotes cooperation of rules. On the other hand the Michigan approach 

requires less computational resources. Similarly the iterative rule learning, utilizes an 

incremental rule base policy which can lead to sub-optimal FRBSs (Pena-Reyes C.A, 

1999; Carse B., Fogarty T.C, 1996). Finally symbiotic evolution (Jamei M, 2004), is merging 

Pittsburgh and Michigan algorithms by randomly combining individual rules from a 

given population to form FRBSs. Each resulted FRBSs is evaluated and a fitness 

score is assigned to each participating rule. Although this approach combines the 

advantages of the Michigan & Pittsburg algorithms, it requires safeguarding 

algorithms against loss of overlapping of the Membership Functions (MFs)similarity 

of MFs participating in the solution and also non-participation of MFs. Due to its 

increased complexity, symbiotic evolution is computationally intense. 

The coding of the FRBS is performed by generating two chromosomes. The first 

chromosome is in real format and describes the position and shape of the 

membership functions. The second chromosome is in integer format and describes 

the fuzzy rules as well as the weight of each rule. 

The coding process of five (5) Trapezoid–Triangular shaped and Sigmoid-Gaussian 

membership functions is graphically described in figure II.2 and II.3 respectively. 

The coding between the different types of membership functions differs in the 

number of elements required to describe the membership functions. While Trapezoid 

and Triangular membership functions need 4 and 3 elements respectively, Sigmoid 
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and Gaussian functions require only 2 elements. Gaussian functions are described by 

the center position (c) and the spread (σ) of the function as in equation II.3 (Matlab, 

®Mathworks, gaussmf help files). The resulting fuzzy set chromosome is of variable 

length depending on type and number of input(s)-output(s) variables. 

e cxcxf
22 2)(

),,(
     eq. II.3 

 

The only limitation applied in the development and coding process of the fuzzy set 

chromosomes is that membership functions should overlap. To secure this limitation 

membership functions are allowed to vary in shape and position within specified 

limits, adapted automatically to the number of fuzzy sets and inputs range. 

The length of the FS chromosome (LFS) depends on the number of FSs (NFS), on the 

number of input (Ni) and output (No) variables and on the type of fuzzy sets. 

Equation II.4a is used for calculating the LFS for Trapezoid-Triangular membership 

functions, and eq. II.4b is used for calculating the LFS of Sigmoid-Gaussian 

membership functions. 

Rule coding into chromosome is performed according to Pittsburg approach. Each 

chromosome represents the user defined number of rules (NR). The length (LR) of the 

rule chromosome is given by equation II.5, where Ni is the number of input 

variables, and No is the number of output variables. 

 

    3*22*4*_  FSoiTriangFS NNNL  eq. II.4a 

   2**_ FSoiGaussianFS NNNL     eq. II.4b 

  RoiR NNNL *1     eq. II.5 

 

A coding example of a SISO FRBS with four (4) rules is given in tables II.1 & II.2. 

Where W is the weight of each rule (Table II.1). 

The GA was designed to evolve systems with small number of rules, since it 

incorporates rule minimization by enabling variable weight of rules from zero (0) to 

one (1). 
 



238 
  

 
 
 

Input output 
mf1 mf2 . . . . . . mf5 

0.
0 

0.
0 

0.
08

 

0.
25

 

0.
0 

0.
33

 

0.
5 . .  . . . 2.
46

 

2.
53

 

2.
75

 

2.
75

 

 
Figure II.2: Trapezoid–Triangular membership functions coding. 

 
 

 
 

input output 

mf1 mf2 .. .. .. .. . . . . mf4 mf5 

0,
00

00
4 

0.
12

 

0.
05

 

0.
24

 

. . . . .  . . . 

0.
08

7 

2.
45

8 

2.
53

8 

2.
74

8 

 
Figure II.3: Sigmoid-Gaussian membership functions coding. 

 
Table II.1: Rule description 

1. If (input1 is mf4) then (output1 is mf5) (0.3)  
2. If (input1 is mf4) then (output1 is mf4) (0.8)  
3. If (input1 is mf1) then (output1 is mf1) (0.9)  
4. If (input1 is mf5) then (output1 is mf4) (0.2)  

 
 

Table II.2: coding of table II.1. 
Rule 1 Rule 2 Rule 3 Rule 4 

In1 Out1 W/10 In1 Out1 W/10 In1 Out1 W/10 In1 Out1 W/10 
4 5 3 4 4 8 1 1 9 5 4 2 
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II.2.2 Variable Mutation Rates. 

The role of the mutation operation in GAs is to explore possible solutions that are 

not described by a given population. Although mutation is considered a secondary 

operation, it is very important in the exploration of large and complex search spaces. 

This feature becomes more important when we generate FRBS with subsets of RBs. 

Evolution of such systems is useful when the number of fuzzy sets and input-output 

variables increases substantially. Such systems have very large RB which 

dramatically increases a system’s complexity, and thus computational time. 

Our toolbox gives the user the ability of applying variable mutation rates based on 

equation II.6, graphically described for 100 generations in fig. II.4.  
 

 )/)(sin(* xxabsdMUTrateUserDefineMUTrate   eq. II.6 

Where: User Defined MUTrate is the initial mutation rate defined by the user. 

 

 
Figure II.4: Example of variable mutation rates, for UserDefinedMUTrate=0.5. 

 
Whitely and Hanson (Whitely D, Hanson T, 1989) have suggested an adaptive mutation 

technique based on the homogeneity of the solution populations. The algorithm 

increases mutation rate when homogeneity is high. The proposed approach results in 

high mutation rates towards the end of the evolution process where individuals have 

converged to an optimum solution. 

Pham and Karaboga (Pham D.T., Karaboga D., 1997), suggested three different strategies 

for variable mutation rates. The first strategy gradually increases the mutation rate 

when the performance has not improved for a predefined number of generations. The 

mutation rate is returned to a minimum probability when the best individual in a 

population improves its performance. The main drawback of this strategy is that high 

mutation rates towards the end of evolution steps might lead to deterioration in 
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individuals’ performance rather than improving it. The second strategy applies 

higher mutation rates to poor solutions. The third strategy applies mutation 

probabilities to digits rather to chromosomes. It initially applies higher probabilities 

to most significant digits and then as performance is improved the focus is shifted to 

the least significant ones. This approach assumes a binary like coding of the 

chromosomes. The authors have shown that all three variable mutation strategies 

outperformed the constant mutation rate algorithm in the design of a fuzzy 

controller. 

Our hypothesis is that damped cyclic mutation rate will allow the GA to explore the 

search space more efficiently particularly in the initial generations where the high 

mutation rates permit increased sampling of the solution space and the lower rates 

encourage convergence and better performance of the resulting FRBS.  

 

II.2.3 Evolution algorithm. 

The Sheffield University GA toolbox was adapted to the needs of FRBS evolution 

process. The modifications were performed by developing our own bespoke double 

point crossover functions. Crossover functions were written to enable the exchange 

of whole membership function(s), for the fuzzy sets chromosome and the whole of 

rule(s) for the rule chromosome, instead of parts (Figure II.5).The evolution process 

is described by the flow diagram of figure II.6. Evaluation of each individual FRBS 

in the population is performed by generating the FRBS, described by the individual 

fuzzy sets and rules, and applying it to the available training data. The fuzzy sets 

chromosome and the rules chromosome are assigned with a fitness value equal to the 

percentage error described in eq. II.2. 

Rule 1 Rule 2 Rule 3 Rule 4 
In1 Out1 W/10 In1 Out1 W/10 In1 Out1 W/10 In1 Out1 W/10 

4 5 3 4 4 8 1 1 9 5 4 2 
4 5 3 4 3 2 2 2 0 5 4 2 

 
 
 
 
 

Rule 1 Rule 2 Rule 3 Rule 4 
In1 Out1 W/10 In1 Out1 W/10 In1 Out1 W/10 In1 Out1 W/10 

4 5 3 4 3 2 2 2 0 5 4 2 
4 5 3 4 4 8 1 1 9 5 4 2 

 
Figure II.5: Graphical example of Rules Crossover. 

 

Crossover 
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Figure II.6: Flow diagram of the EVOFINE software. 

 
Analytically the GA algorithm initialized random individuals for both chromosomes. 

Each individual is described by the two chromosomes. In order to evaluate the 

proposed fuzzy system for each individual, a fuzzy system is generated based on an 

individual’s sets and rules. The toolbox does not safeguard against duplicate or 

conflicting rules, since evolution process is expected not to favor chromosomes with 

such features. The input data are fed into this fuzzy system, and output crisp values 

are stored. The arithmetic values of the outputs are used for deriving the percentage 

(%) performance of eq II.2. The fuzzy system is then destroyed and a new one for 

the next individual is created and evaluated. This process is repeated until all 

individuals are evaluated. All individuals are now assigned with a fitness function, 

representative of their performance against the available data base. Scaling function 

is optionally activated by the user. 

The GA targets to minimize fitness (small error between fuzzy system’s output and 

database). Once all individuals are assigned with a fitness function, parent selection 
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is performed. The selection algorithm is user defined (RWS, SUS), but most 

commonly used is the roulette wheel selection method. The lowest fitness value 

(small error) individuals have a higher probability of advancing in the next 

generation.  

The new generation is subject to crossover and mutation mechanisms. The crossover 

performed by the software is a double point crossover for each of the chromosomes. 

Each chromosome is subject to the same mechanisms as if it was independent of the 

other. This approach is justified by the following reasons. First a crossover between 

fuzzy sets and rules could not be performed due to the different structure of 

chromosomes; the first is composed of real numbers, while the second consists of  

integer numbers. Second, crossover and mutation is performed to each chromosome 

independently, thus it is possible to alter shape and position of FS without affecting 

the RB and vice versa. Furthermore we suggest in future research to build an 

algorithm that identifies the best combination between evolved FS and RB 

chromosomes by assigning pair’s fitness. Mutation is performed according to a user 

defined probability. The number selected by the user is the probability of a 

chromosome’s element to mutate. The user interface permits constant mutation rates 

and damping mutation rates. Damping mutation rates are not constant, but are 

decaying sinusoidal, based on the equation II.6. Since mutation rates of negative 

value are without meaning, we calculate the absolute sinusoidal damping. Negative 

mutation rates represent a negative probability of change; such probability is 

equivalent to zero probability. 

The new population after crossover and mutation mechanisms is ready to be 

evaluated in terms of fitness to the training data set. To maintain the size of the 

original population, the new individuals are reinserted into the old population. 

Replacement of individuals in the old population is based on fitness. Old individuals 

with low fitness values are replaced by the fittest of the new population. 

 

II.2.4 Evolution and Computation resources 

The computational time of the GA algorithm depends on chromosomes’ length, and 

thus on the number of rules, number of fuzzy sets and number of input – output 

variables, the number of individuals in each generation and the size of the training 

set. 
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The following calculation example provides some insight of the problem’s 

complexity when dealing with the full systems’ architecture as described by the 

questionnaire analysis. 

A complete system’s representation as it was described from the questionnaire 

results includes twelve (12) input variables and six (6) output variables. Assuming 

we have multiple MISO systems, where all 12 inputs are used for inferring a single 

output variable, the possible combination of rules (search space of RB), which will 

be termed from now on as Total Rules, of a system is given from the product of the 

number of membership variables (eq.II.7a). However in order to fully develop a 

functional system we need a subset of the Total Rules (search space), by avoiding 

conflicting rules. The subset will be termed Full RB. The calculation of Full RB is 

given by equation II.7b. 

 
 oi NN

FSTotalRules NN   eq. II.7a* 

 iN
FSFullRB NN   eq.II.7b* 

*Assuming all input-output variables have the same number of FS for MISO system. 

To clarify the difference between Total Rules and Full RB, consider a simple fuzzy 

system with one input and one output. Each domain is partitioned by 2 membership 

functions, named “low” and “high”. The Total Rules (search space) could be given 

by all possible combinations (22 , eq.II.7a):  

1. IF input is low THEN output is low 

2. IF input is low THEN output is high 

3. IF input is high THEN output is low 

4. IF input is high THEN output is high 

 

However it is not possible to have conflicting rules such in the case of 1&2 and 3&4. 

Although the above system could be described by only two (2) rules, the Full RB (21 

, eq. II.7b), we do not know from the beginning which two of the four are the 

appropriate ones.  

If we examine three scenarios of different EVOFINE architectures we can see the 

exponential growth of the systems complexity and thus the huge amount of 

computational resources necessary for the algorithmic optimization of such a system. 

The three scenarios are presented in the following table: 
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Table II.3: EVOFINE architecture scenarios. 

 Scenario 1 Scenario 2 Scenario 3 
Number of Input Variables 12 12 3 
Number of Output Variables 1 1 1 
Number of FS describing 
inputs-outputs domains 

5 3 5 

Type of FS (Trapezoid-
Triang or Sigmoid – 
Gaussian) 

Trapezoid-Triang Trapezoid-Triang Trapezoid-Triang 

Number of Rules Full RB Full RB Full RB 
Number of Individuals in 
each Generation 

100 100 100 

 
The number of Total Rules (NTotalRules) of an FRBS describing all possible rules is 

calculated by the number of FS raised in the power of the sum of input and output 

variables. Equation II.7a is applied when we have equal number of FSs for all inputs 

and outputs; otherwise it is the product of all the FSs of the FRBS. The number of 

Full RB, represents the maximum number of rules which do not conflict with each 

other (eq. II.7b). This means that for a given combination of input membership 

functions we infer a single output membership function. 

Using equations II.4a, II.5 & II.7 we can calculate the length of the FS and RB 

chromosomes respectively: 

 
Table II.4: Chromosome Lengths 

 Scenario 1 Scenario 2 Scenario 3 
LFS 221 143 68 
NTotalRules 
(RB search space) 

513≈1.2*109 313≈1.5*106 54=625 

NFullRB 512~=≈244*106 312~=≈531*103 53=125 
LR (12+1+1)*NFullRB≈ 

3416*106 
(12+1+1)* NFullRB ≈ 
7434*103 

(3+1+1)* NFullRB ≈ 
625 

 
The total length of both chromosomes is the sum of FS and RB chromosomes 

(LT=LFS+LR). The total length represents the array in which the individuals FRBS 

architecture is stored for the GA process. This length is further multiplied by the 

number of individuals in each generation to provide us with the amount of memory 

that should be available only for storing chromosomes architectures.  

It is obvious from inspecting the size of the resulted chromosomes that we need vast 

computational resources for exploring such huge spaces in the case of scenarios 1 

and 2. Furthermore the number of individuals in each generation should increase as 

the chromosomes’ complexity increases in order to efficiently explore the problems’ 

search space. However the simplification of scenario 3, provide us with a feasible 

solution in terms of computation time and resources. 
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Since computational resources for testing such a huge rule base were not available, 

one could either experiment with the full architecture but generating a subset of 

rules, or could experiment with subsets of the architecture or utilize both 

simplifications. The method for identifying the optimum sub architecture was 

described in previous paragraphs, in terms of reducing the input-output number of 

variables, and is experimentally analyzed in Appendix III, in terms of finding the 

optimum sub architecture for the EVOFINE algorithm. 

Although the theoretical analysis suggests a huge number of rules, it is not always 

necessary to incorporate the Full RB for describing the system. This is due to 

combinations of linguistic variables which are not feasible in reality. For example it 

is not possible for a patient to have all the monitored variables within physiological 

limits and require maximum ventilation. This means that one can realistically 

describe the system with fewer rules, similar to human perception.  

 

II.3 Neural Network Driven Fuzzy Reasoning System 

We have designed and developed a Matlab (®Mathworks) toolbox for implementing 

NN driven FRBS, based on the work of Tagaki and Hayashi (Tagaki H, Hayashi I, 1992) 

and Wang and Mendel(Wang L.X, Mendel J.M, 1992). 

The toolbox is capable of developing FRBS where the RB is substituted by a NN. 

This method provides a trained FRBS based on an available data set in spreadsheet 

format. The architecture of this method is described in Appendix IV. 

The following FRBS characteristics are user defined: 

 Number of Inputs. 

 Number of Outputs. 

 Number of Fuzzy Sets (membership functions) for input-output. 

 Type of membership functions (Trapezoid-Triangular or Sigmoid-Gaussian). 

 Domain of each input-output variable. 

Additionally the  following NN settings are user defined: 

 Number of NN layers. 

 Type of transfer functions in each layer. 

 Number of Nodes in each layer. 

 Type of training method. 

 Type of NN. 
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 Type of error back propagation (e.g. mse). 

 Number of training epochs. 

 Target training error. 

 

Although the proposed architecture it is essentially an artificial neural network, it 

exhibits the following characteristics:  

1. It describes a cause and effect relationship providing some transparency to 

the black box feature of the NN. 

2. It utilizes NN technology for processing not the mathematical notation of a 

variable but rather the transformation of the variable to the fuzzy domain, 

providing the NN with the equivalent but not the same information. 

3. The transformation of the variable to the fuzzy domain encodes input data to 

the range from 0 to 1, this minimizes the difference in NN response due to 

differences in absolute magnitude of the inputs.  

4. The use of fuzzification and de-fuzzification processes permits the system to 

efficiently deal with inaccurate and imprecise measurements of the input-

output training data. 

 

II.3.1 FUN toolbox 

The FUN (FUzzy Neural) toolbox consists of a graphic user interface (GUI, fig. II.7) 

capable of retrieving training sets in spreadsheet format, defining NN and FRBS 

architecture, train NN driven FRBS, storing setup and resulted-trained NN, testing 

and displaying stored NN driven FRBS. 

The method of developing NN driven FRBS is described by the fig. II.8. The toolbox 

translates input and output training data into membership degrees (μn, where n is the 

number of FSs for each input-output domain), with the use of Matlab Fuzzy toolbox. 

The resulted matrix of membership degrees is stored in memory for utilizing during 

the training process. 

The user defines the NN architecture. The number of input nodes (input layer) is 

automatically assigned with a number of nodes equal to the sum of the input(s) 

membership functions. The number of layers and the number of nodes in each layer 

are both user defined. However the number of nodes in the last (output layer) should 

match the number of the summed output(s) membership functions. 
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Figure II.7: Graphical User Interface of FUN. 

 
 

 
Figure II.8: NN driven FRBS architecture. 

 
In the example of fig. II.9,  the architecture of the NN driven FRBS for a system with 

2 inputs and 1 output is presented. The number of FSs describing the inputs-output 

domain is defined to five (5) by the user. The software automatically assigns the 

fuzzy sets by evenly partitioning the domain space for each input – output variable. 

The user defined number of layers in this example is 3. The number of nodes to the 

input layer is automatically assigned to equal the sum of inputs fuzzy sets, thus equal 

to 10 in our example. The number of hidden nodes is defined by the user to 6, while 

the number of output layer nodes is equal to the output(s) fuzzy sets, in our case 5. 

For simplicity the interconnection of all nodes is not given in figure II.9. 
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Figure II.9: Example architecture of NN driven FRBS. 

 
 

The NN training is performed by introducing the membership degrees for each 

membership function for a given crisp input-output training set. The NN targets to 

adjust the nodes weights and biases in order to minimize the output error, translated 

as fit the output membership degrees as close to the membership degrees of the 

output training set. Table II.5, presents an example of translating an input – output 

training set to NN training data, for the example of fig. II.9. 

 
Table II.5: Example of training data for the NN architecture of fig. 6.9 

 Crisp 
value 

Membership 
degree mf1 

Membership 
degree mf2 

Membership 
degree mf3 

Membership 
degree mf4 

Membership 
degree mf5 

INPUT 1 180 0 0 0 0.35 0.9 
INPUT 2 30 0.5 0.5 0 0 0 
OUTPUT 1 78 0 0 0 0.8 0.1 

 
 

The NN training is performed with the use of the Matlab 7.1 NN. The user defines 

one of the following NN functions shown in table II.6. Details on each functions’ is 

provided in the NN help file of Matlab software. 
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Table II.6: FUN User defined NN functions. 

Function group Function 
name 

Description 

Network 
User 
Functions 

newff Create a feed-forward back propagation network 
newcf Create a cascade-forward back propagation network 
newlin Create a linear layer 

NN training 
functions 

traindx Gradient descent with momentum & adaptive lr back 
propagation 

traingd Gradient descent back propagation 
traingdm Gradient descent with momentum back propagation 
traingda Gradient descent with adaptive lr back propagation 
trainlm Levenberg-Marquardt back propagation 

NN 
performance 
functions 

mse Mean squared error performance function 
mae Mean absolute error performance function 
dmae Mean absolute error performance derivative function 
msereg Mean squared error w/reg performance function 

 
Similarly the user can define in each layer the transfer functions, as shown in table 

II.7. 

Table II.7: FUN transfer functions. 

Transfer 
functions 

Function 
name 

Description 

tansig Hyperbolic tangent sigmoid transfer function 
hardlim Hard limit transfer function 
logsig Log sigmoid transfer function 
hardlims Symmetric Hard limit transfer function 
poslin Positive linear transfer function 
purelin Linear transfer function 
radbas Radial basis transfer function 
satlin Saturating linear transfer function 
satlins Symmetric saturating linear transfer function 
tribas triangular basis transfer function 
softmax Softmax transfer function 

 
 

The GUI provides the user with flexibility in defining both NN and FRBS 

architecture, allowing FUN application in a wide range of research problems rather 

than been specific to our research. 

The flow diagram of the NN driven FRBS toolbox, is provided in fig.II.10. 
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Figure II.10: FUN toolbox flow diagram. 
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Appendix III: Evaluation - comparison of EVOFINE, 
FUN, ANN and ANFIS. 

III.1 EVOFINE evaluation 

As described in section II.2.1, EVOFINE codes the FRBS with two chromosomes. 

The first chromosome codes the membership functions in real format. The second 

chromosome described fuzzy rules and rule weights. The chromosome pair (Fuzzy 

Sets & Rules) thus defines the FRBS. Each individual pair of the population is 

evaluated against the available data training set. The fitness function (error) of the 

GAs is described by equations II.1 & II.2, and describes the root mean square error 

as a percentage scaled over the output range. The GAs target is to evolve individuals 

which minimize the error, thus best describe the system in hand. 

The EVOFINE toolbox was tested against both a theoretical mathematical function 

and a control scenario. A non linear MISO function, described by equation III.1 and 

figure III.1, was chosen as the modelled mathematical function. The function was 

chosen on the grounds of previously applied in similar research (Achiche S, 2004 ). 

 
)*sin( yxz    eq. III.1 

Where: 0<x<1.6 and 0<y<1.4 

 

 

Figure III.1: Graphical representation of function z=sin(x*y). 
 

Eighteen experiments were carried out for the mathematical function. The 

experiments settings are presented in table III.1. The experiments differ in the 

mutation type, which were either constant or variable, the shape and number of the 

membership functions which were either Trapezoid-Triangular (TRIANG), or 
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Sigmoid-Gaussian (GAUS), and the number of fuzzy rules. Experiments one to 

fourteen (1-14), were carried out for identifying the optimum EVOFINE setup. 

FRBSs architectures that performed well in these experiments were allowed to 

evolve for a larger number of generations in experiments fifteen to eighteen (15-18). 

The size of the search space for the Rule Base (RB) of a fuzzy system is dictated by 

the number of input and output variables, and the number of the linguistic variables 

for each input-output variable. Assuming equal number of fuzzy sets for all input and 

output variables, then the number of possible rules is given by the equation II.7a. 

Total Rules, is the size of the search space for the RB of the FRBS. However when 

developing a FRBS, it is not advised to have conflicting rules in terms of equivalent 

premise (IF) but alternative consequent (THEN). Therefore the number of rules (RB) 

is described by equation II.7b in section II.2.4 

Experiments 1 to 6, examine the effect of the RB size, utilizing a constant mutation 

rate. Figure III.2, describes the performance of the resulted FRBS (y axis), against 

the size of the RB expressed as percentage of the Total Rules (x axis). The % rmse of 

experiments 1 to 6 is described with blue crosses, while the displayed graph is the 

curve fitting.  Curve fitting suggests that for a 2 input – 1 output FRBS system, as 

the one described by eq. III.1, the best performance is achieved when the number of 

rules equals the RB as it is expressed by eq. II.7b. However it is clear that one can 

utilize sub architectures in terms of rules number without significant compromising 

the FRBS performance. Especially in real world systems, some premise 

combinations do not exist, thus there is no need for a rule describing such 

combinations.  
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Table III.1: EVO
FINE experim

ent’s setup for the m
athem

atical function. 
Fuzzy Setup 

G
A Setup 

Perform
ance 

Experim
ent 

N
o 

RB 

%  Total 

Rules 

No FSs 

Type FSs 

Engine Logic 

No Generations 

No Individuals 

Mut Type 

Mut Rate 

Cross Rate 

Scaling 

Selection type 

rmse 

% rmse 

Computation 

time (h:min) 

1 

5 

4.00 

5 

S,Z & 

Gaus

s 

AND 

100 

100 

const 

0.01 

0.7 

OFF 

RWS 

0.137

4 

13.74 

0:19 

2 

13 

10.40 

5 

S,Z & 

Gaus

s 

AND 

100 

100 

const 

0.01 

0.7 

OFF 

RWS 

0.101

7 

10.17 

0:19 

3 

19 

15.20 

5 

S,Z & 

Gaus

s 

AND 

100 

100 

const 

0.01 

0.7 

OFF 

RWS 

0.106

1 

10.61 

0:19 

4 

25 

20.00 

5 

S,Z & 

Gaus

s 

AND 

100 

100 

const 

0.01 

0.7 

OFF 

RWS 

0.107

6 

10.76 

0:19 

5 

50 

40.00 

5 

S,Z & 

Gaus

s 

AND 

100 

100 

const 

0.01 

0.7 

OFF 

RWS 

0.130

8 

13.08 

0:20 

6 

75 

60.00 

5 

S,Z & 

Gaus

s 

AND 

100 

100 

const 

0.01 

0.7 

OFF 

RWS 

0.162

7 

16.27 

0:20 

7 

49 

14.29 

7 

S,Z  & 

Gaus

s 

AND 

100 

100 

const 

0.01 

0.7 

OFF 

RWS 

0.131

2 

13.12 

0:22 

8 

9 

33.33 

3 

S,Z & 

Gaus

s 

AND 

100 

100 

const 

0.01 

0.7 

OFF 

RWS 

0.181

2 

18.12 

0:17 

9 

13 

10.40 

5 

Triang 

& 

Trap 

AND 

100 

100 

const 

0.01 

0.7 

OFF 

RWS 

0.125

2 

12.52 

0:19 

10 

25 

20.00 

5 

S,Z & 

Gaus

s 

AND 

100 

100 

damp 

1.0 

0.7 

OFF 

RWS 

0.085

2 

8.52 

0:19 

11 

25 

20.00 

5 

S,Z & 

Gaus

s 

AND 

100 

100 

damp 

0.9 

0.7 

OFF 

RWS 

0.076

1 

7.61 

0:19 
12 

25 

20.00 

5 

S,Z & 

Gaus

s 

AND 

100 

100 

damp 

0.7 

0.7 

OFF 

RWS 

0.080

7 

8.07 

0:19 

13 

25 

20.00 

5 

S,Z & 

Gaus

s 

AND 

100 

100 

damp 

0.5 

0.7 

OFF 

RWS 

0.081

3 

8.13 

0:19 

14 

25 

20.00 

5 

S,Z & 

Gaus

s 

AND 

100 

100 

damp 

0.3 

0.7 

OFF 

RWS 

0.113

4 

11.34 

0:19 

15 

25 

20.00 

5 

S,Z & 

Gaus

s 

AND 

1000 

100 

damp 

0.7 

0.7 

OFF 

RWS 

0.063

8 

6.38 

3:03 

16 

25 

20.00 

5 

S,Z & 

Gaus

s 

AND 

1000 

100 

const 

0.01 

0.7 

OFF 

RWS 

0.077

6 

7.76 

3:09 

17 

25 

20.00 

5 

Triang 

& 

Trap 

AND 

1000 

100 

damp 

0.7 

0.7 

OFF 

RWS 

0.043

1 

4.31 

3:03 

18 

25 

20.00 

5 

Triang 

& 

Trap 

AND 

1000 

100 

const 

0.01 

0.7 

OFF 

RWS 

0.077

7 

7.77 

3:09 
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Figure III.2: effect of number of fuzzy rules in the performance of the resulted FRBS. 

 

While maintaining the experiment 4 architecture we have carried a set of 

experiments (10 to 14), with variable mutation rates. Results suggest, fig. III.3, that 

initial damping mutation rates in the range of 0.5 to 0.9 outperform the constant 

mutation rates FRBSs. Curve fitting performed on the results, suggests that the 

optimum results are accomplished when damping mutation is initiated with values in 

the range of 0.7 to 0.8. The % rmse of experiments 10 to 14 is described with blue 

crosses, while the displayed graph is the curve fitting.   

 

 
Figure III.3: effect of initial damping mutation rate in the performance of the 

resulted FRBS. 

 

Similarly we have examined the effect of the number of FSs, while maintaining the 

rules number equal to the RB (eq. II.7b), to the FRBS performance (experiments 4, 7 
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and 8). Results presented in fig. III.4, show a variation in performance based on the 

FSs number. It is clear that large number of FSs results into complex search spaces, 

making the search of an optimal solution more difficult. On the other hand the use of 

small FSs numbers results in a simplification of the problem in hand. 

 

 
Figure III.4: effect of number of fuzzy sets in the performance of the resulted FRBS. 

 

Examining the performance of experiment 18 in figure III.5 bottom, we observe that 

mean performance (solid red line) converge faster to the best solution. Damping 

mutation rates avoid premature convergence to a single solution (fig III.5, top). 

Convergence of mean and minimum error for experiment 18 occurs well before 

generation 50, while for experiment 17, where damping mutation is used, 

convergence occurs above generation 200. A close inspection of experiment 17 

results (fig. III.5 top) reveals that mean values deviate periodically from minimum 

errors, at a rate equivalent to damping mutation rate. Early convergence to the best 

individual reduces the optimization power of the genetic algorithm, since most of the 

available chromosomes are similar. However damping mutation rates allows for the 

coexistence of a sufficient number of chromosomes with different architectures; thus 

exploring the search space more efficiently. 
 



256 
  

 

 
Figure III.5: Performance of evolved FRBSs, for eq. III.3.  

(Top) damping mutation rate, experiment 17. 
(Bottom) constant mutation rate, experiment 18. 

 

  

Figure III.6: minimum fitness values (error) of FRBS with different mutation types 

and membership functions for MISO system ( z=sin[xy]). 
 

Figure III.6, presents the results of automatic generation of FRBS, for experiments 

15 to 18. Results are presented in terms of minimum error of the best individual in 

each generation. It is clear that experiments with damping mutation rates result faster 
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to a better solution. Figure III.5, describes graphically the output of the resulted 

FRBS for the experiments 17 to 18, against the available data set in terms of 

minimum, mean and maximum error. Figure III.7 presents the surface mapping of 

the mathematical function z=sin(xy). Experiment 17, which utilized damping 

mutation and resulted in a better solution according to table III.1, exhibits higher 

resemblance to the mathematical expression mapping of figure III.1. 
 

 

 
Figure III.7: Graphical representation of FRBS output for modelling MISO system 

(z=sin[xy]): 
Top left: experiment 15, Top right: experiment 16 

Bottom left: experiment 17, Bottom right: experiment 18. 

 

The inverted pendulum, also known as the cart pole balancing problem, is a standard 

benchmark problem from the field of control theory. The pole balancing problem 

requires a closed loop feedback control system. The controller calculates the desired 

force amplitude and direction, applied to the cart, for moving the cart in the 

horizontal axis in order to maintain the pole in the upright position. The pole is free 

to move about the horizontal axis of the pivot (fig. III.8).  

In order to implement the controller one has to develop a model of the cart pole 

system. The differential equations of motion required for predicting the movement of 

a frictionless cart pole system, could be found in the work of other authors such as 

Fogarty et al and Kandel et al (Fogarty T.C, 1994; Kandel A, 1993). The applied model’s 

system variables, as well as the system’s constrains are presented in table III.2 
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Figure III.8: Graphical simulation of cart pole dynamic system. 
 

Table III.2: System variables & constrains 
Symbol Name & Description Constrains 

  Pole angle (rad) 52.052.0    

  Pole velocity (rad/sec)  

  Pole acceleration (rad/sec2)  

x  Cart position, as a relative offset from the 

middle (m) 
5.15.1  x  

x  Cart velocity (m/sec)  

x  Cart acceleration (m/sec2)  

g Gravitational acceleration = 9.81 (m/sec2)  

mc Cart mass = 1.2 Kgr  

mp Pole mass = 0.1 Kgr  

l half pole length, the distance from the pivot to 

the center of mass = 0.5m 
 

F The magnitude of the applied force (N)  

τ  Simulation integration step dt= 0.02 sec  

 

A feedback linearization controller was implemented based on the work of Callinan 

(Callinan T, 2003), in order to produce training data for the EVOFINE toolbox. The 

Callinan controller was tested for various initial cart position and pole angle values, 

in order to test its performance. The controller was capable of maintaining the pole 

angle in the range of +/-0.0005o and the cart position in the range of +/-0.0001m, in 9 

to 12 sec, depending on initial angle and position. The performance results are 

presented in fig. III.9. The tests described in figure III.9, include 20 different setups. 

The controller was initialized at 20 distinct positions in the range of -0.5m to +0.5m 
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from the centre position. The range of distance was linearly spaced. Additionally for 

left (to centre) and right (to centre) positions, the initial pole angles were initialized 

at 10 pole angles in the range of -15 to + 15 degrees. Table III.3 describes the 

Callinan controller tests setup.  

 

Table III.3: Callinan testing setup 

Experiment 

Initial pole 

 position 

(m) 

Initial pole  

angle (rad) 

1 -0,500 
-0,262 

2 -0,447 -0,204 

3 -0,395 -0,145 

4 -0,342 -0,087 

5 -0,289 -0,029 

6 -0,237 0,029 

7 -0,184 0,087 

8 -0,132 0,145 

9 -0,079 0,204 

10 -0,026 0,262 

11 0,026 -0,262 

12 0,079 -0,204 

13 0,132 -0,145 

14 0,184 -0,087 

15 0,237 -0,029 

16 0,289 0,029 

17 0,342 0,087 

18 0,395 0,145 

19 0,447 0,204 

20 0,500 0,262 
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Figure III.9: Feedback linearization controller performance. (top angle, bottom 

position). 

 

The controller data generation system is described in fig. III.10. The system consists 

of two random generators producing initial values (-0.15<θ<0.15 rad, -0.55<x<0.55 

m) for the cart pole controller. Based on these initial values the closed loop controller 

was allowed to stabilize the cart pole system for a small number of steps (0.4 sec). 

Then the process was repeated with new random initial values until a large amount 

of training data was collected (10000 data sets). The controller’s applied force, the 

pole’s angle and angular velocity as well as the cart’s position and velocity were 

recorded. 

 

Figure III.10: Block diagram for training data generation based on the feedback 

linearization controller. 
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 The generated data set was used as a training set for designing Proportional - 

Derivative (PD like) controllers for stabilizing the pole angle (θ). Angle (θ) and 

angle’s derivative (dθ/dt) were the inputs to our models, while the required force for 

stabilizing the pole was the model’s output. The range of the variables in the data set 

is presented in table III.4. 

 

Table III.4: PD data base 
Number of available training data 10000 
 max min 
Pole angle (rad) 0.157 -0.157 

Pole angular velocity (rad/sec) 1.3 -1.3 

The magnitude of the applied force (N) 58.06 -58.06 

 

The recorded data were logarithmically scaled according to the pseudo-code 

presented below: 
 
if value>=0 

value = value +1 
Scaled_value = log10(value) 

elseif value<0 
 value = value-1 
 Scaled_value = -log10(abs(value)) 
End 
 

The available training set was used for developing a FRBS cart pole controller, with 

the use of the EVOFINE toolbox. The FRBS architecture was based on the 

architectures that performed best on the experiments performed on the mathematical 

function. The FRBS was allowed to evolve for 100 and 1000 generations, utilizing 

damped mutation rates. The experiment setup is the same as in experiment 12 in 

table III.1. Figure III.11, presents the evolution process of experiment 1 and 3 (table 

III.5), of the FRBS in terms of worst, mean and best performance in each generation. 
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Figure III.11: Evolution process for FRBS cart pole controller. Experiment 1 (top), 

experiment 3 (bottom). 
 

Figure III.12, presents, as an example, the evolved architecture of the FRBS for cart 

pole experiment 3. The membership functions for the input – output domains have 

been adapted in terms of shape and position through the evolution process. However 

overlapping is ensured by the EVOFINE algorithm. The surface mapping describes 

the behavior of the resulted FRBS in terms of RB, as presented in table III.6. As we 

have stated, although EVOFINE does not directly target in rule minimization, the 

incorporation of rules weight into the RB chromosome allows doing so. This is 

observed in table III.6, where rule 4 has zero weight and thus does not participate in 

the inference engine. 
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Table III.5: Cart pole EVO
FINE experim

ents 
Fuzzy Setup 

G
A

 S
etup 

Perform
ance  

Experiment No 

RB 

%Total Rules 

No FSs 

Type FSs 

Engine Logic 

No Generations 

No Individuals 

Mut Type 

Mut Rate 

Cross Rate 

Scaling 

Selection type 

rmse 

% rmse 

Computation 

time (h:min:sec) 

1 

25 

20 

5 

S,Z & Gauss 

AND 

100 

100 

damp 

0.7 

0.7 

OFF 

RWS 

0.2346 

6.59 

02:35:00 

2 

25 

20 

5 

Triang & 

Trapez 

AND 

100 

100 

damp 

0.7 

0.7 

OFF 

RWS 

0.2400 

6.75 

02:26:00 

3 

25 

20 

5 

S,Z & Gauss 

AND 

1000 

100 

damp 

0.7 

0.7 

OFF 

RWS 

0.1739 

4.88 

26:45:00 

4 

25 

20 

5 

Triang & 

Trapez 

AND 

1000 

100 

damp 

0.7 

0.7 

OFF 

RWS 

0.1323 

2.90 

24:46:00 

  

 

Figure III.12: Exam
ple of evolved architecture of EVO

FINE FRBS, experim
ent 3. 
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Table III.6: Evolved Rule Base, EVOFINE cart pole experiment 3. 
IF θerror is MFx AND dθerror is MFx THEN F is MFx   (Weight) 

Rule θerror MF dθerror MF F MF Rule Weight 

1 4 5 5 1.0 

2 3 1 1 1.0 

3 4 1 1 0.3 

4 3 3 4 0.0 

5 3 4 5 1.0 

6 5 3 4 0.2 

7 4 2 2 0.2 

8 2 5 4 0.1 

9 2 2 1 0.4 

10 5 5 5 1.0 

11 3 3 3 0.1 

12 1 2 1 0.2 

13 2 1 1 1.0 

14 4 4 5 0.2 

15 2 5 5 1.0 

16 2 3 2 0.8 

17 4 3 4 0.6 

18 2 5 5 0.8 

19 4 3 4 0.6 

20 2 5 5 0.8 

21 3 2 2 0.2 

22 5 3 5 0.2 

23 4 3 4 0.3 

24 3 2 1 1.0 

25 3 4 4 0.5 

 

Once the models were developed they were evaluated against the cart pole 

mathematical model. The cart pole system was initialized for pole angles in the range 

of -9o < θ < 9o degrees, and all models were allowed a maximum of 20 sec to balance 

the pole. The initial values of pole angles were arbitrary chosen and were held 

constant for the tests performed for all models. 

The application of the evolved FRBS revealed controllers evolved for a large number 

of generations were capable of balancing the pole in less than 2 seconds (Fig. III.13). 

However balance was achieved in angles very close to zero but not zero.  

Overshooting was not present in any of the tests carried out in experiment 3. On the 

other hand FRBS evolved for fewer generations were not stabilizing the pole, but 

rather fluctuating around vertical position in small angles (Fig. III.14). 
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Figure III.13: EVOFINE, cart pole controller performance; balances pole, 

experiment 3. 

 

Figure III.14: EVOFINE, cart pole controller performance; fluctuating pole, 

experiment 2. 
 

Experiments on modelling non linear MISO function, exhibited very similar 

performance in terms of final outcome. It is however clear that when damping 

mutation rates were applied the FRBS evolve faster an optimum solution.  

The advantage of identifying faster an optimum solution lies in the required 

computation time. Experimental results, described in figure III.5, reveal that 

damping mutation rates achieve very good performance after 100 generations. 

Experiments on modelling a dynamic system, namely the cart pole system, resulted 

in better performance than the feedback linearization controller base on the work of 

Callinan (Callinan T, 2003). However the Callinan controller was concerned with angle 

and position stabilization, which is a more complex task than angle stabilization. 

Although comparing the EVOFINE results with the algorithm used to generate the 
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training data has obvious shortcomings the advantages of the approach have been 

demonstrated.  

We conclude that preliminary results support the efficiency of the EVOFINE toolbox 

and the initial hypothesis that variable-damping mutation rates explore more 

efficiently the search space. 

Since the available variables during the EVOFINE setup process are many, namely 

five (5) for the fuzzy system setup and seven (7) for the GA setup, the problem of 

detecting the optimum architecture is a search problem in a complex space. However 

since the search space is problem specific, which in our experiments is a 

mathematical function and a dynamic system, we have run tests for identifying the 

important features that affect FRBS efficiency in modelling systems. 

In summary the conclusions from the experiments performed on the EVOFINE 

toolbox are as follows: 

 Damping mutation rates find an optimum solution faster. 

 A moderate number of Fuzzy Sets (FSs), describing each variable domain, is 

adequate for an efficient FRBS. Increasing the number of FS results in a 

deterministic model rather than a fuzzy system. 

 Optimum performance is achieved when the number of rules equals the number 

of rules describing the system (FullRB, eq. 6.7b). A subset of the RB is sufficient 

for evolving FRBS with adequate performance. This is attributed to the fact that 

most systems have a number of rules that could not be applied in reality. 

 Increasing the number of FS is automatically translated to increased number of 

rules describing the full RB of the system. Thus increasing the FS without 

increasing the number of rules participating in the FRBS, automatically 

suggests a smaller percentage of rules in terms of the rules search space; 

deteriorating the performance 

 The application of FSs with Trapezoid & Triangular MFs Membership 

Functions (MFs), has exhibited better performance than the use of S-Z & 

Gaussian MFs. This assumption could be attributed to the coding and evolution 

process. Since the trapezoid-triangular MFs are coded with the use of three 

elements, mutation function is likely to drastically change the membership 

functions shape by changing only one element. However in the case of Gaussian 

functions, a change in a single element alters only the center or the width of the 

MF, maintaining the shape constant 
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 Computation complexity increases with the increase of the following factors: 

size of training set, size of RB, number of FS, use of Triangular FSs, number of 

individuals and number of generations. The size of the RB is proportional to the 

size of the FR chromosome. The number of FS is related to the number of rules 

that describe the system. Triangular MFs require three elements for describing 

the function, while Gaussian requires only two. Thus the FS chromosome of 

Triangular MFs is larger. Comparison of experiments 1 and 6 (Table III.1) 

reveals that an increase of RB from 5 to 75 increases computation time by 1 

minute. On the other hand the increase of FS to 7 (experiment 7, table III.1) 

increase computation time by 2-3 minutes. The use of different MFs 

(experiments 16 and 18) shows that there is no important effect in computation 

time. The increase in computing intensity due to the number of individuals and 

generations is self explanatory. Observation of experiments on the mathematical 

function and the cart pole system reveals that evolution for 100 generation is 

approximately 19 minutes and 21/2 hours respectively. The systems architecture 

is similar in terms of number of inputs and output variables as well as FS.  The 

difference in computation time is attributed to the size of the training set (100 

data sets for mathematical function and 10000 for cart pole). Similarly the 

computation time for 1000 generation exceeds 24 hours for the cart pole system, 

while for the mathematical function is approximately 3 hours. Computation time 

is one the most important restrictions of evolving complex FRBSs. 
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III.2 FUN evaluation 

In a similar manner to the EVOFINE evaluation the FUN toolbox was tested against 

non linear mathematical function (eq. III.1) and the cart pole dynamic control system 

(Fig. III.8). Performance was measured in terms of rmse and % rmse as previously 

described by equations II.1 & II.2 respectively. Computation time was record in 

order to allow comparison between FUN and other methods.  

Due to the flexibility of FUN toolbox, the identification of an optimum architecture 

for the development of NN driven FRBS is a search for a solution in a complex 

space. Instead of investigating all possible combinations of FRBS and NN 

architectures, we have run a series of tests on the mathematical function (eq. III.1) in 

order to identify key features that deteriorate or improve the FUN performance. 

Experimental setup is presented in table III.7. All experiments presented utilize the 

bisector defuzzification method. 

In experiments 1 to 7, we investigate the effect of the type and combination of 

transfer functions. Since NN output is a membership function ranging from 0 to 1, 

we were expecting that output membership functions that perform within this range 

would be more efficient. Example functions are the logsig and poslin transfer 

functions. 

Experiment 8 differs in the type of transfer functions and type of fuzzy membership 

functions. The NN architecture is straight forward. It is a feed-forward back 

propagation network, with three layers. The number of nodes in the hidden layer was 

kept small in order for the NN to maintain its generalizability during the training 

process. The results suggest that the use of triangular MFs and the combination of 

tansig-logsig transfer functions performs well. Examining the percentage rmse in 

table III.7, it is observed that experiment 8 results in 5.98 % rmse, while the use of 

alternative transfer functions results into % rmse in the range of  7.62 to 55.71% 

rmse. Performance of this NN-FRBS architecture scores slightly higher to the best of 

EVOFINE experiments, evolved for 1000 generations. However computation time of 

the system’s training is measured in seconds as compared to hours of the EVOFINE 

method. This architecture was our reference architecture for comparing changes in 

performance of the NN driven FRBS due to changes in the NN and/or FRBS 

characteristics. 
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Experiments 9 & 10, take up a similar architecture to experiment 8. However the 

number of MFs increases (Fig. III.15). Both architectures outperform the previous 

one. The increase of FSs from 5 to 20 slightly improves performance; % rmse of 

5.98 and 5.19 respectively. However this architecture develops deterministic NN 

very similar to normal NN. Since “each” arithmetic value in the input domain tends 

to have a “dedicated” MF, the partitioning of the input space lose its fuzziness and 

thus loose the fuzzy properties. 
 

 
Figure III.15: Membership Functions (MFs); (left) experiment 8, (right) experiment 

10. 
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Table III.7:M
athem

atical m
odel,  FU

N Experim
ents Settings 

Fuzzy Setup 
N

N
 setup 

Perform
ance 

Experiment No 

Number of MFs 

Number of Inputs 

Number of Outputs 

MFs type 

Number of Layers 

Nodes Input Layer/Hidden 

Layer 1/…/Output Layer 

Transfer Functions 

Training epochs 

NN training function 

Type of NN 

NN performance 

functions 

rmse 

% rmse 

Computation time 

(h:m:sec) 

1 

5 

2 

1 

Sig-

Gaussian 

3 

10/50/5 

logsig 

tansig 

 

1000 

traindx 

newff 

mse 

0.0762 

7.62 

0:00:07 

2 

5 

2 

1 

Sig-

Gaussian 

3 

10/50/5 

logsig 

logsig 

 

1000 

traindx 

newff 

mse 

0.2223 

22.23 

0:00:07 

3 

5 

2 

1 

Sig-

Gaussian 

3 

10/50/5 

tansig 

tansig 

 

1000 

traindx 

newff 

mse 

0.1432 

14.32 

0:00:08 

4 

5 

2 

1 

Sig-

Gaussian 

3 

10/50/5 

logsig 

poslin 

 

1000 

traindx 

newff 

mse 

0.5456 

54.56 

0:00:07 

5 

5 

2 

1 

Sig-

Gaussian 

3 

10/50/5 

poslin 

poslin 

 

1000 

traindx 

newff 

mse 

0.5571 

55.71 

0:00:07 

6 

5 

2 

1 

Sig-

Gaussian 

3 

10/50/5 

logsig 

satlin 

 

1000 

traindx 

newff 

mse 

0.4845 

48.45 

0:00:07 

7 

5 

2 

1 

Sig-

Gaussian 

3 

10/50/5 

poslin 

satlin 

 

1000 

traindx 

newff 

mse 

0.2717 

27.17 

0:00:07 

8 

5 

2 

1 

Trapez-

Triang 

3 

10/50/5 

tansig 

logsig 

 

1000 

traindx 

newff 

mse 

0.0598 

5.98 

0:00:08 
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9 

10 

2 

1 

Trapez-

Triang 

3 

20/50/10 

tansig 

logsig 

 

1000 

traindx 

newff 

mse 

0.0527 

5.27 

0:00:09 

10 

20 

2 

1 

Trapez-

Triang 

3 

40/50/20 

tansig 

logsig 

 

1000 

traindx 

newff 

mse 

0.0519 

5.19 

0:00:10 

11 

5 

2 

1 

Trapez-

Triang 

3 

10/200/5 

tansig 

logsig 

 

1000 

traindx 

newff 

mse 

0.0596 

5.96 

0:00:15 

12 

5 

2 

1 

Trapez-

Triang 

3 

10/2000/5 

tansig 

logsig 

 

1000 

traindx 

newff 

mse 

0.0595 

5.95 

0:00:57 

13 

5 

2 

1 

Trapez-

Triang 

3 

10/50/5 

tansig 

logsig 

 

3000 

traindx 

newff 

mse 

0.0591 

5.91 

0:00:17 

14 

5 

2 

1 

Trapez-

Triang 

4 

10/500/100/

5 

tansig 

logsig 

logsig 

3000 

traindx 

newff 

mse 

0.0594 

5.94 

0:03:27 

15 

5 

2 

1 

Trapez-

Triang 

4 

10/500/100/

5 

logsig 

tansig 

logsig 

3000 

traindx 

newff 

mse 

0.059 

5.90 

0:03:55 

16 

5 

2 

1 

Trapez-

Triang 

3 

10/50/5 

tansig 

logsig 

 

1000 

traingd 

newff 

mse 

0.263 

26.30 

0:00:07 

17 

5 

2 

1 

Trapez-

Triang 

3 

10/50/5 

tansig 

logsig 

 

1000 

traingda 

newff 

mse 

0.061 

6.10 

0:00:07 

18 

5 

2 

1 

Trapez-

Triang 

3 

10/50/5 

tansig 

logsig 

 

1000 

traindx 

newff 

msereg 

0.074 

7.74 

0:00:07 
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19 

5 

2 

1 

Trapez-

Triang 

3 

10/50/5 

tansig 

logsig 

 

1000 

traindx 

newlin 

mse 

0.078 

7.80 

0:00:06 

20 

10 

2 

1 

Trapez-

Triang 

4 

20/2000/200

/10 

tansig 

tansig 

logsig 

3000 

traindx 

newff 

mse 

0.0257 

2.57 

0:22:09 

21 

5 

2 

1 

Trapez-

Triang 

4 

10/50/10/5 

tansig 

tansig 

logsig 

1000 

traindx 

newff 

mse 

0.0518 

5.18 

0:00:10 
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Experiments 11 to 12 examine the effect of increasing the number of hidden layer’s 

nodes. The number of nodes increases to 200 and 2000 respectively. The effect of 

increased node number is not very profound (Fig. III.16).  

The following figures present samples of the performance of the training process 

based on the NN output being a degree of membership.  This is translated as having 

a value in the range of 0 to 1. Thus as shown in the experiment 8 training process 

(fig. III.16 left), the mse (Performance) of 0.0072 is the mse of all output 

membership degrees for the total of the training set. Performance axis (Y) is 

logarithmically scaled, while X axis presents the number of experiment epochs. 

 

 
Figure III.16: Training performance; (left) experiment 8, (right) experiment 12. 

 

Using experiment 8 architecture training process was carried out for more epochs 

(experiment 13). Results of experiment 13 suggest that although performance 

increases the rate of increase is lower (Fig. III.17). 

Experiments 14 & 15 examine the effect of increased number of layers and nodes. 

Although compared to our reference architecture (experiment 8) the performance is 

slightly improved, this is achieved at the expense of the computational time; time 

increases from 8 seconds in experiment 8 to 3 to 4 minutes approximately for 

experiments 14 & 15. 

Experiments 16 to 19 test the utilization of different types of NN, training functions 

and performance functions. The results suggest that compared to our reference 

architecture the performance deteriorates in each case. 
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Figure III.17: Training performance. (top left) experiment 8, (top right) experiment 

13, (bottom) experiment 20. 

 

Experiment (20) has proven to be the more efficient architecture. We have 

incorporated all the features that shown an improvement in performance in all the 

previous tests. The number of layers and nodes as well as the number of MF and 

training epochs was increased. However although performance was improved, the 

computational time increased by 165 times. Another disadvantage of this 

architecture is that due to increased number of nodes, compared to the size of 

available training data (100 data sets), the NN is bound to lose its genera ability. 

Figure III.17 (bottom), presents the training process of the experiment 20. The slope 

of improving the NN performance is quite steep, showing that if the NN was allowed 

to train for more epochs the performance would have been improved. Figure III.18 

presents the generated surface of the resulted NN driven FRBS. Comparing the 

original surface mapping of fig. III.1 to the presented graphs we observe how closely 

the NN driven FRBS of experiment 20 resembles the graphical representation of the 

mathematical function 
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Figure III.18: Surface mapping of FUN performance for z=sin(x*y);  

(top left) experiment 1, (top right) experiment 8, (middle left) experiment 10, (middle 
right) experiment 11, (bottom left) experiment 12, (bottom right) experiment 20. 

 

Although the experiments with NN architectures for a large number of hidden layer 

nodes (2000 hidden layer 1 and 200 hidden layer 2) exhibited very good 

performance, most of the experiments were criticized in terms of loss of the ANN 

generalizability. It is known as a rule of thumb that the number of neurons in the 

middle layer should not exceed the number of data sets in an epoch so as the neural 

network does not memorize the input set. 

Based on the above rule and taking into consideration the Kolmogorov’s theorem as 

reformulated by Spencher’s version of the representation theorem (Kurkova V. 1992), 

which states that a three layer ANN can map any real vector of dimension (M) to any 
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other real vector (N), when the middle layer has (2M+1) neurons, we decided to 

utilize NN architectures which have less hidden nodes than the total number of data 

sets for an epoch, which in our case they were 100, and middle layer node number 

exceeded the calculated number of Kolmogorov’s theorem. Kurkova (Kurkova V. 

1992) presents the approximation architecture of a NN with two hidden layers, where 

the first layer contains N*M*(M+1) nodes and the second hidden layer contains 

M2*(M+1)N nodes. Experiments number 8 and 21 architectures have demonstrated 

good performance. The resulted surface mapping of the function is shown in the 

following figure. 

 

 
Figure III.19: Surface mapping of FUN performance for z=sin(x*y); 

(left) experiment 8, ( right) experiment 21. 
 

Similar architectures to experiments 8 and 21 were used for training NN-FRBS for 

the cart pole problem. As in EVOFINE evaluation we used the resulted NN-FRBS 

for balancing the cart pole system with initial angles in the range of -9o to 9o. The 

number of nodes in the hidden layers satisfies Kolmogorov’s theorem, and does not 

exceed half the number of data sets available (data sets number is 10000). 
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The architecture of the developed N
N

-FR
B

S is described in table III.8. FU
N

 1 

architecture is graphically displayed in fig. III.20. Perform
ance w

as m
easured w

hile 

FU
N

 utilized the B
isector (B

IS) defuzzification. 

 

Table III.8: FU
N tested architectures for the cart pole system

. 
Fuzzy Setup 

N
N setup 

Perform
ance 

Experiment No 

Number of MFs 

Number of Inputs 

Number of Outputs 

MFs type 

Number of Layers 

Nodes Input 

Layer/Hidden Layer 

1/…/Output Layer 

Transfer unctioFns 

Training epochs 

NN training function 

Type of NN 

NN performance 

functions 

rmse 

% rmse/%mae 

Computation time 

(h:min:sec) 

1 

5 

2 

1 

Sig-Gaussian 

3 

10/25/5 

Tansig/logsig 

1000 

traindx 

newff 

mse 

0.4970 

13.96 

00:01:48 

2 

5 

2 

1 

Trian-Trapez 

3 

10/25/5 

Tansig/logsig 

1000 

traindx 

newff 

mse 

0.1640 

4.61 

00:01:42 

3 

5 

2 

1 

Trian-Trapez 

3 

10/500/5 

Tansig/logsig 

1000 

traindx 

newff 

mse 

0.1568 

4.41 

00:31:14 

4 

10 

2 

1 

Trian-Trapez 

3 

20/500/10 

Tansig/logsig 

1000 

traindx 

newff 

mse 

0.2066 

5.80 

00:34:23 

5 

5 

2 

1 

Trian-

Trapez 

4 

10/25/12/5 

Tansig/tansi

g/logsig 

1000 

traindx 

newff 

mse 

0.1447 

4.91 

00:02:20 
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Figure III.20: Graphical representation of FUN 1 architecture. 

 

Due to the method of training, FUN performance relies heavily on the 

defuzzification method. Since the ANN that substitutes the RB of the FRBS outputs 

the degrees of membership for the output membership functions, the appropriate 

action of the system is dictated by the defuzzification method. Figure III.21 presents 

the FUN experiment 3 performance on stabilizing the cart pole system for different 

defuzzification methods. It is clear that the defuzzification method affects the 

systems performance. However the choice of the appropriate defuzzification method 

is problem specific. 

In the case of the cart pole system, defuzzification methods such as SOM and LOM 

failed to balance the cart pole system at least in one case (theta exceeded +/- 0.52 rad 

limit). This could be attributed to the dependence on a single prevailing output 

membership function rather than “average” values. Similarly MOM did not 

succeeded in balancing the pole. However MOM was fluctuating around zero angles, 

in directions relevant to the initial theta. BIS and CEN methods, were balancing the 

pole by fluctuating around zero theta. Fluctuations were less intense in the case of 

BIS defuzzification method. 

 

 

 

 



279 
  

 

 

 

 
Figure III.21: Cart Pole results of FUN 3 architecture.  

Utilization of different defuzzification methods. Starting from top left Bisector (BIS), 
Centroid (CEN), Mean of Maxima (MOM), Largest of Maxima (LOM), Smallest of 

Maxima (SOM). 
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III.3 ANN Evaluation 

In a similar manner to the tests performed on the EVOFINE and FUN toolbox, 

Artificial Neural Networks (ANNs) were tested against the non linear mathematical 

relationship of eq. III.1, and the cart pole system. 

The tests performed on the EVOFINE and FUN toolboxes were carried out for two 

main reasons. The first was to verify their operation, and the second was to identify 

optimal architectures – experiment setup for utilizing them latter in our research. 

However the evaluation of the ANN was performed to allow a direct comparison 

between the suggested Artificial Intelligence Technologies and a well established 

method. 

The architecture of the evaluated NN is fairly simple. It is a hetero-associative feed 

forward back propagation neural network with one or two hidden layers (Fig. III.22). 

The number of hidden nodes for experiments (Table III.9) was limited by the number 

of training sets available in each training experiment and on the number of inputs, in 

order to satisfy Kolmogorov’s theorem (Kurkova V. 1992). The number of nodes to the 

input and output layers are defined by the problem. 

 

Table III.9: ANN architectures for the z=sin(xy) function. 
NN setup Performance 

Ex
pe

ri
m

en
t N

o 

N
um

be
r 

of
  L

ay
er

s 

N
od

es
 In

pu
t 

La
ye

r/H
id

de
n 

La
ye

r 

1/
…

/O
ut

pu
t L

ay
er

 

Tr
an

sf
er

 F
un

ct
io

ns
 

Tr
ai

ni
ng

 e
po

ch
s 

N
N

 tr
ai

ni
ng

 fu
nc

tio
n 

Ty
pe

 o
f N

N
 

N
N

 p
er

fo
rm

an
ce

 

fu
nc

tio
ns

 

rm
se

 

%
 rm

se
 

C
om

pu
ta

tio
n 

tim
e 

(h
:m

in
:s

ec
) 

1 3 2/10/1 logsig purline 1000 traindx newff mse 0.098 6.98 0:00:25 

2 3 2/40/1 logsig purline 1000 traindx newff mse 0.0695 6.95 0:00:40 

3 3 2/40/1 tansig tansig 1000 traindx newff mse 0.0732 7.32 0:00:40 

4 3 2/40/1 logsig poslin 1000 traindx newff mse 0.0984 9.84 0:00:40 

5 3 2/40/1 logsig logsig 1000 traindx newff mse 0.0477 4.77 0:00:40 

6 3 2/40/1 tansig logsig 1000 traindx newff mse 0.0294 2.94 0:00:40 

 

 

Table III.9, describes the settings of the experiments carried out for modelling the 

non linear mathematical function of eq. III.1. The different experiment settings focus 

on the appropriateness of the transfer functions and the number of hidden nodes for 

the problem in hand. Columns rmse and % rmse present the root mean square error 

of the ANN against the available data set. Figure III.23, presents the surface mapping 
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of the non linear function based on the ANN performance. The training set included 

100 data sets. ANN architectures introduced a maximum number of 40 hidden nodes, 

avoiding over-training of the ANN. 

Results from table III.9, and graphical representations (fig. III.23) suggest that the 

ANN architecture of experiment 6 is optimal for the problem in hand. If we closely 

observe graphical surface mapping of experiments 1 to 3, we can see that hidden 

layer transfer functions result to negative values of the output variable, while the 

output domain is from zero (0) to one (1). 

 

 

 
 

Figure III.22:Basic Architecture of the ANN.  
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Figure III.23: Surface mapping of ANN performance for z=sin(x*y); 

(top left) experiment 1, (top right) experiment 2, (middle left) experiment 3, (middle 
right) experiment 4, (bottom left) experiment 5, (bottom right) experiment 6. 

 

Similar architectures to experiment 6, were trained with the available data set for the 

cart pole system. Table III.10 presents the experiment settings. The number of nodes 

as well as the number of hidden layers was allowed to increase due to the larger data 

set available (10,000 data sets).  

Experiments 5 to 7, utilize a two hidden nodes architecture. The number of nodes in 

the second hidden layer is the half (rounded) the number of nodes in the first hidden 

layer. Results suggest that increasing the number of hidden nodes does not provide 

us with an optimum solution. Figure III.24 presents graphically the change in 

performance related to the change in the number of hidden nodes. A relatively small 

number of hidden nodes provide better results (improved generalization), however as 

the number of nodes decreases further performance deteriorates (possible under 

training). 
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Table III.10: ANN architectures for the cart pole system
. 

N
N

 setup 
Perform

ance 
Experiment No 

Number of Layers 

Nodes Input 

Layer/Hidden Layer 

1/…/Output Layer 

Transfer Functions 

Training epochs 

NN training function 

Type of NN 

NN performance 

functions 

rmse 

% rmse 

Computation time 

(h:min:sec) 

1 

3 

2/200/1 

tansig 

logsig 

 

1000 

traindx 

newff 

mse 

0.2308 

6.52 

0:11:34 

2 

3 

2/40/1 

tansig 

logsig 

 

1000 

traindx 

newff 

mse 

0.1163 

3.28 

0:02:13 

3 

3 

2/25/1 

tansig 

logsig 

 

1000 

traindx 

newff 

mse 

0.0492 

1.39 

0:01:24 

4 

3 

2/10/1 

tansig 

logsig 

 

1000 

traindx 

newff 

mse 

0.0821 

2.32 

0:00:35 

5 

4 

2/40/20/1 

tansig 

tansig 

logsig 

1000 

traindx 

newff 

mse 

0.0524 

1.48 

0:03:34 

6 

4 

2/25/13/1 

tansig 

tansig 

logsig 

1000 

traindx 

newff 

mse 

0.0315 

0.89 

0:02:09 

7 

4 

2/10/5/1 

tansig 

tansig 

logsig 

1000 

traindx 

newff 

mse 

0.0521 

1.47 

0:00:49 

 A
rchitectures w

ith higher com
plexity (Table III.10, experim

ents 5 to 7), provide us 

w
ith better results in expense of com

putation tim
e. 
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Figure III.24: Effect of hidden node number to ANN performance. 

 

Figure III.25, presents the cart pole stabilization process for initial thetas ranging 

from -9o to +9o. Experiments with optimum performance (Table III.10, experiments 

3 and 6), in terms of rmse have successfully balanced the pole at zero angles in less 

than two seconds. Only in a few cases of experiment 3 testing stabilization was 

achieved in over 2 seconds. 

Experiments that exhibited poor performance (1 and 2), could not successfully 

balance the pole at zero angles for all the initial angles. Experiments 4, 5 and 7, have 

balanced the cart pole systems in less than four (4) seconds but in angles slightly 

greater than zero.  

Balancing the pole at angles other than zero, describes the stabilization (no 

significant fluctuation) of the pole at angles close to zero while moving the cart to a 

specific direction for maintaining this angle. This is valid for our experiments since 

the evaluation was concerned only with the pole stabilization and not with the cart 

position. However such a stabilization is not effective since it appears at non zero 

angles. 

Experiment 1, appears to stabilize at non zero angles the poles, depending on initial 

angle. If initially the pole tipped to the right, then stabilization appeared at none zero 

right angles. This is supported by the rmse percentage results of the experiment 1 (% 

rmse=6.52, table III.10). 
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Figure III.25: ANN performance for the cart pole system; 

Experiment 1 (top left), Experiment 2 (top right), Experiment 3 (raw 2 left), 
Experiment 4 (raw 2 right), Experiment 5 (raw 3 left), Experiment 6 (raw 3 right), 

Experiment 7 (bottom left). 
 

Experiment 2, seems to deteriorate in performance for a specific direction of initial 

pole angles. Although performance deteriorates, balancing is achieved at the same 

angle direction but at longer stabilization time. 
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The best stabilization results were achieved with ANNs that performed best in table 

III.10; namely experiment 6 and experiment 3. This is in line with the conclusions 

drawn from figure III.25. The architectures of experiments 6 and 3 incorporate a 

hidden layer(s) architecture that involves sufficiently small number of nodes for 

achieving improved generalization and avoiding over training of the NN. 

 
Table III.11: re-runs of ANNs tests. 

NN setup Performance 

R
e-
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ns

 o
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n 
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f N

N
 

N
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tio
ns

 

rm
se

 

1 3 

2/
10

/1
 

ta
ns

ig
 

pu
rli

ne
 

10
00

 

tra
in

dx
 

ne
w

ff 

m
se

 

0.
11

28
98

24
 

2 3 

2/
10

/1
 

ta
ns

ig
 

pu
rli

ne
 

10
00

 

tra
in

dx
 

ne
w

ff 

m
se

 

0.
11

40
18

77
 

3 3 

2/
10

/1
 

ta
ns

ig
 

pu
rli

ne
 

10
00

 

tra
in

dx
 

ne
w

ff 

m
se

 

0.
11

40
43

54
 

4 3 

2/
10

/1
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ig
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rli

ne
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00
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in

dx
 

ne
w

ff 

m
se

 

0.
11

39
37

25
 

5 3 

2/
10

/1
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ig
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rli

ne
 

10
00

 

tra
in

dx
 

ne
w

ff 

m
se

 

0.
11

44
81

96
 

 
NN training was performed only once for each architecture. This could introduce 

bias to the results since different initialization weights could result into improved 

performance. For this reason the training and evaluation similar architectures to the 

experiment 4 (table III.10), was re-runned for five times for the mathematical 

function. Results of the tests are presented in table III.11. Results of rmse 

performance suggest that (with accuracy for the second decimal point) performance 

was similar. The difference was not sufficiently high; expressed as % rmse the 
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difference between worst and best performance was approximately 0.4%. The 

experiment suggests that there could be a bias in performance due to single 

experiment, although this is not significant.  

 

III.4 ANFIS Evaluation 

Similar to the previous evaluations ANFIS method was tested against the non linear 

mathematical function of eq. III.1 and the cart pole system. 

We have developed and tested several architectures of ANFIS models against the 

mathematical function. The architectures as well as the models’ performance are 

described in table III.12. Performance is measured in terms of rmse and % rmse as 

described by equations II.1 & II.2 respectively. Figure III.26 presents the resulted 

mapping of the mathematical function for each of the performed tests. 

Experiments 1 to 4 examine the performance of the models with different types of 

membership functions. Experiment 1, utilizing triangular membership functions, 

performs better. Experiments utilizing linear output MFs type perform better than 

experiments utilizing constant MFs type; comparison of experiment 1 to experiment 

5. 

Table III.12: ANFIS mathematical function test architectures. 
Fuzzy Setup ANFIS Setup Performance 

Te
st
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Fu
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rm
se

 

%
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se
 

C
om
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ta

tio
n 

tim
e 

(h
:m

in
:s

ec
)  

1 9 3 linear trimf 5 hybrid 0.000182 0.018 0:00:01 

2 9 3 linear trapmf 5 hybrid 0.001744 0.174 0:00:01 

3 9 3 linear gausmf 5 hybrid 0.000509 0.051 0:00:01 

4 9 3 linear gaus2mf 5 hybrid 0.001514 0.151 0:00:01 

5 9 3 constant trimf 5 hybrid 0.002573 0.257 0:00:01 

6 25 5 linear trimf 5 hybrid 0.000010 0.001 0:00:01 

7 49 7 linear trimf 5 hybrid 0.000000 0.000 0:00:01 

8 49 7 linear gausmf 5 hybrid 0.000000 0.000 0:00:01 

 

Increasing the number of MFs for each variable enhances models performance as 

witnessed in experiments 6 to 8. However the use of increased MFs has several 

drawbacks. First it requires a large number of training sets for implementing 

adequate training of the ANFIS-NN without compromising the NN generalizability; 

since the heart of the ANFIS algorithm is an ANN and the number of nodes is 
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dictated by the number of input-output variables and variable’s FSs, a sufficiently 

large training set is needed, larger than the resulting node number. Second the 

increase of MFs leads to a deterministic fuzzy model. Finally the increased number 

of MFs results in a large number of fuzzy rules. The complexity of the fuzzy model 

increases with the number of input variables and the number of MFs for each 

variable. This is demonstrated in the number of rules for the experiments 7 and 1. 

Although experiment 7 outperforms the experiment 1, the number of rules is 

increased from nine (9) to forty nine (49). 

Similarly when observing the surface mapping of the mathematical function (fig. 

III.26), it can be noticed that experiments 1 and 6 map the function with sufficient 

accuracy. Although experiments 7 and 8 demonstrate a better performance in terms 

of rmse, surface mapping deviates from the original mathematical function of figure 

III.1.  
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Figure III.26.: surface mapping of ANFIS performance for z=sin(x*y);  

(top left) experiment 1,(top right) experiment 2, (raw 2 left) experiment 3, (raw 2 
right) experiment 4, (raw 3 left) experiment 5, (raw 3 right) experiment 6, (bottom 

left) experiment 7, (bottom right) experiment 8. 
 

For modelling the cart pole system we have used the architectures of experiments 1 

and 6. In a similar manner to the evaluation of the other methods we have used the 

available training sets for training and developing a PDlike cart pole controller. The 

angle and angle derivative were the system’s inputs, while the output is the force 

applied to the cart. 
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Table III.13 describes the models architecture and figure III.27 presents the models 

performance on managing to balance the cart pole system.  

 

Table III.13: Cart pole ANFIS models architecture. 
Fuzzy Setup ANFIS Setup Performance 
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1 9 3 linear trimf 5 hybrid 0.0620 1.75 0:00:04 

2 25 5 linear trimf 5 hybrid 0.0204 0.58 0:00:16 

3 49 7 linear gaussmf 5 hybrid 0.0141 0.40 0:00:55 

4 49 7 linear trimf 5 hybrid 0.0125 0.35 0:00:55 

 

The ANFIS models managed to balance the cart pole system in all occasions. 

Experiment 1 architecture was the slowest among ANFIS models. It required 8 

seconds approximately for balancing the pole.  

 

 
Figure III.27 : ANFIS cart pole models performance;  

(top left) ANFIS model 1, (bottom right) ANFIS model 4. 
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Figure III.28 : ANFIS experiment 1, resulted FRBS architecture. 

 

Results of cart pole ANFIS controllers (fig. III.27) suggest that minimal FS and RB, 

(experiment 1, table III.13) require longer time for stabilizing the pole. The use of 

triangular MFs rather than Gaussian MFs, provides better performance in terms of 

rmse (table III.13, experiments 3 & 4). However during the application of the 

developed models on the cart pole simulation model, there was no significant 

difference in stabilization time.  

As the complexity of the ANFIS model increases so does the computation time. 

Increasing the number of FSs for each input variable from 3 to 7, and subsequently 

increasing the RB, increases computation time by a factor of 13.75. In a simple 

ANFIS system with 2 inputs the change is not dramatic. However in more complex 

system this could be interpreted in computation times of hours instead of seconds. 

 

 

III.5 Benchmarking against other authors and comparison of 

different applied methods 

Although direct comparison against the work of other authors who utilized the same 

mathematical functions (Achiche S, 2004) for testing the efficiency of their genetic 

algorithm is not feasible due to the utilization of different performance criteria, we 

can draw assumptions on the models’ performance based on the cart model 

performance; which is widely used as a benchmarking experiment. 

Yi and Yubazaki (Yi J, Yubazaki N, 2000), suggested a fuzzy controller based on the 

dynamically connected single input rule modules (SIRM). Although the pole 

stabilization was assigned with higher priority than the cart position, the controller 

stabilized the cart-pole within 9.0 sec, for higher initial pole angles than our 
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experiments. Our controllers’ performance was better, but our proposed controllers 

were concerned only with the pole stabilization, irrespectively to the cart position.  

Magdalena (Magdalena L, 1997), applied an evolution algorithm for modifying the 

scaling function of each input or output variable. The evolved fuzzy controller was 

tested against the cart pole system. The fuzzy controller was capable of stabilizing 

the cart during the 60 sec experiment duration, but stabilizing times were graphically 

presented above the 10 seconds. 

Belarbi et al (Belarbi K, 2005), suggested an evolution method for Mamdani FRBS rule 

minimization. Although the application of their controller to the cart pole system did 

not yield impressive results (stabilization above 9 sec), the resulted RB was very 

compact, with only five rules.  

Gurocak (Gurokak H.B, 1999), applied genetic algorithms for tuning the RB of a fuzzy 

controller by shifting the peak fuzzy sets locations. Authors have applied their 

method for tuning a nine (9) rule PD-like fuzzy controller, and applied it to the cart 

pole system. The resulted FRBS balanced faster the pole than the un-tuned fuzzy 

controller, minimizing the overshoot. Balancing was achieved approximately in 1.5 

sec. However the proposed method could be applied to final design stages, since it 

requires the existence of an initial rule base. 

It is important to point out, that due to the adopted method of our research, the 

efficiency of the resulted cart pole controllers depends on efficiency of the controller 

used to generate the training set. The performance of the developed controllers is 

expected to improve with the use of a more advanced cart pole controller for 

generating data sets. 

 

III.5.1 Discussion on methods efficiency 

Modelling a complex system is usually a balance between performance and 

computational resources. In the experiments that we have carried out on the 

mathematical function, ANFIS modelling method has outperformed the other 

methods both in terms of performance and computation time (table III.14). However 

the modelling of dynamic systems is a more difficult task and performance against 

an available evaluation set does not always guarantee efficient operation under real 

tests. To overcome this obstacle developed models were tested against a simulation 

of the cart pole system rather than on an evaluation set. 
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The method adapted by the FUN toolbox has shown that although performance 

against the evaluation set was close to EVOFINE models, none of the developed 

PDlike controllers was capable of balancing the pole. Furthermore the performance 

of the FUN controllers was variable, depending on the defuzzification method (fig. 

III.21). Since the ANN structure used in the FUN toolbox was trained with input – 

output membership degrees, the defuzzification method is responsible for translating 

the ANN output to a crisp value, and thus the applied force to the cart system. We 

have tested five (5) of the most common defuzzification techniques namely the 

Bisector (BIS), the Centroid (CEN), the Mean Of Maxima (MOM), the Largest Of 

Maxima (LOM) and the Smallest Of Maxima (SOM).  

EVOFINE toolbox has evolved optimal cart pole controller after one thousand 

generations, in the expense of computation time, over 24 hours on an Intel Quad PC. 

Although the performance in terms of rmse was not competitive to the ANN and 

ANFIS controllers’ performance, the EVOFINE model was capable of balancing the 

pole in shorter time. However the balance was achieved in angles slightly higher 

than the zero angles (fig. III.13). 

ANN and ANFIS PDlike controllers were capable of balancing the pole relatively 

fast (fig. III.25 & III.27), in a very similar form. However the ANFIS performance 

was superior to the ANN controller (table III.14). Additionally the computational 

time of ANFIS was less than half the time required for the ANN to be trained. 

 

Table III.14: Comparison of different methods. 
Z=sin(x*y) 

Method Experiment No Performance % rmse  

 

approximate computational 

time h:min:sec 

EVOFINE 17 (Table III.1) 4.31 03:03:00 

FUN 20  (Table III.8) 2.57 00:22:09 

ANN 6  (Table III.10) 2.94 00:00:40 

ANFIS 6,7,8   

(Table III.12) 

0.00 00:00:01 

Cart Pole Controller 

Method Experiment No Performance  

% rmse  

 

Balancing  

time (sec) 

approximate computational time 

h:min:sec 

EVOFINE 4 (Table III.5) 2.90 ~=2 24:46:00 

FUN 3 (Table III.9) 4.41 --- 00:31:14 

ANN 6 (Table III.11) 0.89 ~=2 00:02:09 

ANFIS 4 (Table III.13) 0.35 ~=2 00:00:55 

All the above tests were performed with Matlab 7.1, on an Intel Quad PC. 
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Numerical results presented in table III.14, suggest that the optimum method for 

modelling the test systems is the ANFIS method. However prior to adopting this 

conclusion one should consider the following factors: 

 EVOFINE similar to ANFIS methods result into comprehensive models, with 

transparent architecture to the end user. This is not true for FUN and ANN 

models, which suffer from the “black box” syndrome. 

 EVOFINE, due to computational restrictions, was tested with suboptimal 

architectures, while ANFIS utilized optimal architectures. The RB of the 

EVOFINE FRBSs was a percentage of the total rules. 

 EVOFINE incorporates rule weight; thus introduces rules minimization in the 

evolution process of the FRBSs. This could result into less complex and more 

readable FRBS. ANFIS does not have this feature, thus the complexity of the 

resulted FRBS depends on the number of participating inputs-outputs and the 

number of FSs describing each variable domain. 

 ANFIS develops FRBSs with the use of ANN method. Thus all the applied 

limitations of ANN apply to ANFIS developed FRBS. The architecture in 

terms of input-output variables and FSs is restricted by the number of 

available training sets. If the number of data is sufficiently high for a given 

system, then a large number of FSs could apply to the FRBS. However this is 

not always the case as it will be exhibited in a latter chapter, during the 

application of ANFIS to the ventilation management process. 

 ANFIS method as applied with the Matlab 7.1 toolbox results into TSK fuzzy 

systems. However EVOFINE and FUN toolboxes develop Mamdani and 

Mamdani “like” systems respectively. Mamdani FSs on the systems 

“premise” part of the inference engine allow flexibility both in terms of shape 

and number of FSs as well as defuzzification method. 

 FUN and EVOFINE computation intensity could be counter balanced with 

the use of cluster computer systems. 

 Results of all cart pole controllers capable of balancing the cart pole systems 

(EVOFINE, ANFIS and ANNs), exhibited zero overshoot.  

 

As it has been shown in the experiments performed for each method the model’s 

internal architecture is very important for the efficiency of a model. The 
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identification of an appropriate model’s architecture for each method and for a given 

problem is a balance between designer’s experience and expertise and computational 

resources. However the problem of finding the appropriate model’s architecture for 

specific problems it is on its own, a problem of optimization. 
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Appendix IV: Artificial Intelligence Methods 

IV.1 Fuzzy Rule Based Systems (FRBSs) 
 
Fuzzy Rule Based Systems (FRBSs) constitute an extension to classical rule based 

systems. Classical rule based systems are utilizing classical set theory, where an 

element is represented in binary logic, assigned with values of true (0) or false (1), 

interpreted as belonging or not belonging to a set. FRBSs are build on the 

foundations of fuzzy set theory, were an object is not assigned with a crisp value but 

a membership value to a set. 

Fuzzy Logic (FL) has its roots in the concept of three valued logic, where a variable 

could be assigned to three distinct logic levels: true, false and indeterminate. The 

concept of many valued logic was developed by mathematicians in the early 30s 

(Vitez T.S et al  1996).  Fuzzy Sets (FSs) were introduced by Lofti A. Zadeh in 1965 

(Cox E. 1994,). According to the FSs theory, an element could be assigned with any 

value between 0 and 1, to a specific set. Since the interval [0, 1] has infinite 

numbers, infinite degrees of membership to a set are possible. Thus a membership 

function maps every element of the universal set (often called universe of discourse), 

to an interval [0, 1], where 0 means no membership, and 1 complete membership. 

FL is viewed as an extension of the classic logic systems, providing us with a 

framework for dealing with the problem of knowledge representation in uncertainty 

and imprecision. Its importance arises from the fact that it can mimic human 

reasoning, which is approximate in nature.  

Knowledge representation is performed with the use of linguistic variables. A 

linguistic variable has values of words instead of numbers. Each value refers to a 

membership function. A membership function assigns to a numerical variable the 

degree to which it fits to a linguistic variable. 

In figure IV.1, an example of FRBS is given to simplify the introduction of the 

underlying theory. The system is composed from two input variables and one output 

variable, which is described as Multi Input-Single Output (MISO) system. It 

functions as a minute volume ventilation controller which utilizes two patient 

physiology variables, Oxygen Saturation in arterial blood (SpO2) and End Tidal 

Capnography (ETCO2), for determining the appropriate minute ventilation (VE).  
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Figure IV.1:  FRBS for patient ventilation control. 
 

 
Figure IV.2: Crisp to Fuzzy. 

 
The fuzzy space (universe of discourse) is composed of multiple overlapping 

linguistic variables. The universe of discourse for the SpO2 variable is 0 to 100%. 

The fuzzy sets describing the universe of discourse overlap to some extent. The 

choice of the shape, number, position and size of fuzzy sets for a particular variable 

is problem specific. Traditionally the above characteristics of the fuzzy sets are 

identified with the assistance of experts on the field. In the above example we have 

developed three linguistic variables of triangular and trapezoid shape, namely “Very 

Low”, “Low” and “Normal” Oxygen Saturation. The membership functions most 

commonly used in control theory are triangular, trapezoidal, Gaussian and sigmoid Z 

& S functions.  

A crisp reading of patients Saturation is interpreted as membership degree to the 

fuzzy sets which compose the fuzzy space. A reading of 95%, (Figure IV.2) is 
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assigned with a 0.9 degree of membership only to the fuzzy set described by 

linguistic variable “Normal”. If the reading is 80%, then the crisp value belongs to 

two fuzzy sets, “Normal” and “Low” but with different membership degrees, 0.5 and 

0.3 respectively. The process of assigning membership degrees to crisp values is 

called fuzzification.  

The mathematical representation of membership (μ) to a set (A), is given by equation 

IV.1, and is interpreted as the degree of membership of an element (x) in fuzzy set 

(A). 

 
]1,0[)(  x eq. IV.1 
 

The total of linguistic terms and membership functions of a FRBS forms the Data 

Base (DB) of the system. DB might also include scaling factors used to transform 

between the universe of discourse, where fuzzy sets are defined, to the domain of the 

system variables. 

Operations on fuzzy sets such as Union, Intersection & Complement are a 

generalization of operations of Classical Sets (Ross T.J, 1995). Fuzzy operations are 

mathematically described in the following equations: 

 
Union  ))(),(max()()()( xxxxxxxxx BABABA    eq IV.2 
Intersection ))(),(min()()()( xxxxxxxxx BABABA    eq IV.3 
Complement )(1)( xx AA        eq IV.4 
 
The logic of how the system responds to inputs, is formed as a collection of 

linguistic rules joined by the also operator. Linguistic rules are in the format of “IF 

premise THEN consequent”. 

The total of rules forms the Rule Base (RB) of the system. The form of rules 

expresses an inference, knowing the fact (premise) we can infer a conclusion 

(consequent). Based on this property the rule base of a system is commonly named 

Inference System. This form of knowledge representation expresses human empirical 

knowledge in a similar way to human communication. RB could be derived either by 

expert knowledge on the problem, or with the help of other methods such as Neural 

Networks (Nguyen H.T et al, 2003), Genetic Algorithms (Cordon O et al, 2001), and Wang 

and Mendel’s method (Wang L.X, Mendel J.M, 1992). 

Several methods have been developed for designing inference systems, widely 

known by their primary authors’ names. Mamdani, Takagi-Sugeno-Kang (TSK), 
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Larsen and Tsukamoto, are the three more widely used methods. The first two 

methods are commonly applied, and are briefly described in the next paragraphs. 

Mamdani in 1975 (Mamdani E.H, Assilian S, 1975), proposed fuzzy rules in the form of: 

 

IF x1 is A1 AND x2 is A2 AND …. THEN y1 is B1 AND y2 is B2 …. 

 

Where Ai and Bi are fuzzy sets, and xi and yi are inputs and outputs respectively. The 

above rules are expressed in mathematical terms by the following equation: 

 

)()((),(
1

yxyxR BA ii

n

i
  eq. IV.5 

Takagi-Sugeno-Kang (TSK) model rules are given in the form of: 
 

IF x1 is A1 AND x2 is A2 AND …. THEN fi(x1,x2,….xk) 
 

Where f1,f2,..fn are functions, thus the model produces real valued function: 
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In order to fully describe the operation of the example Mamdani FRBS (fig. IV.1), 

we need to identify nine (9) rules, out of the 27 possible rules (Total number of 

potential rules). The total number of rules is calculated by the product of the fuzzy 

sets utilized by our system. In the case of our example the product is calculated 

utilizing 3 fuzzy sets for input SpO2, 3 sets for input ETCO2, and 3 sets for output VE, 

a total of 3x3x3=27. As the number of inputs-outputs to a system and fuzzy sets 

increase the complexity of the RB increases. However it is not always necessary to 

incorporate the maximum number of rules to a system in order to model its 

operation, since some input - output combinations may not be true for the specific 

system. For the example FRBS of figure IV.1, for simplicity, we have empirically 

developed basic rules following Mamdani method. The four rules that describe the 

operation of our system are the following: 
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An advantage of FRBSs is that rules are evaluated in parallel. When a rule is valid, 

participate in the problem solution, we say it is fired (activated). The application of 

RB is best understood with the graphical representation of an “instance” of the 

systems performance. In the example of figure IV.3, inputs have crisp values of 

Oxygen Saturation =83%, End Tidal CO2=45 mmHg. The crisp values correspond to 

two linguistic variables for each input, firing two fuzzy rules (rule 1 & 2). 

Based on Mamdani implication method and equations IV.2 & IV.3 the aggregated 

output for the rules will be given by the following relationship: 
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Figure IV.3: Graphical Inference Representation of example. 

 

In inference systems such as Mamdani, where a fuzzy output is produced, it is 

common to translate the fuzzy output to crisp values. This process is called 

defuzzification. Defuzzification produces a crisp value that best reflects the FRBS 

operation. Methods such as Bisector, High-center of area, Max criterion, First of 

maxima (or smallest of maxima SOM) and middle of maxima (MOM), are described 

in the bibliography. Figure IV.4 gives the graphical representation of some the 
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prevailed methods. However the dominant method of defuzzification is the Center of 

Gravity (Centroid) method (Cox E, 1994). According to this method the crisp output is 

computed by identifying the center of area of the region of the system’s output. This 

is graphically represented in the example of figure IV.3 (bottom, right side), 

computing of a crisp value for the ventilation rate of 13.5 L/min. 

Bisector provides with similar results to centroid method and identifies the point at 

which the output area is divided into two equal areas. 

Weighted average method is formed by weighting each membership function in the 

output by its respective maximum membership value. 

Center of sums (COS) is similar to the weighted average method, but in contrast the 

weights are the areas of the membership functions instead of the membership values. 

Middle of Maxima (MOM) identifies the mean of the maximum output functions. 

Similarly first (Smaller) (SOM) of maxima and last (Larger) of maxima (LOM) 

identify the minimum and the maximum value of the domain with maximized 

membership degree. 

 

 
Figure IV.4: Graphical  Representation of defuzzification methods. Left Centroid & 

bisector, Right Larger of Maximum (LOM), Middle of Maximum (MOM) and 
Smaller of Maximum (SOM). 

 
Fuzzy Logic demonstrates several advantages over other methods. It can easily 

model complex systems, by introducing a development method similar to human 

communication; experts’ knowledge is encoded directly in a form very similar to 

their decision making process; the RB of a FRBS is evaluated in parallel, thus all 

decision determinants are considered in the solution of a problem; FL model’s 

uncertainty and imprecision in complex models where understanding is limited 

and/or judgmental; the fuzzy system could be developed with the input of experts, or 
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based on available input –output data with the synergism of other artificial 

intelligence methods.  

 

IV.1.1 Fuzzy Logic Applications in Medicine 
 
An initial query in the National Library of Medicine & the National Institutes of 

Health (NCBI, 2006), using the keywords “fuzzy AND medical”, resulted in 457 

articles of theory and application of Fuzzy Logic in the medical field. Figure IV.5 

shows the number of relevant publications over the years 1995 to 2006. 

 

 
 

Figure IV.5:  Articles containing the keywords “fuzzy AND medical”, in NCBI 
query. 

 
A more detailed literature survey by F. Steimann (Steimann F, 2001) reveals the main 

applications of fuzzy sets in the medical field. Figure IV.6, taken from Steinmann 

article, classifies published work into three major categories: classification, inference 

and control. 

T. S. Vitez et al (Vitez T.S et al, 1996), categorizes medical applications of FL, very 

similar to Steimann publication, into the following categories: Pattern recognizers, 

Controllers and Expert systems. 

Linkens (Linkens D.A et al, 1999), analyse further and categorize applications of fuzzy 

logic into: open – advisory control systems, closed loop adaptive and non-adaptive 
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systems, fuzzy unsupervised clustering, fuzzy supervised classification, and fuzzy 

modelling and identification. 

Furthermore Linkens classifies applications of fuzzy logic according to medical 

discipline, and quotes relevant published work for each discipline. Linkens classifies 

published work into the following categories: 

 

Table IV.1: FL categories 
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Figure IV.6: Published work on fuzzy – medical, according to publication year and 
category. Figure is taken from Steimann F, 2001. 
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IV.2 Genetic Algorithms (GAs) 
 
Genetic Algorithms (GAs) is a subclass of Evolutionary Computation (EC) methods. 

Evolutionary Algorithms (EA) are search and optimization methods that emulate 

natural evolution based on three fundamental processes: Mutation, Recombination 

and Selection.  

There are several types of EAs. The most profound are GAs, Genetic programming, 

Evolutionary programming and Evolution strategies. 

GAs were first proposed by Holland (Holland J.H,  1962 & 1978), as search algorithms 

that evolve possible solutions through search in complex spaces.  

GAs have been both theoretically and empirically proven to provide valid 

approaches to search problems (Cordon O et al, 2001). Since natural selection is the 

original concept of the development of GAs, the same terminology is adapted for the 

needs of describing GAs process. Terms as Chromosomes, Genes, Locus, Fitness, 

Genotypes and Phenotypes are utilized to describe the structural elements and 

algorithmic operations (Goldberg D.E, 1989). 

The archetypal of a Genetic Algorithm proceeds in five steps. The developer has to 

represent genetic candidate solutions into chromosomes (often represented as binary 

strings) and to develop a method of assessing the acceptability of each solution 

(often referred to as fitness). The second step involves the random generation of an 

initial population (1st generation) of candidate solutions. The population is subject to 

genetic operations such as reproduction, crossover and mutation. Steps three to five 

are repeated for a specific number of generations or until a good solution to the 

problem have been achieved. 

During reproduction a subset of strings (known as the mating pool), are copied 

according to their fitness (usually called objective function, a measure of string’s 

“fitness” to the problem). The higher fitness is “translated” as higher probability of 

advancing to the next generation. Reproduction could be achieved by algorithms 

such as roulette wheel selection (Goldberg D.E, 1989), were the higher the fitness of a 

string, the larger the surface it occupies on the wheel. Spinning the wheel will result 

in selecting with higher probability, the strings with higher (or lower depending on 

nature of the problem) objective values. 



305 
  

Crossover is performed on the resulting population (following reproduction 

operation). Crossover is considered the most important operator. During this 

operation string segments of parent chromosomes are uniformly exchanged, 

producing offspring’s of solutions that have demonstrated maximum fitness to the 

search problem. The number of parent chromosomes that undergo crossover 

operation, is dictated by the crossover probability.  

Mutation is a secondary GA operation, which provides a means of searching 

unexplored solutions to a search problem. It also inhibits fast convergence to sub-

optimal solutions (Cordon O et al, 2001). The probability of altering a bit of a 

chromosome is defined by the mutation rate. “As a rule of thumb”, mutation 

probability per bit is chosen approximately as 0.001 (Goldberg D.E, 1989). 

Evolutionary methods exhibit several advantages over other search and optimization 

techniques. There is no need for previews and expert knowledge; there is parallel 

search of the problem space leading to efficient exploration and exploitation of the 

search space and search solutions respectively; fast convergence to local optima is 

avoided (Pena-Reyes C.A, Sipper M, 2000). 

 

IV.2.1 GAs Medical Applications 

An initial query in the National Library of Medicine & the National Institutes of 

Health (NCBI, 2006), using the keywords “genetic algorithms medical”, resulted in 

562 relative articles. 

Pena-Reyes and Sipper (Pena-Reyes C.A, Sipper M, 2000), in their survey of evolutionary 

computation in medicine, categorized the application of EAs according to medical 

task, in the following categories: 

 

 Data mining: is the process of identifying patterns and regularities through 

available data. Two major approaches exist; supervised and unsupervised. 

The following two are the most popular applications: Diagnosis, papers 

found use EA to solve a wide range of diagnostic problems, Prognosis, 

papers found use EA to interpret and predict future patient condition. 

 Medical Imaging and signal processing: Identify information hidden in 

medical images and temporal signals, or filter information through a noise 

signal - image. 
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 Planning and scheduling: involves the ontological distribution of resources 

among tasks, subject to constrains. EA used in planning and scheduling to 

solve problems such as allocation of hospital resources, treatment and 

surgery planning. 

  

In their work, they have further categorized the evolutionary technique of Genetic 

Algorithms into classes according to the representation of the genome: 

 

 Unidimensional, binary genome: This is the most widely used representation. 

Fifty one (51) articles were referenced for this class. 

 Multidimensional genome: In medical images, matrices suggest genomes of 

many dimensions. Six (6), articles were referenced for this class. 

 Real-valued genome: In variable optimization problems this representation is 

applied due to high precision. Seven (7), articles were referenced for this 

class. 

 Rule-encoding genome: Rules are directly encoded to the genome. Two (2), 

articles were referenced for this class. 

 Indexed representation: Genome is encoded using alphabet indexes. One (1), 

article was referenced for this class. 

 

IV.3 Genetic - Fuzzy Systems (GFS) 
 
One of main drawbacks of Fuzzy Systems is that they are not able to learn. 

Development of the Knowledge Base (RB and DB), is performed traditionally with 

the input from experts on the problem, or with the aid of other methods.  

Wang and Mendel (Wang L.X, Mendel J.M, 1992), proposed a data driven RB generation 

process. It utilizes a training input-output data set to produce candidate linguistic rule 

sets; an importance degree is assigned to each rule; finally the RB of the system is 

composed from the rules with the higher importance degree from each set. 

Another approach is the Self Organizing fuzzy logic controller (SOFLC), proposed 

by Porky and Mamdani (Chen C.L, Chen Y.M, 1993). The SOFLC is capable of 

generating and modifying control rules, based on an evaluation of systems 

performance. It utilizes the error between the expected output and the actual systems 
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output, as well as the corresponding error change, for replacing or correcting fuzzy 

rules. If at a specific instance the performance is poor then according to strategy, the 

correction is performed few samples back in time. This strategy is called delay-in-

reward. 

Artificial Neural Networks (ANNs or often described as NNs), have been 

extensively used in fuzzy systems (Tsoukalas L.H, Uhrig R.E., 1997). Neural Networks 

can be used in determining membership functions. During the first stage a NN is 

used for classification or clustering of domain data, and during the second stage, 

fuzzification is used for assigning fuzzy membership values to clusters. Tagaki and 

Hayashi (Tagaki H, Hayashi I, 1992) suggested a NN Driven Fuzzy reasoning method. 

According to this strategy a NN is trained from a set of input – output data, not based 

on their crisp values but rather on the degree of membership to predefined input – 

output fuzzy sets. The method could be presented, similar to TSK rules, by the 

following function: 

 

If (x1,x2) is AS then yS=NNS(x1,x2) eq IV.7 

 

Jang & Gulley developed a toolbox for Matlab®, named Adaptive network based 

fuzzy inference system (ANFIS), which is appropriate for learning fuzzy systems 

(Jang J.S, Gulley N, 1995). ANFIS is based on gradient descent optimization with feed 

forward NN, for learning single output TSK systems. ANFIS constructs a fuzzy 

inference system (FIS) whose membership function variables are tuned (adjusted) 

using either a back propagation algorithm alone, or in combination with a least 

squares type of method. A detailed description of ANFIS and NN Driven Fuzzy is 

provided in latter section (IV.4). 

The use of GAs in the development of FRBS is encountered on a wide range of 

application (Sanchez E et al 1997 & Cordon O, Gomide F et al 2004).  The usefulness of 

synergism of the two methods lies in the advantages of each method. GAs are well 

known for their ability to explore complex spaces for suitable solutions, 

incorporating a priori knowledge, while Fuzzy Systems present the Knowledge Base 

in terms familiar to the human communication, modelling efficiently imprecision 

and uncertainty.  

GAs are used for optimizing existing FRBS, and learning KB, although the 

boundaries between the two approaches are not always clear. Applying GAs for 
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optimization results in a faster search and requires less computational resources, but 

it does not explore the total search space. In contrast applying GAs for learning – 

developing the FRBS will likely lead to optimal solutions but the process duration is 

increasing with the complexity of the FRBS. 

Applications of GFSs are mainly focused on the following, briefly described, 

categories. 

 

IV.3.1 Tuning the membership functions 

As Herrera (Herrera F et al, 1995), has suggested the use of GAs can improve 

performance of an existing FRBS, by tuning the fuzzy sets based on training data. 

The process usually utilizes a mean square error (mse), between FRBS output and 

training set as a fitness function. An existing KB is considered as a perquisite for the 

tuning process. Tuning of FSs might involve tuning of shape, size, position, number, 

or a combination of the above. Important in all GFS is the encoding procedure of the 

desired element into a chromosome (long string). Encoding could be performed with 

Binary, Integer or Real values. Both the type of chromosome and the underlying 

logic of encoding are important.  

Herrera and Lozano (Herrera F et al, 1995), encoded all Fuzzy Sets of a rule into a string 

Cri and combined all strings to form a chromosome C=(Cr1,Cr2,..Crn). The string Cri 

was a representation of trapezoidal membership functions, in terms of both position 

and size. The coding utilized real valued genes to reduce search space size. The 

method was verified by numerical examples. 

Gurocak (Gurokak H.B, 1999), propose a tuning process of shifting FSs. In order to 

avoid FSs moving throughout the domain, thus losing linguistic meaning, he 

constrained the movement of the sets. In coding the FS he used a binary code 

indicating the location of each FS. Gurocak concluded that the performance of 

tuning process depends on the quality of the original KB, thus this method could be 

used in final design stages. 

Wong (Wong C.C, Her S.M, 1999) suggested a method of reducing the number of FS in 

order to reduce the complexity of the Fuzzy system. Encoding was performed by 

translating triangular shaped membership functions into strings. The combination of 

strings (chromosome) is the definition of Fuzzy rules. Population was initialized with 

different lengths of string combinations. GAs were applied to identify the optimum 
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set of strings. The application of the method to the inverted pendulum system 

showed that redundant rules were excluded from the optimum solution. 

 

 

IV.3.2 Tuning the scaling functions 

Fuzzy systems use scaling functions for normalizing the universe of discourse (of 

input and output variables). GAs are applied for adapting the scaled universe so as to 

better map the variable range. Changes of scaling functions result in change of 

controller sensitivity, shift of the working range and change in the shape of 

membership functions. 

Magdalena (Magdalena L, 1997), proposed and tested a GAFS, on the cart pole 

example, capable of evolving the scaling functions, the membership functions and 

the control rules. In the proposed system each rule was binary encoded into two 

strings, the first described the input linguistic terms, while the second the output 

linguistic terms.  

Cordon et al (Cordon O, Herrara F, Magdalena L, Villar P, 2001), developed a GAFS, in 

which all KB variables, naming scaling factors, membership functions and RB were 

evolved. In the genetic method a scaling function with two sensibility variables was 

used. The fuzzy system was encoded into chromosomes which were composed from 

three parts. The first part encoded the number of labels; the second part encoded the 

sensibility variables; and the third part encoded the working ranges. RB was 

generated by a simple Wang and Mendel’s rule generation method. Authors 

concluded that good results were obtained from three applications of the proposed 

GAFS. 

 

IV.3.3 Tuning – optimizing the RB 

Assuming an initial FRBS has evolved its KB, it is possible to optimize with the aid 

of GAs the performance of the system by optimizing the performance of FRBS, or 

reducing its complexity by minimizing the number of rules. Chin and Qi (Chin T.C, Qi 

X.M, 1998), proposed a GA method for selecting an optimized subset of rules. The RB 

was encoded into a binary string, where the first bit indicates whether the rule is 

fired, and the consequent three bits represent the rule value. The proposed method 
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utilized two performance indicators, the minimum time-weighted integral of square 

errors and the combined index of overshoot and rise time. Chin and Qi concluded 

based on the inverted pendulum example, that the resulted reduced RB was superior 

over the total RB. 

Roychowhury et al (Roychowhury A et al, 2005), suggested a RB refining method of a 

fuzzy logic controller (FLC) which modelled the decision making process of doctors 

diagnosing Pneumonia and Jaundice. A GA was applied only to the RB, keeping FS 

unaltered. The resulted FRBS was tested against pre-categorized patient data, 

concluding that the optimized FLC is effective for diagnosing a disease based on 

symptoms, in the absence of a doctor.  

 

IV.3.4 Genetic Learning of the FRBS 

The idea of optimization of fuzzy systems is not clearly distinctive from the concept 

of learning. As a general description we can define learning approaches as the 

methods which change complex data structures, which control the systems behavior. 

There are mainly three different learning approaches for GFSs: Michigan, Pittsburg 

and Iterative These different methods approach the problem of cooperation versus 

competition (Cordon O, Herrera F, Hoffmann F, Magdalena L, 2001), by evolving 

populations in different ways. Cooperation vs. competition is used to describe the 

search of a GA to find through competition of population members the best 

cooperation between chromosome elements. 

In the Michigan approach, which was originally introduced by Holland and Reitman 

in the 70s (Holland J.H, Reitman J.S, 1978), each chromosome represents a fuzzy rule. 

Therefore the population of chromosomes encodes the RB of the system. According 

to the survival of the fittest, rules with good performance survive. The system 

maintains the population with credit assignment mechanisms. Thus the Michigan 

approach is actually evolving the RB by competition of the rules. A GA based on 

Michigan approach is the Classifier System (CS). 

In the Pittsburgh approach, introduced by Smith in the 80s (Smith S.F, 1980), each 

chromosome represents a population of RBs, instead of an individual rule. Thus each 

string expresses the system’s behavior. Crossover and mutation mechanisms 

generate new RBs.  Chromosomes could be of fixed or variable length. Since the 

output obtained from a fuzzy system is a cooperative action of fired rules, the 
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Pittsburgh approach addresses this feature adequately compared to the Michigan 

approach. The drawback of the approach is that GA has to search very large spaces, 

which makes it hard and slow to find optimal solutions. 

The Iterative approach, search for an optimum solution is based on a two step 

process. In the first stage similar to Michigan approach, each chromosome represents 

a fuzzy rule. In contrast to Michigan method only the fittest of the population 

survives, to form part of the problem solution. Each rule that survives is added to the 

final set of rules. The sets are benchmarked against training data. During this second 

stage the process examines the cooperation of fuzzy rules, by utilizing Penalizing 

mechanisms. Iterative mechanism search the problem space at two different levels, 

through competitions of individual rules and with the cooperation of the fittest rules, 

thus most adequately address the problem of cooperation vs. competition. 

The learning process involves the following steps: coding of elements into 

chromosomes; initialization of a population; introduction of chromosomes to the 

fuzzy system; evaluation of the performance of the chromosome against available 

data; evolution mechanisms such as crossover and mutation for the generation of 

new populations. 

These three approaches are used for learning the FS, the RB and the KB of a fuzzy 

system. Practical issues arise from the adaptation of each approach such as different 

chromosomes coding techniques, computation power and usefulness on on-line 

systems. 

Jamei et al (Jamei M et al, 2004), exploit the ability of Symbiotic Evolution (SE) to 

elicit Mamdani FRBSs. Each rule is coded into a chromosome utilizing Gaussian 

MFs. The algorithm randomly selects and combines a number (NR) of rule 

chromosomes constructing a number (NFIS) of FRBSs. Each resulted FRBS is 

evaluated and an average fitness value is assigned to each participating chromosome. 

The authors have coded MFs in binary format, and the MFs standard deviation was 

chosen from a predefined set of values in order to avoid very wide or very narrow 

MFs. The proposed algorithm safeguards against identical FSs by measuring the 

similarity among FSs. When similarity measure exceeds a predefined threshold, FSs 

are replaced. Furthermore authors have applied a post processing fine tuning 

technique for the Gaussian MFs in order to enhance FRBS performance. The 

suggested method was applied to the design of an active control suspension system 

with promising results. 
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An excellent example of Genetic learning of KB based on Pittsburgh approach is 

described by Carse et al (Carse B et al, 1996). They proposed a Pittsburgh-style 

classifier, in which encoding of rules is real numbered and the representation is 

similar to Michigan classifiers. Real valued encoding is employed, argued on the 

basis of faster and higher precision representation. The system learns both FS and 

RB simultaneously. Chromosomes are designed to encode both the FS and rules, 

allowing the simultaneous evolution of the KB. The authors favorably compared the 

performance of their proposed algorithm against classical Michigan and Pittsburg 

learning approaches, in specific system’s instances of operation. 

Lim and Willie, (Lim M.H, Willie N.G, 2003) implemented an iterative genetic fuzzy 

method for the automated generation of fuzzy rules, assuming a predefined set of 

linguistic values. RB was coded as a string, and the number of rules in a given 

chromosome became a constrain for the learning process. The entire space for a 

problem is described by RBs with different number of rules (n). The authors divided 

the space into subspaces according to the number of rules. The GA started from the 

chromosomes of length equal to half of the maximum number of rules that fully 

describe the fuzzy engine. If the evolution of the “middle” length rules exhibited 

performance better than a threshold (fitness value), the GA continued evolving 

chromosomes of rules with reduced length by one. If the evolution of middle length 

chromosomes did not result in an acceptable solution, the GA proceeded with 

chromosome lengths increased by one. Due to the coding of the chromosome, a 

special crossover operator was chosen, named position assigned crossover. The GA 

was used to evolve rules for an industrial application. The resulted RB was made up 

from ten (10) rules. The genetic-fuzzy engine was compared against an expert fuzzy 

system with seventeen (17) rules. The authors concluded that both systems exhibited 

desirable performance, but the genetically evolved fuzzy engine gave a faster 

response. 

Belarbi (Belarbi K et al, 2005), proposed a GA algorithm for rule base reduction of a 

Mamdani fuzzy logic controller. The chromosome proposed in this work was 

composed by two sub-chromosomes. The first contains the triangular shaped fuzzy 

sets triplets that identify size and position of the FS, and the second contains the 

binary weights. The presentation of the chromosome is described in the following 

string: 
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Chromosome=( [ a1,b1,c1, a2,b2,c2,…an,bn,cn], [w11,w12,…w1m], ….[wn1,wn2,…wnm] ) 

Where a1,b1,c1 are the triplets of triangular FS1, and w11,w12,…w1m are the weights of 

Rule 1.  

The optimization process was safeguarded against the search for a fuzzy system with 

zero rules. Performance criteria focused on exploring the chromosome with the 

minimum number of rules producing results of a given stability. Results on the 

example of pole and cart system showed that reduced RB fuzzy system exhibited 

good robustness properties. 

 

IV.4 Synergism of Fuzzy and Neural Methods.  
Fuzzy and neural systems have a complementary nature of characteristics. Dealing 

with uncertainty and inaccuracy is one the strengths of fuzzy logic while its 

weakness, the ability to learn, is the strong point of neural networks.  

Buckley et al (Buckley J.J, Hayashi Y, Czogala E, 1993) have proven that feed forward 

neural nets can approximate fuzzy expert systems and vice versa. Authors have 

shown that both methods can approximate each other to any prescribed number of 

decimal places, concluding that “if a continuous process is controllable, then it can 

be controlled by some fuzzy controller” (Buckley J.J, Hayashi Y, Czogala E, 1993). 

 

IV.4.1 Neural Networks 
 

Neural networks consist of interconnected information processing units called 

artificial neurons (Figure IV.7). The structure of a neuron consists of external inputs 

(X1,X2,..Xn), synapses, dendrites, a soma and an axon, which transmits output to 

other neurons (Picton P, 2000).  

Inputs are modified by weights (Wij), representing the synaptic junctions. Each 

synaptic output is an input to the soma called dendritic input. Each dendritic input is 

a transformed version of the external input. The mathematical relation usually 

applied for producing dendritic inputs is given in equation IV.8. 

iijij xWd *   eq. IV.8 
 

The neuron produces an output when the aggregated activity of all dendritic inputs 

exceeds a threshold value (T). The aggregated activity is often computed as the 

summation of dendritic inputs (eq. IV.9). 
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 n

i

ijj dI
1

   eq. IV.9 

The neural output is performed with the activation or transfer function. Activation 

function varies with the type of neuron we choose to use. Perceptron for example 

uses the activation function of eq. IV.10, and produces binary output in terms of 

activation occurrence or not. Usually threshold (T), is a negative bias value. 

 

  n

i

jijj TXWisignY
1

]*[   eq. IV.10 

 
During neural network training an external input set and corresponding output set is 

utilized for adjusting weights and threshold values. The use of training input – output 

sets is named supervised training and is the prevailing method. Other methods such 

as graded learning, unsupervised learning and competitive learning have found 

application in neural networks development. 

 

 
Figure IV.7: Schematic representation of a neuron. 

 

IV.4.2 Synergism of Neural Nets and Fuzzy Systems 
 
Neural networks and fuzzy systems are applied in synergism, by using two different 

approaches. The first is embedding fuzzy methods in neural networks described as 

fuzzification of neural systems (fuzzy-neural computing), and the second is 

introduction of neural networks to fuzzy systems, described as neuronal 

enhancements of fuzzy systems (Tsoukalas L.H, Uhrig R.E., 1997). 
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Fuzzy-neural computing is associated with the introduction of fuzzy approaches into 

neurons. The fuzzication is applied by substituting parts or total of neuron crisp 

operators with fuzzy ones.  

Fuzzification could be applied to external inputs, where the input vectors are defined 

over the unit hypercube [0,1]n. Inputs are fuzzy signals membership functions, thus 

the neuron could be considered as the representation of a linguistic variable. 

Similarly the output (Y) could be associated with a membership to some linguistic 

value. 

Fuzzification of neurons could also be applied to synapses. The synaptic operator is 

substituted by min, max and more generally T and S norms operators. A logical OR 

(max) fuzzy synaptic operator is described in equation IV.11. 

 

iijj xWdi   eq. IV.11 
 

Fuzzification could also be performed on the aggregation operator. An aggregation 

function could be designed to select maximum or minimum dendritic inputs to a 

soma, as in equations IV.12 & IV.13, or bounded by a graded membership over the 

unit interval ( ]1,0[u ), as in equation 2.34. 

 

ij
n

i
j dI

1   eq. IV.12 

ij
n

i
j dI

1   eq. IV.13 

 n

i

dj uuI ij

1

/)(   eq. IV.14 

 
Where  & is min and max respectively. 

 
With the use of different types of fuzzy operators, in different parts of neurons we 

have neurons with different properties. 

The second type of synergism is to introduce neural methods in fuzzy systems, 

neural network driven fuzzy reasoning is an example of such synergism. Cascading 

neural networks and fuzzy systems, not necessary in this order, is a hybrid 

combination of both methods. When numerical measurements provide much detail, 

then a NN may process information prior to feeding it into a fuzzy system in order to 

improve response time. Such systems accept measured inputs as inputs to a NN, and 

NN produce outputs which are feed as inputs to a fuzzy system (Fig. IV.8). 
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Figure IV.8: Cascaded systems. 

 
Most commonly applied is the use of NN for identifying membership functions. NN 

have proven performance in clustering – classification problems, and are 

successfully implemented for clustering input – output domain data for fuzzy 

systems. 

Takagi and Hayashi (Tagaki H, Hayashi I, 1992), proposed a neural network driven 

fuzzy reasoning (NDF) for TSK fuzzy systems, known as T-H method. NDF 

constructs inference rules from the learning function of neural networks. The 

architecture is designed on two NN. The first a back propagation NN represents 

fuzzy sets (IF part), while the second represents a relationship between input and 

output data of each rule (THEN part). NDF uses training data to obtain optimal 

membership functions and inference rules, but is unable to adapt – change rules in 

different environment. In the T-H method the TSK rules are replaced by a NN as 

shown in equation IV.15. 

 
IF (X1,..Xn) is As THEN ys=NNs(X1,..Xn) eq. IV.15. 

Where:  
X: is the vector of inputs 
NNs: is a NN that determines output ys 
s: is the sth rule 
As: is the membership function of sth rule. 
 
Hayashi et al (Hayashi I et al, 1992), proposed a new version of NDF, capable of 

adjusting inference rules in responses to environment, thus capable of learning 

(NDFL). The inference rules structure is described by the equation IV.16. 

 
IF (X1,..Xn) is As THEN ys=Ws0

k+Ws1
k*X1,+..+Wsn

k*Xn  eq. IV.16 
Where: 
W: are coefficients adjusted by pattern search method. 
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The pattern search method first explores the coefficients that point to the right 

direction for optimization, and second moving the coefficients to the pre-diagnosed 

direction for identifying the optimal solution. 

 
Figure IV.9: Architecture of the neural-fuzzy network proposed by XZ Wang et al. 

 
Wang et al proposed a neural fuzzy network for RB generation (Wang X.Z et al 1997). 

The Input and Output variable domains are assigned to Linguistic Variables. Then, 

the Input–Output data sets are translated into membership degrees (μn), and they are 

being concurrently processed by the NN (Fig. IV.9). The NN outputs are 

membership degrees for the output variables. Although the proposed architecture it is 

essentially a neural net, it exhibits the following characteristics: first it describes a 

cause and effect relationship providing transparency to the black box feature of the 

NN, second it utilizes NN technology for processing not the mathematical notation 

of a variable but rather the transformation of the variable to the fuzzy domain, 

providing NN with equivalent but not the same information, third the transformation 

of the variable to the fuzzy domain encodes input data to the range from 0 to 1, this 

minimizes the difference in NN response due to differences in absolute magnitude of 

the inputs, fourth the use of fuzzification and de-fuzzification processes permits the 

system to efficiently deal with inaccurate and imprecise measurements of the input-

output training data. The performance of the system depends heavily on the 

defuzzification technique. 

Adaptive network fuzzy inference systems (ANFIS), was originally proposed by 

Jang (Jang J.S.R, 1993). ANFIS is actually a neural representation of TSK fuzzy 

systems capable of learning through training data. 
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Figure IV.10: ANFIS architecture for 2 input variables and two rules. 

 
Consider a two (2) inputs and two (2) rules TSK fuzzy system described by the 

following rules: 

IF x is A1 and y is B1 THEN Y=f1(x,y)  (f1=w11+w12*x+w13*y) 

IF x is A2 and y is B2 THEN Y=f2(x,y)  (f2=w21+w22*x+w23*y) 

The above system’s output is given by the following equation (Nguyen H.T et al 2003): 

 

)(2)(2)(1)(1
),(2)(2)(2),(1)(1)(1

yBxAyBxA
yxfyBxAyxfyBxAY 

  eq. IV.17 

 
The above fuzzy system could be described by the neural network shown in fig. 

IV.10. The first layer of the system produces outputs, which are actually the 

membership functions for each input for the linguistic variables describing input 

domain data. 

Thus we have, as an example for the first output: 

 
)(1)(11 xAxAO    eq. IV.18 
 

If the linguistic variable is of sigmoid shape then we can describe A1 as follows: 

 

)1(11
1)(1 axbe

xA   eq. IV.19 

 
Where a1 and b1 are the variables describing the membership function shape. 

The output of the second system calculates the firing strength of each rule via 

multiplication or min operator. For example the first output of layer 2, is given by: 

 
)(1)(1)()(21 yBxAyBxAO    eq. IV.20 
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The 3rd layer is actually a normalization function, were the strength of each rule is 

measured against the strength of the sum of all rules. For the first output of layer 3 

we have: 

 

2221
2131

OO
OO   eq. IV.21 

 
The fourth layer is utilizing the TSK functions and produces the first output as 

follows: 

 

y)*wx*ww(
A2(x)B2(y)A1(x)B1(y)

A1(x)B1(y)

y)*wx*ww(
2221

211
2221

2113141

131211

131211




OO
Of

OO
OfOO

  eq. IV.22 

 
The final systems output is given by the summation of Y=O41+O42 and is 

equivalent to equation IV.23. 

The learning of ANFIS system is similar to NN training but rather than optimizing 

weights, it adjusts ai, bi variables for optimizing fuzzy sets. Based on training data 

the ANFIS calculates the error between the output Y and the expected output O and 

adjusts variables for minimizing it, by the following equation: 

 

)( 2

2
1 YOError    eq. IV.23 

 
The presented ANFIS network is a functional equivalent to Sugeno fuzzy model. A 

Mamdani fuzzy system could be similarly constructed, however the resulted ANFIS 

is much more complicated (Jang JSR et al, 1995). 

In ANFIS models development the number of input variables and FS partitioning of 

each variable dictates the complexity of the NN. An example will be provided for 

clarifying the above statement: an ANFIS with 2 inputs and 3 gaussian MFs for each 

input has 12 premise modifiable variables (calculated in the following way: 

2(inputs)*3(MFs)*2(variables describing Gaussian shape). For the same system the 

consequent modifiable variables are 27 (calculated in the following way: 

3(MFs)^2(inputs)*3). Thus in total 39 modifiable variables. If the same system had 5 

MFs instead of 3 then the total of modifiable variables would have been 95. This 

imposes a limitation on the complexity of an ANFIS system based on the size of the 

available training set. If for example the available data set was 50 sets of data, then 
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the latter architecture could not apply, because modifiable variables exceed the 

number of data sets.  
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Appendix V: Table of published research work on 
ventilation management 
 

Table V.1: List of selected published research on mechanical ventilation support 
systems. 
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07

 

Chen A.H, 
2007 ANN 

Conjugate 
Gradient 
Method 

Age, Days 
Intubation,Day
s estimating, 

HR, Psys, 
Spec. Vol. of 
blood, Na, K, 

PIP, Index 
quick breath, 
Cough, MV, 

X-ray, 
Capacity of 

Urine 

Weaning 
predictions 

Ventilated 
patinets 

121 data 
sets of 

real 
patient 

data 

Predictio
n of 

weaning 
vs 

successfu
l weaning 

Sensitivit
y & 

Accurac
y 

Sensitiv
ity 0.79 
Accura
cy 0.73 

Levenberg-
Marquarft 

Sensitiv
ity 0.80 
Accura
cy 0.63 

One-step-
Secant 

Sensitiv
ity 0.83 
Accura
cy 0.74 

20
07

 

Tzavaras 
A, 2007 

Neural 
Network 
Driven 

FL 

FUN SpO2, C,R, 
PIP, Pplat VT,RR 4 COPD 

patients 43 hours 

Differenc
e 

between 
clinical 

sugestion 
& system 

advice 

mse 

VT 
0.22 

ml/Kgr 
RR 
1.21 
BPM 

20
06

 

Liu F, 
2006 

Neuro - 
Fuzzy 
System 

Hebb-Rule-
Deduct 

SaO2, FiO2, 
RR, PEEP FiO2 BIPAP 

patients 

1h 
samplin
g, 408 

data sets 

System's 
suggestio

ns vs 
Recorded 

Patient 
Data 

rmse 

1.13 

POPFNN 7.39 

RSPOP 7.35 

EFuNN 2.52 

DENFIS 2.11 

ANFIS 1.61 

20
06

 

Wang A, 
2006 

Neuro - 
Fuzzy 
System 

ANFIS Weight, PEEP, 
PIP, RR 

Tidal Volume 
(VT) 

Patient Data 
& SOPAVent 

simulation 

5 
patients 

(7 +1 
senarios

) 

Model's 
output in 
terms of 
PaO2 & 
PaCO2 
vs real 

measure
ments 

Graphica
l 

presentat
ion of 

advice vs 
measure
ments 

No 
numeri

cal 
values 

20
05

 

Tzavaras 
A, 2005 

Fuzzy 
Logic FRBS 

SpO2, 
ETCO2, R,C, 
Temp, CO, 

Body Surface 
Area (BSA) 

VT , RR Simulation 

Physiolo
gy 

Variable
s, 

calculate
d 

Direction 
of 

suggested 
change 

Graphica
l 

presentat
ion of 

produced 
advice 

No 
numeri

cal 
values 

20
05

 

Bouadma 
L, 2005 

Knowled
ge base 

Computer 
driven 
system 
(CDS), 

embedded 
in 

ventilator 

VT,RR, 
ETCO2 

Pressure Support 
(PS), to keep 
patient into a 
comfort zone 

ICU patients 

42 ICU 
patients 

(9 
exclude

d) 

Weaning 
success 

Weaning 
success / 
failure 

25/7 

20
05

 

Spahija J, 
2005 

electrical 
diaphrag

m 
activity 

servo 
control 
target 

adjustment 
of Pressure 

Support 

electrical 
diaphragm 

activity 
PS healthy 

11 
healthy, 
rest & 

excersis
e 

Comparis
on 

between 
assisted 

and 
normal 

breathing 
diap. El. 
Activity 

mean 
values of 
diap.el.a
ctivity 

In all 
cases 
was 

maintai
ned 

bellow 
maxim

um 
target 

20
05

 

Betal S.Y, 
2005 

Fuzzy 
template 

& 
knowled
ge base 

Fuzzy trend 
template 

fitting 

SaO2, tcpO2, 
tcpCO2, RR, 
TI,TE, PIP 

,PEEP, Pmean, 
FiO2. 

Qualitative 
category infants 

7 
neonates 
(124h) 

Comparis
ons of 

changes 
suggested 

by the 
system vs 

Agreeme
nt (%) 

between 
system's 
recomme
ndations 

Ventilat
ion 

91% 
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knowledge 
base 

manageme
nt advisor 

3 qualitative 
variables 

Icalibration tcp,  
suctioning, blood 
sampling, blood 

sampling & 
ventilation 

change (fuzzy), 
enter blood gas 
results, possible 
water trap, alert, 

insufficient 
oxygenation/vent

ilation 

clinician'
s 

suggestio
ns 

and 
clinician

s 

Oxygen
ation 
94% 

20
04

 

Kwok H.F, 
2004 

Neuro - 
Fuzzy 
System 

ANFIS Use 
SOPAVENT 

simulator 
(models 
inputs) 

FiO2 for target 
PaO2 

Septic and 
non-septic 
ventilated 
patients 

ICU 
patients 

data 
1999-
2001 

Model's 
output 
against 
patient 
specific 
model 

mse 0.75kP
a 

Linear 
regression mse 2.06kP

a 

20
04

 

Martinoni 
E.P, 2004 

physiolo
gy 

model 

model 
controller 
vs fuzzy 
controller 

(Schaublin, 
1996) 

eFECO2 
VT, RR 

calculated for set 
point eFECO2 

Surgery 16 
patients 

Differenc
e 

between 
set point 

and 
measured 

Mean 
Rise 
Time 
(sec) 

model 
for 

1%vol 
change 
in target 

144 

Mean 
Deviatio
n from 

set point 
(vol%) 

0.00 

20
04

 

Tehrani F, 
2004 

dual 
controlle

r 

mathematic
al & 

decision 
tree 

SpO2, 
PetCO2, R,C 

VT,RR for target 
PaCO2 

COPD & 
ARDS 

Simulation & 
animal 
studies 

Comput
er model 

of 
humman 
respirati

on 

Time for 
stabilizin
g arterial 
gases to 
normal 

Time <25sec 

PID 
controller FiO2 SpO2   

6 
Yorkshir

e pigs 

SD of 
PetCO2 
& SpO2 

SD 

1.78m
mHg & 

+/-
1.76% 

20
04

 

Kwok H.F, 
2004 (IEEE 
Trans. Inf. 
Tech. in 

Biomedicine
) & Mahfouf 

M, 
"Intelligent 
systems in 
modelling 

and decision 
support in 

bioengineeri
ng" 

FRBS & 
mathemati
cal model 

SIVA 
(Sheffield 
Intelligent 
Ventilator 
Advisor), 

Expert RB & 
RB tunned 

with 
perceptron 

learning rules, 
Two levels. 

PaO2 & FiO2 
(current & 
previous),  

PEEP 

FiO2/ PEEP, for 
target PaO2 & 

PaCO2 
ARDS, 

Pneumonia, 
septicaemia,

BiPAP 
ventilation 

4 
clinical 

senarios, 
pneumo

nia 
patient 

simulate
d with 

SOPAV
ENT 

Differenc
e 

between  
target 
blood 

gases and 
simulated 

blood 
gases 

Graphica
l 

represent
ation and 
numerica

l data, 
commen

ent 
against 

ICU 
senarios 

Fitness 
of 

output 
against 
SOPA
VENT 

simulati
on 

(discuss
ion) 

PaCO2 
(current & 

previous),pH,P
insp,RR 

Pinsp/RR , for 
target PaO2 & 

PaCO2 

20
04

 

Jandre 
F.C, 2004 

feedback 
controlle

r 

PI 
controller 
PETCO2 

VT,R,Tinsp, 
E, PETCO2 VT,RR, I/E time 

6 piglets 
premedicated 

Controll
ed CMV 
for 3x20 
minutes 
in each 
piglet 

Time for 
achieving 
Elastance 

& 
PETCO2 
targets 

time, 
mean & 

SD,  
Oversho

ot 

PETCO
2 53 +/-
22s, 3 
+/-1 

mmHg 

 gradient 
descent 
PEEP 

R,E,PEEP PEEP 

PEEP 
235 +/-
182s, 

6.5 +/-
1cmH2

O 

20
03

 

Kwok H.F, 
2003 

Neuro - 
Fuzzy 
System 

ANFIS 

PaO2, FiO2, 
PEEP 

changes in FiO2 
for target PaO2 

Senarios, 
based on 3 
real patient 
data with 

shunt 

71 
Clinical 
senarios 

using 
SOPAV

ent 
model, 

568 data 
sets 

systems 
advice vs 
clinicians 

advice 

mse 

6.99 

Multilayer 
perceptron 

(MPL) 
6.59 

FAVeM 86.97 

RBN-MB 54.86 

20
00

 

Dojat M, 
2000 

Feeddba
ck 

controlle
r 

NeoGanesh RR,VT, 
PETCO2 

PS, for target 
RR,VT, 

PETCO2 

Patient 
receiving 

PSV (acute 
respiratory 

failure) 

10 
patients 

Proposed 
controller 
vs PSV 

Time 
spent in 

acceptabl
e 

ventilatio
n vs 

standard 
PSV 

Standar
d PSV 
66+/-
24%, 
auto 
PSV 
93+/-
8% 

19
96

 

Schaublin 
J, 1996 

Fuzzy 
Logic FRBS 

(end tidal CO2 
fraction)FECO

2 

VT , RR for 
target ETCO2 Surgery 30 

Patients 

systems 
control 

vs 
clinicians 

control 

(Fuzzy-
Manual 
%vol) 
Mean 

eFECO2 

0.02 

Rise 
Time sec 
(Fuzzy-
Manual) 

(313-
3392)=

-79 
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19
95

 Shahsavar 
N, 1995 

Shahsavar 
N, 1989 

object 
oriented 
Knowled
ge base 

(KUSIVAR
) Variable 
description

s, 
transformat
ion tables, 

expert rules 
& 

mathematic
al models 

40 variables, 
tranformed to 

symbolic 
based on 

classical set 
theory 

Advice (not 
defined) 

Left 
Ventricular 

failure, 
pulmonary 

edema, 
ARDS, 
Asthma, 

COPD, Flail 
chest, 

Extrapulmon
ary VF 

(awake & 
sedated) 

Not 
availiabl

e 

Not 
availiable 

Not 
availiabl

e 

Not 
availiab

le 

VentEX 

Example of 
variables 

demographics, 
blood 

pressure, temp, 
X-ray results 

    

Evaluatio
n of 

Knowled
ge Base, 
Interactio

n of 
experts & 
simulator  

  

Passed 
clinical 
tests, 

inferen
ce 

adjuste
d by 

clinicia
ns 

VentEX 
Initiation 

model 

Initiate or not 
ventilation 

37 ICU 
patients 

Validatio
n of 

initial 
phase 

Compari
son 

between 
advice 

and real 
data 

78% 
agreem

ent 

VentEX 
treatment 

model 

Minute Volume, 
RR, FiO2, PEEP 

12 ICU 
patients, 
1300h, 

51 
forms 

Validatin
g 

treatment  Compari
son 

between 
simulator 

and 2 
physisian
s results, 
against 
expert 
(gold 

standard) 

VentE
X (%) 

diagree
mnet 

MV:4.5
, 

RR:4.5, 
FiO2:1
1.1,PE

EP:15.6
Physici

ans' 
mean 

diagree
ment 
(%) 
MV: 
15.9, 

RR:4.5, 
FiO2:7.

3, 
PEEP:8

.9 

  

Validatin
g 

weaninin
g 

VentE
X 

disagre
emnet 
22.2%, 
Physici

ans 
disagre
emnet  
mean 

24.45% 

19
94

 

Sun Y, 
1994 

Fuzzy 
Logic FRBS 

SaO2, (Error 
SaO2 & Delta 

SaO2) 
FiO2 

Infant ICU, 
no 

intracardiac 
shunt or 

vasoactive 
pressor 

medication 

Infant 
patient 
data, 6h 

from 
each 

      

19
94

 

Laubscher 
T.P, 1994 

mathema
tical 

model 

mathematic
al model 

Test breaths 
data: RC, 

Dead Space, 
CO2 

production 

Ventilation start 
up values for: 

VT,RR 

random 
selection, 
inclusion 
criteria 

hemodynami
c & 

respiratory 
stability 

25 ICU 
patients 

& 17 
ICU 

children 

Comparis
on of 

controller 
& actual 
breathing 
patterns 

two-
tailed t-

test 

33/39 
patients

, 
differen
ce was 
betwee
n +/-

50% of 
mean 

19
93

 Rutledge 
G.W,  
1993 

qualitati
ve & 

quantitat
ive 

computa
tion 

belief 
network 

qualitative & 
semi 

qualitative 
inputs (eg 

Pneumonia) 

Probability 
distributions  of 

physiology 
parametrs for 
mathematical 

model 

retrospective, 
surgical ICU 

patients 

real 
clinical 
senarios 

In another paper  

mathematic
al model 

(VentPlan) 

Ventilator 
Settings 

physiology 
variables & 
predicted 
ventilator 
settings 

10 
patients  
SpO2, 
HR, 

Pmean, 
CVP, 
PAP, 
Temp, 
blood 
gases, 

CO 

Comparis
on of 
model 

predictio
ns 

against 
measured 

blood 
gases 

correlati
on, 

Average 
error, 

Standard 
Error 

PaO2, 
PaCO2: 

corr 
0.77/0.

61, 
Av.E 

17.6/4.
8, SE 

23.5/6.
3mmH

g 
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plan 
evaluator 

Ventilator 
settings 

Evaluation of 
Ventilator 

settings VT, 
FiO2, RR 

335h, 10 
patients 

Direction 
of 

suggested 
change 

Disagree
d/Total 
changes 

2/55 
FiO2, 
7/29 
VT  

19
85

 

Chapman 
F.W, 1985 

Feeddba
ck 

controlle
r 

PI 
controller FETCO2 

VE (minute 
ventilation) for 
target FETCO2 

five 
anesthetized 

dogs 
5 dogs 

Response 
of 

controller 
to 

induced 
step 

changes 

Deviatio
n from 
setpoint 

FETCO
2+/- 
0.1% 

Time for 
returning 
FETCO2 

<30sec 
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Appendix VI: Questionnaire 
 
The questionnaire was originally written in Greek language and is translated for the purpose of the 
PhD thesis. 
 

Athens…/…/2005 
 
Dear Sir/Madame, 
 
The department of Information & Measurement in Medicine of the City University 
London, in cooperation with the department of Medical Instrumentation Technology 
of the Technological Educational Institution of Athens, is performing a PhD research 
project, titled: 
 

«Multivariable Ventilator Advisory System» 
 
The purpose of the study is to design and test an Artificial Intelligence system that 
will acquire ventilation related patient variables and will produce advice on the 
desired ventilator settings for the ventilation management procedure. 
We would appreciate your contribution, in the evaluation of the I.C.U. patient 
physiology variables and the ventilator settings, for C.M.V. (Continuous Mandatory 
Ventilation) ventilation mode, concerning their relative importance, according to 
your experience and expertise, in ventilation management process. 
According to our ethical commitment, responder’s identity will be disclosed from the 
produced results. 
 
Thank you in advance for your cooperation. 
 
Yours sincerely 
 
 
 
Aris Tzavaras 
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Guidelines. 
 

 
1. With the current questionnaire we target in collecting statistical information 

based on the expertise & experience of the I.C.U. doctors concerning the 
importance of the Ventilation related variables.  

2. The answered questionnaire is returned to the City University London, dep. 
Information & Measurement in Medicine, attention to Dr. P.Weller, 
without completing the sender’s data, in order to preserve the anonymity of 
the responder. 

3. All questions (except the demographic ones), refer to C.M.V. (also known as 
I.P.P.V.) ventilation mode, of I.C.U. patients. 

4. Please provide a single answer for each question field. 
5.   Answers ranking follows the scaling from 0 to 10, where 0 stands for Not 

significant and 10 for high significance. 
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Questionnaire 
 

1. Please complete the following demographic data: 

Sex   Male  Female 

Age Group 25-35  36-45  46-55         56-70 

  

2. Years of working experience in I.C.U, following Speciality training. 
 

Years 
 
3. Please classify the following patient characteristics according to their significance 

for deciding ventilator settings, in the starting phase of mechanical ventilation : 
 
  Not 

Significant 
         Very 

Significant 
  0 1 2 3 4 5 6 7 8 9 10 
1 Patient’s 

Age 
           

2 Patient’s 
Weight 

           

3 Patient’s 
Height 

           

4 Patient’s 
Sex 

           

 
4. Please classify the following variable groups, according to their significance in 

ventilation management process: 
 
  Not 

Significant 
         Very 

Significant 
  0 1 2 3 4 5 6 7 8 9 10 
5 Non 

Invasively 
acquired 
variables 
(SPO2, ETCO2, 
HR, 
Temperature) 

           

6 Blood Gases 
(PaO2, PaCO2 
etc.) 

           

7 Measurements 
of Inspired, 
Expired 
Volumes, 
Flow and 
airway 
pressures. 
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8 Measurements 
of Lung 
mechanics 
(Compliance 
& Resistance). 

           

9 Measurements 
of 
hemodynamic 
variables 
(Venous & 
Arterial 
pressures, 
C.O.etc). 

           

 
 

5. Please classify the following variables according to their significance in 
ventilation management process: 

 
  Not 

Significant 
         Very 

Significant 
  0 1 2 3 4 5 6 7 8 9 10 
10 Arterial Oxygen 

Saturation 
(SaO2) 

           

11 End Tidal 
Capnography 
(ETCO2) 

           

12 Heart Rate 
(HR) 

           

13 Core Body 
Temperature  

           

14 Extremes Body 
Temperature  

           

 
 
 

6. Please classify the following variables, acquired directly or calculated from the 
ventilator, according to their significance in ventilation management process: 

 
  Not 

Significant 
         Very 

Significant 
  0 1 2 3 4 5 6 7 8 9 10 
15 Expired Volume 

(VE)            

16 Mean airway 
Pressure 
(PMEAN)  

           

17 Maximum-Peak 
airway Pressure 
(PIP)  

           

18 End-Inspiratory            
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Pause Pressure 
(PPLATEAU)  

19 Intrinsic PEEP 
(Auto PEEP)            

20 Lung 
Compliance            

21 Airway 
Resistance             

22 Work of 
breathing (W)            

 
 

7. Please classify the following variables acquired invasively, according to their 
significance in ventilation management process: 

 
  Not 

Significant 
         Very 

Significant 
  0 1 2 3 4 5 6 7 8 9 10 
23 Partial 

Pressure of 
Oxygen in 
Arterial blood 
(PaO2) 

           

24 Partial 
Pressure of 
Carbon 
Dioxide in 
Arterial blood 
(PaCO2) 

           

25 Hydrogen Ions 
Concentration 
in blood (pH) 

           

26 Concentration 
of H2CO3 in 
blood 

           

27 Oxygen 
Saturation of 
Central Vein 
blood (SVCO2) 

           

28 Partial 
Pressure of 
Oxygen in 
Venous blood 
(PvO2) 

           

29 Partial 
Pressure of 
Carbon 
Dioxide in 
Venous blood 
(PVCO2) 
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30 Cardiac 
Output (C.O.)            

31 Oxygenation 
Index (PaO2 / 
FIO2 

           

32 Mean 
Pulmonary 
Artery 
Pressure 
(ΜPAP) 

           

33 Variation of 
Systolic 
arterial 
pressure 

           

34 Central 
Venous 
Pressure 
(CVP) 

           

35 Pulmonary 
Capillaries 
Wedge 
Pressure 
(PCWP) 

           

 
 
8. Please classify the following ventilator settings according to their significance in 

the ventilation management process: 
 

  Not 
Significant 

         Very 
Significant 

  0 1 2 3 4 5 6 7 8 9 10 
36 Minute 

Ventilation 
(VE) 

           

37 Tidal Volume 
(VT)            

38 Respiration 
Rate (RR)            

39 Positive End 
Expiratory 
Pressure ( 
PEEP) 

           

40 Fractional 
Inspired 
Oxygen (FIO2 ) 

           

41 Maximum-
Peak airway 
Pressure (PIP) 

           

42 Inspiration 
Time /            
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Expiration 
Time (I/E) 

43 Maximum 
Inspiratory 
Flow (Peak 
Flow) 

           

44 Inspiratory 
Pause            

45 Inspiration 
Flow Pattern            

 
 
 

Thank you for your cooperation 
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Appendix VII: Collected Data Range 
Table VII.1: Table of input – output data domain values. 

 
 

Input Parametrs Output Variables 
  

Sp
O

2 

Pa
O

2 

Pa
C

O
2 

pH
 

O
2 

In
de

x 

Ve
 (m

l) 

PI
P 

(m
ba

r)
 

Pl
at

ea
u 

C
 (l

/b
ar

) 

R
 (m

ba
r/

L/
s)

 

H
R

 

H
C

O
3 

Vt
 m

l/k
gr

 

R
R

 (B
PM

) 

PE
EP

(m
ba

r)
 

Fi
O

2 

P 
pe

ak
 (m

ba
r)

 

F 
pe

ak
 (L

/m
in

) 

 
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 

ARDS Evaluation sets max 97 100 46 7,5 323 572 48 31 65 24 92 24 5,5 21 10 0,6 82 60 
min 87 64 29 7,32 107 290 22 0 12 12 56 17 4,29 9 5 0,3 50 43 

ARDS Training Sets max 98 100 46 7,5 327 571 51 34 146 23 94 24 5,5 21 10 0,5 82 60 
min 87 64 29 7,32 107 298 22 0 8 9 54 17 4,29 9 5 0,3 50 43 

COPD Evaluation Stes max 100 97 75 7,46 268 602 51 43,2 61 35 123 46 4,8 27 7 0,65 84 80 
min 91 65,3 35 7,32 106 54 12 16 6 10 56 23 3,36 21 2 0,34 40 60 

COPD Training Sets max 100 97 75 7,46 268 602 51 55 61 35 123 46 4,8 27 7 0,65 84 80 
min 91 65,3 35 7,32 106 54 12 16 6 9,8 56 23 3,36 21 2 0,34 40 60 

Normal Evaluation Stes max 100 194 35 7,51 554 505 32 19 68 17 99 23,4 8,8 16 12 0,5 50 73 
min 92 105 25 7,42 211 384 17 14 36 12 63 7,44 6,25 12 5 0,28 40 19 

Normal Training Sets max 100 194 40 7,51 554 487 34 19 66 17 98 26 8,8 16 6 0,5 50 73 
min 96 105 25 7,41 211 370 16 14 36 11 63 7,44 6,25 12 5 0,28 40 19 

Maximum & Minimum in 
all databases 

max 100 194 75 7,51 554 602 51 55 146 35 123 46 8,8 27 12 0,65 84 80 
min 87 64 25 7,32 106 54 12 0 6 9 54 7,44 3,36 9 2 0,28 40 19 

Used limits max 100 200 80 7,6 600 600 60 55 146 40 130 50 12 30 15 0,8 90 80 
min 80 60 20 7,3 100 50 10 0 6 5 50 7 2 5 0 0,25 40 15 
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