18 research outputs found

    Hybrid Ontology for Semantic Information Retrieval Model Using Keyword Matching Indexing System

    Get PDF
    Ontology is the process of growth and elucidation of concepts of an information domain being common for a group of users. Establishing ontology into information retrieval is a normal method to develop searching effects of relevant information users require. Keywords matching process with historical or information domain is significant in recent calculations for assisting the best match for specific input queries. This research presents a better querying mechanism for information retrieval which integrates the ontology queries with keyword search. The ontology-based query is changed into a primary order to predicate logic uncertainty which is used for routing the query to the appropriate servers. Matching algorithms characterize warm area of researches in computer science and artificial intelligence. In text matching, it is more dependable to study semantics model and query for conditions of semantic matching. This research develops the semantic matching results between input queries and information in ontology field. The contributed algorithm is a hybrid method that is based on matching extracted instances from the queries and information field. The queries and information domain is focused on semantic matching, to discover the best match and to progress the executive process. In conclusion, the hybrid ontology in semantic web is sufficient to retrieve the documents when compared to standard ontology

    An Automatic Intelligent System for Document Processing and Fruition

    Get PDF
    With the increasing amount of documents available on-line, the need for intelligent digital libraries, that allow to automatize the document processing tasks and to suitably organize and make available the documents so as to provide personalized and focused access, becomes more and more pressing. This paper proposes an integrated system that merges intelligent modules covering all the phases involved in a document lifecycle, from acquisition, to processing, to information extraction, to personalized fruition for final users. The role and possible cooperation of Machine Learning and Data Mining techniques in the system is highlighted and discussed, along with their importance to provide effective support to both the building and the fruition of the Digital Library and the underlying knowledge base

    Ontological approach to development of computing with words based systems

    Get PDF
    AbstractComputing with words introduced by Zadeh becomes a very important concept in processing of knowledge represented in the form of propositions. Two aspects of this concept – approximation and personalization – are essential to the process of building intelligent systems for human-centric computing.For the last several years, Artificial Intelligence community has used ontology as a means for representing knowledge. Recently, the development of a new Internet paradigm – the Semantic Web – has led to introduction of another form of ontology. It allows for defining concepts, identifying relationships among these concepts, and representing concrete information. In other words, an ontology has become a very powerful way of representing not only information but also its semantics.The paper proposes an application of ontology, in the sense of the Semantic Web, for development of computing with words based systems capable of performing operations on propositions including their semantics. The ontology-based approach is very flexible and provides a rich environment for expressing different types of information including perceptions. It also provides a simple way of personalization of propositions. An architecture of computing with words based system is proposed. A prototype of such a system is described

    Towards a fuzzy domain ontology extraction method for adaptive e-learning

    Get PDF
    With the widespread applications of electronic learning (e-Learning) technologies to education at all levels, increasing number of online educational resources and messages are generated from the corresponding e-Learning environments. Nevertheless, it is quite difficult, if not totally impossible, for instructors to read through and analyze the online messages to predict the progress of their students on the fly. The main contribution of this paper is the illustration of a novel concept map generation mechanism which is underpinned by a fuzzy domain ontology extraction algorithm. The proposed mechanism can automatically construct concept maps based on the messages posted to online discussion forums. By browsing the concept maps, instructors can quickly identify the progress of their students and adjust the pedagogical sequence on the fly. Our initial experimental results reveal that the accuracy and the quality of the automatically generated concept maps are promising. Our research work opens the door to the development and application of intelligent software tools to enhance e-Learning

    Preferences in discrete multi-adjoint formal concept analysis

    Get PDF
    Multi-adjoint concept lattice theory is a general fuzzy approach of formal concept analysis, which has diverse interesting properties. One of them is that it is possible to provide different degrees of preference among the set of objects/attributes. This paper studies a family of implications, based on the divisible discrete t-norms and in the Miller’s law, which can be associated with a qualitative range of preference degrees to be considered in the applications by non-expert users of the FCA framework.Partially supported by the 2014–2020 ERDF Operational Programme in collaboration with the State Research Agency (AEI) in projects PID2019-108991GB-I00 and PID2022-137620NB-I00, with the Ecological and Digital Transition Projects 2021 of the Ministry of Science and Innovation in project TED2021-129748B-I00, and with the Department of Economy, Knowledge, Business and University of the Regional Government of Andalusia in project FEDER-UCA18-108612, and by the European Cooperation in Science & Technology (COST) Action CA1712

    Integration of FCA with Fuzzy Logic: A Survey

    Get PDF

    A Latent-Dirichlet-Allocation Based Extension for Domain Ontology of Enterprise’s Technological Innovation

    Get PDF
    This paper proposed a method for building enterprise's technological innovation domain ontology automatically from plain text corpus based on Latent Dirichlet Allocation (LDA). The proposed method consisted of four modules: 1) introducing the seed ontology for domain of enterprise's technological innovation, 2) using Natural Language Processing (NLP) technique to preprocess the collected textual data, 3) mining domain specific terms from document collections based on LDA, 4) obtaining the relationship between the terms through the defined relevant rules. The experiments have been carried out to demonstrate the effectiveness of this method and the results indicated that many terms in domain of enterprise's technological innovation and the semantic relations between terms are discovered. The proposed method is a process of continuously cycles and iterations, that is the obtained objective ontology can be re-iterated as initial seed ontology. The constant knowledge acquisition in the domain of enterprise's technological innovation to update and perfect the initial seed ontology

    Big data analytics for preventive medicine

    Get PDF
    © 2019, Springer-Verlag London Ltd., part of Springer Nature. Medical data is one of the most rewarding and yet most complicated data to analyze. How can healthcare providers use modern data analytics tools and technologies to analyze and create value from complex data? Data analytics, with its promise to efficiently discover valuable pattern by analyzing large amount of unstructured, heterogeneous, non-standard and incomplete healthcare data. It does not only forecast but also helps in decision making and is increasingly noticed as breakthrough in ongoing advancement with the goal is to improve the quality of patient care and reduces the healthcare cost. The aim of this study is to provide a comprehensive and structured overview of extensive research on the advancement of data analytics methods for disease prevention. This review first introduces disease prevention and its challenges followed by traditional prevention methodologies. We summarize state-of-the-art data analytics algorithms used for classification of disease, clustering (unusually high incidence of a particular disease), anomalies detection (detection of disease) and association as well as their respective advantages, drawbacks and guidelines for selection of specific model followed by discussion on recent development and successful application of disease prevention methods. The article concludes with open research challenges and recommendations
    corecore