
Transactions on Machine Learning
and Data Mining
Vol. 11, No 2 (2018) 43-62
© ISSN: 1865-6781 (Journal),
ISBN: 978-3-942952-65-1

An Automatic Intelligent System for Document
Processing and Fruition

Stefano Ferilli1

Department of Computer Science – University of Bari
Via E. Orabona, 4, 70125 Bari (BA), Italy

stefano.ferilli@uniba.it

Abstract. With the increasing number of documents available on-line, the need
for intelligent digital libraries, that allow to automatize the document processing
tasks and to suitably organize and make available the documents so as to pro-
vide personalized and focused access, becomes more and more pressing. This
paper proposes an integrated system that merges intelligent modules covering
all the phases involved in a document lifecycle, from acquisition, to processing,
to information extraction, to personalized fruition for final users. The role and
possible cooperation of Machine Learning and Data Mining techniques in the
system is highlighted and discussed, along with their importance to provide ef-
fective support to both the building and the fruition of the Digital Library and
the underlying knowledge base.

Keywords: Document Processing; Digital Libraries; Natural Language Pro-
cessing; Information Extraction; Information Retrieval; Knowledge graphs

1 Introduction

The number of documents available on-line, and/or handled by companies, organiza-
tions and single users, is ever-growing, which leads to the well-known problem of
information overloading (finding useful information items in the overwhelming
amount of available information is nearly impossible using traditional means). Hence,
the pressing need for automatic techniques that support various kind of users in man-
aging, organizing and exploiting the documents and their information content.

Providing solutions to these problems involves several fields of Computer Science:
e.g., Pattern Recognition is needed to process incoming documents in digital or digit-
ized formats, and Digital Libraries are needed to suitably organize them. In this con-
text, a fundamental area to obtain flexible, adaptive and personalized systems is Arti-

44

ficial Intelligence, and specifically its Machine Learning (ML) and Data Mining
(DM) sub-fields, by which the systems may continuously improve the quality and
effectiveness of their behavior and outputs to reach maximum user satisfaction.

While many general- or special-purpose DL and DM techniques have been devel-
oped in the literature and used for dealing with specific tasks, it may be interesting to
investigate how they can be brought to cooperation in order to leverage their peculiar-
ities to tackle several facets of more complex tasks. This paper proposes an integrated
system, that includes several subsystems suitably connected so as to obtain an intelli-
gent digital library: DoMInUS, for document processing and organization; ConNeK-
Tion, for building a conceptual graph using the information provided by the processed
documents, respectively; and GraphBRAIN, for knowledge base design, handling and
fruition. The resulting overall system provides advanced management and consulta-
tion of both the documents themselves, and, which is a characterizing and novel fea-
ture, the knowledge contained in the documents themselves. It can automatize the
document processing tasks and suitably organize and make available the documents,
and the information they contain, so as to provide personalized and focused access. It
represents a basic, general-purpose platform, to be tailored and extended in order to
satisfy specific needs related to the particular context and environment in which it is
to be used. While DoMInUS and ConNeKTion were already presented in the litera-
ture, GraphBRAIN was recently developed, specifically aimed at intelligent
knowledge management, and integrated in the system.

The proposed system pervasively exploits ML and DM techniques, especially
knowledge-based ones, to cover all the steps and functionalities involved in a docu-
ment lifecycle (acquisition, processing, organization, information and knowledge
extraction, personalized fruition by final users), for many possible uses (consultation,
administration, research). The ML/DM functionality is provided by a module called
the Learning & Mining Server (LMS), consisting of a suite of tools that come into
play in different moments and with different objectives to support several tasks and
modules of the other sub-systems. In particular, it includes tools from Inductive Logic
Programming (ILP), the branch of Machine Learning based on (First-Order) Logic
(FOL for short) formalisms and techniques. In addition to the tools, it also handles the
Learning & Mining Repository (LMR), in charge of storing all the models learned by
the ML/DM modules in the LMS, to be used for subsequent providing of services to
the other systems. Two proprietary tools included in the LMS are:

• InTheLEx (INcremental THEory Learner from Examples) [1], an ILP system
for supervised learning of classification rules. It may learn simultaneously
multiple, inter-related concepts. It is a multistrategy learning system, that
supports pure induction with deduction (to recognize concepts that are
implicitly present in the descriptions), abstraction (to remove useless details
from the descriptions), abduction (to guess needed but unknown
information), and argumentation (to resolve cases of conflicting
information). It may handle numeric, taxonomic, and sequential information
in the descriptions.

• WoMan (WOrkflow MANager) [2], a process mining and management
system. It defined a declarative language [3] and a novel mining approach

45

that proved able to learn very complex process models, also in application
domains characterized by significant variability of behavior (such as learning
people’s routines or movements in an environment). In addition to the
mining functionality, it also provides tools for analyzing the learned models,
for supervision and conformance checking of new process executions, and
for prediction of next activities and of the process under enactment.

A very important peculiarity of both InTheLEx and WoMan is their being fully and
inherently incremental, meaning that they may start learning from scratch and pro-
gressively refine their models as long as new examples become available, without the
need for re-training. This allows WoMan to exploit InTheLEx to learn pre- and post-
conditions for the process model components.

Rather than discussing technical details of the single tools in the LMS, this paper
focuses on the description of how they were brought to cooperation in order to sup-
port the task of automatic document processing and fruition. So, its contribution is
two-fold: on one hand, presenting the integrated system, along with its features and
functionality; on the other hand, describing how the various sub-systems were
adapted for integration in the overall system, and how they rely on the ML/DM func-
tionality provided by the LMS. Each of the next three sections will present one of the
sub-systems, and how it is supported by the LMS. Then, the last section will provide
some discussion on the overall system and conclusions about the work.

2 Digital Library Management: DoMInUS

DoMInUS (DOcument Management INtelligent Universal System) [4] is the system
used as the intelligent digital library component, in charge of document management
and organization in the proposed overall system.

2.1 System Description

DoMInUS can handle a set of digital libraries that can cooperate and/or be deliv-
ered in a unique, consistent and co-ordinated fashion.

Different kinds of user roles are available in DoMInUS. Each implies a set of pre-
rogatives regarding document processing, management and access:

• Administrators control the general system and have the power to accept,
include, suspend or expel digital libraries.

• Users that are in charge of managing a single library are called librarians.
They must be enabled to play this role by an administrator or by another
librarian of the same library, and have the power to accept, include, suspend
or expel documents and users of the library. Each librarian can also enable
other users to act as authors and/or maintainers of their library, and plays
himself such roles.

• Authors can submit documents to a library.
• Maintainers are technicians that supervise the document flow inside the

library, check that the automatic processing is correctly carried out, and, in

46

case it is, validate the intermediate or final results, or, in case it is not, make
the proper corrections and then restart it from the last safe accomplishment.

• End-users, the basic role, has just consultation purposes. A query panel is
available to end-users, in which they can combine different search
techniques, mix search results, get help and suggestions for their search,
bookmark and organize the documents of interest. Any newly registered user
starts as an end-user, having access to public libraries only; private libraries
may provide them access by enabling specific rights.

A Graphical User Interface (GUI) is provided for each role, that allows the users to
comfortably manage the single documents, the overall collection(s) and all the pro-
cessing steps. A single user can play several roles in several digital libraries handled
by the system, and the same role in a given library can be played by several users. All
kinds of users are required to register to the system in order to exploit its functionality
because user traceability is deemed as fundamental to ensure a correct and controlled
workflow.

The overall architecture of DoMInUS involves several components, possibly dis-
tributed on different computers. The main components are:

• the Document Processing Engine (DPE), in charge of carrying out the
various tasks that are needed to extract useful information from an input
document and to make it available to final users for search and consultation
purposes;

• the Dominus Data Repository (DDR), a mix of (relational and NOSQL)
databases and files (suitably grouped into folders) in charge of storing all the
documents, the content and information extracted from them, and the
associated meta-data.

Plus the LMS, used to support several tasks and modules of the DPE (e.g., docu-
ment classification, component labeling, layout correction, block aggregation, etc.)
and to provide subsequent user support and document fruition facilities.

A typical document lifecycle in DoMInUS starts with the document submission by
an author. It currently accepts TXT, PS/PDF and raster formats, that are widespread
standards for document interchange; extension to word processing formats, such as
ODT, DOC, and DOCX, is planned for the future. The submitted document is saved
in the DDR, and the DPE is activated to process it, by extracting its layout structure,
assigning the document to one of the classes of interest to the library, and, based on
this, tagging the document components according to the semantic role they play in
that class. Then, the content of the most significant components only is extracted
(which should improve the performance and quality of information extraction), in
order to further process it. In doing this, the DPE stores all the results of the interme-
diate processing steps in the DDR. Subsequently, the document indexing and infor-
mation extraction phases are started. Interesting objects are identified in images, while
several kinds of Natural Language Processing techniques are applied to text (text
categorization, keyword extraction, lexical and semantic indexing). All these steps
will be described in more detail in the following paragraphs.

As a first thing, the input document undergoes a normalization process, that returns
an XML internal representation thereof, independent of the original source format in
which it was provided. The internal representation initially describes the document as

47

a set of pages made up of basic blocks directly extracted from the document source.
Further information and meta-data will be added to this representation as long as the
document processing steps are carried out by the system.

After obtaining the document’s basic representation, the layout analysis step can be
started. Based on several image processing and pattern analysis techniques, it is in
charge of producing the frame-level representation of the document pages. For this
purpose, a pre-processing phase may be required to aggregate the blocks in the basic
document representation, often corresponding to single letters or fragments of words,
into composite blocks corresponding to whole words, and then for further aggregation
of words into lines. Finally, semantically related blocks are grouped into frames, each
corresponding to a homogeneous and significant logical component in the document:
first the Manhattan-shaped components are extracted; then, non-Manhattan sub-parts
(if any) are searched in each frame obtained this way. An introduction to the pre-
processing techniques used in these layout analysis step can be found in [5]. If differ-
ent frames are merged, or single frames are split, in the automatically recognized
layout structure, the maintainer may manually fix the problems by directly pointing
and adding or removing background pieces. Given the final layout, the (textual or
graphical) information in each frame is automatically extracted, stored in the DDR
and added to the document internal representation.

The next step is Document Image Classification and Understanding, aimed at de-
termining which frames are significant and should be further processed. New incom-
ing documents are first classified according to their first-page layout, to determine
what kind of processing they should undergo next. This step is crucial in digital librar-
ies, where many different layout structures for the documents, either belonging to
different classes or even to the same class, can be encountered. Then, each frame
identified therein is associated to a tag expressing its role. In case of failure or wrong
classification, the maintainer can point out the correct outcome, which causes the
models to be suitably updated. So, after this step the final internal representation of
the document contains the original document information, enriched with layout ag-
gregations, class information and components content (text or images) and annotation.

The extracted information is then used for document categorization and indexing,
based on a combination several and complementary techniques, and aimed at support-
ing effective content-based information retrieval by the end users. For this step, Do-
MInUS focuses on a subset of logical components deemed as particularly significant.
Image processing techniques are applied to graphical components in order to identify
known or relevant objects that can contribute to the understanding of the document
content. Textual components are ‘read’, using a third-party OCR engine in the case of
digitized documents, or extracting the text in the case of born-digital sources, and the
extracted text is exploited for filing a record of the document in the DDR. A full set of
NLP techniques is also applied to text frames, including both standard (tokenization,
language recognition, stopword removal, PoS tagging, stemming) and advanced ones
(syntactic and semantic analysis): while the former are often sufficient for document
categorization and indexing purposes, the latter may support more precise and fo-
cused information extraction. An introduction to the NLP techniques used in these
steps can be found in [5].

48

Specifically, document categorization is carried out from two different perspec-
tives: a structured one, that associates the document to categories in pre-defined tax-
onomies, and an unstructured one, that extracts free keywords that are present in the
text. Keyword Extraction is included both for extracting key terms to be used as
metadata for the document, and to perform keyword-based information retrieval. Fi-
nally, Knowledge Extraction is carried out by exploiting ConNeKTion (see next sec-
tion).

As to Information Indexing, several indexes may be computed and stored, differing
for the indexing technique, and/or for the indexing parameters, and/or for the indexed
subset of documents. DoMInUS includes both classical term-based and advanced
concept-based indexing techniques, including a Vector Space Model based on TF-IDF
[6] and a vector space based on Latent Semantic Indexing (LSI) [7] to capture hidden
relationships among terms and documents. A module to suggest refined queries ac-
cording to user relevance feedback is also supported, suggesting a different set of
terms that turned out to be more characteristic of the documents that he singled out as
interesting.

Fig. 1. DoMInUS Graphical User Interface

The user interface of DoMInUS is shown in Figure 1. After logging in (top-left
screenshot), the user must choose the archive to work on and the role to act (top-right
screenshot). The Maintainer’s interface (bottom-left screenshot) allows him to upload
a document and to start the layout analysis phase. The panel on the right-hand-side
allows him to adjust the parameters for the various steps of automatic processing, to
check the step at which the submitted document currently is, and to know whether the
steps already carried out were completely successful or reported any warning or error.

49

In the screenshot, a scientific paper reached the ‘Layout Analysis’ step. Using the
tools available on the left-hand-side and in the menus in the menu bar, the Maintainer
may fix the errors (if any), starting in this way the automatic incremental learning of
corrections for subsequent automatic exploitation, and let the document proceed to-
wards next processing phases. The Librarian’s interface (bottom-right screenshot)
allows him to adjust the indexing and information extraction parameters, and to check
the results of these steps.

2.2 Use of ML and DM techniques

Most of the steps in the previous sub-section exploit the tools in the LMS, which in
turn exploit the models in the DMR. So, the LMS plays a fundamental role in the
overall document processing architecture. It consists of a number of sub-modules, and
it is exploited in two modes:

• The learning mode is used to continuously adapt the domain knowledge
whenever new experimental evidence reveals inadequacies of the learned
models or changes in the context. Since, in typical digital libraries, new
documents continuously become available over time and are to be integrated
in the collection, a predominant role is played by incremental learning
techniques. The learning tasks are carried out off-line, so that the system can
be in continuous operation, using the old models, in the meantime. Only after
termination of the learning task the old models are replaced by the new ones,
transparently to the users.

• The classification mode is exploited to apply the learned models to
subsequent documents in order to automatically process them.

More specifically, the following functionality in DoMInUS is supported by Ma-
chine Learning and Data Mining:

• Recognition of the type of content (text, image, line, graphics, mixed) in the
images of document blocks: using Decision Trees based on features such as
density of black and white pixels, area, width and height of the block, etc.
The block classification model was learned as specified in [8], using the
benchmark dataset of 5473 manually labeled blocks from 54 distinct
documents available in the UCI Machine Learning repository, reaching an
average accuracy above 97%.

• Aggregation of basic blocks into lines: cast as a Multiple-Instance Learning
problem and solved by applying the Iterated-Discrim algorithm [9]. The
target concept is “the two blocks can be merged”; an example is a set of
instances, each describing a reference block and its top-left, top, top-right,
right, bottom-right, bottom, bottom-left and left Close Neighbor blocks. It is
positive if at least one neighbor block should be merged to the reference
block [5]. This task is especially important for multi-column documents,
even more when the content blocks are not aligned in a grid, as in
newspapers.

• Frame recognition correction: using ILP approaches, and specifically
Markov Logic Networks. 786 manual layout corrections applied by the
maintainer were used as examples: 523 examples of merging two pieces of

50

content erroneously split by the system, and 263 examples of splitting a
block obtained by the system that erroneously merged two separate pieces of
content. Each example describes the pieces of content involved by the
correction and their neighboring blocks, along with their size and position in
the document and the spatial relationships among them, both before and after
the manual correction. Accuracy, as measured by the area under the ROC
curve, is 96% for splitting operations and 99.2% for merging operations [10].

• Document clustering: based on ILP approaches, and specifically on a
distance measure for FOL descriptions. Documents of unknown class are
automatically grouped based on a relational description of their layout
structure, expressing the features and spatial/topological relationships of the
content blocks extracted from layout analysis, in order to obtain new classes.
Experiments on scientific papers reported average precision, recall and purity
all above 91% for this task [11].

• Document image classification and understanding, using ILP approaches,
and specifically InTheLEx. Differently from clustering, this is a supervised
learning task, where observations (layout of sample documents) are
manually annotated by the maintainers to become examples for the learning
system. When a maintainer identifies a new, previously unknown classes,
InTheLEx can even autonomously extend the set of classes in the model
(which most learning systems in the literature cannot do). The description of
observations/examples is the same as for clustering, because the two tasks
are aimed at the same result. Experiments on scientific papers resulted in
98% average accuracy for classification, and 95% average accuracy for
understanding [11]. Note that the understanding task is more complex than
the classification task, because, while rules defining classes are usually
independent of each other, rules to identify logical components might be
interrelated (e.g., the ‘authors’ frame might be defined as the frame placed
just under the ‘title’ and above the ‘abstract’).

• Document categorization: both a supervised (using a mix of a similarity-
based – Rocchio – and a probabilistic – Naive Bayes – technique, as in [12])
and an unsupervised (clustering-based) approach are exploited for a better
organization of documents and their subject-based retrieval.

• Keyword Extraction. Two approaches are currently implemented [13], both
taking into account the documents’ logical structure to weigh differently the
terms (e.g., the words in the title are weighted more than the words in the
abstract, which in turn are weighted more than the words in the running text).
The former approach is based on term occurrence statistics, and it is a global
one (it works on the whole collection). The latter approach is a conceptual
one based on WordNet technologies [14], and it is a local one (it works on
single documents).

• Modeling of user interaction: using (declarative) Process Mining approaches,
and specifically the WoMan system. The activities of the user during its
interaction with the system are recorded in logs, that are used as examples to
learn process models. Both general process models of the system’s usage are
learned, and specific models for single users and roles. Analysis of the model
performances when used to supervise new interactions clearly shows a quick

51

convergence towards a standard behavioral model, whose final accuracy is
above 97% for all models. Using the prediction functionality of WoMan, the
system may also predict the kinds of users who are operating and their next
activities, in order to suitably arrange the interface for them accordingly. The
quality of predictions, based on how often the system makes a prediction,
and on how often the correct activity is predicted, and on how confident the
system is in the prediction (see [15]), is above 88% for all tasks.

Some of these tools are also exploited by other sub-modules of the integrated sys-
tem.

It should be noted that the tasks of document summarization and novel document
identification, also facing the issues of starting with only a few examples and learning
the real classes when new samples arrive, were faced also in [16], where the applica-
tion is left open it can be document from a store or a library or even images [17]. In
both work conceptual clustering is considered for learning the document structure
over the document data base, and specifically Fuzzy conceptual clustering as de-
scribed in [18], since there is overlap in the documents. While the task and perspec-
tive is quite similar as ours, these works propose a case-based approach, while we aim
at learning an explicit formal (and human-readable) model.

3 Conceptual Graph Learning: ConNeKTion

ConNeKTion (acronym for ‘CONcept NEtwork for Knowledge representaTION’)
[19] is the sub-system aimed at learning conceptual graphs from text. It also provides
functionality for consultation and exploitation of the learned graph.

Approaches to build taxonomies or ontologies by text mining can be classified de-
pending on: (a) their using or not external resources (often, existing taxonomies) to
fill the gap between the purely syntactic level and the semantic one; and (b) their
needing or not human interaction as a support to the automatic processing step. As in
a few other works in the literature, and in spite of some researchers claiming that fully
automatic ontology acquisition from text is unrealistic (in their opinion, the system
should be seen as a support for knowledge engineers [20]), ConNeKTion can work
based only on what is expressed in the text, i.e., without using external resources and
without human intervention. Compared to other works in the literature, ConNeKTion
tries to build a conceptual graph relying on the whole set of concepts and relation-
ships, rather than only on shared attributes as in a taxonomic representation of con-
cepts, and does not restrict the nature/kind of relationships to a predefined set, since
new relationships are created as soon as they are found in the text.

3.1 System Description

Working on (a collection of) plain text(s), ConNeKTion builds a knowledge graph
that represents the contents of the collection, also identifying the concepts and rela-
tionships underlying it. In particular, it aims at: extracting the concepts expressed in
the input text(s) and assessing their relevance; obtaining formal and human-readable

52

descriptions of the concepts underlying the terms; generalizing concepts in order to
enrich and structure the knowledge base in a taxonomy or ontology.

To carry out its task, ConNeKTion brings to cooperation a mix of existing and
novel tools and techniques. It adopts both propositional and relational concept de-
scriptions, that allow to handle different levels of complexity and expressiveness in
concept representation. While the implemented prototype works on English, the
methodologies embedded in ConNeKTion are completely general and applicable to
any language.

To build the knowledge graph, ConNeKTion requires a pre-processing of the input
texts, based on a sequence of standard Natural Language Processing (NLP) tasks, the
most relevant of which are:

1. Anaphora Resolution, to replace pronouns by the explicit nouns they stand
for, so as to be able to associate to specific concepts the relationships applied
to pronouns, in order to further enrich the conceptual graph.

2. Syntactic Analysis, to obtain the parse tree of each sentence along with the
graph of the involved grammatical relations.

3. Normalization, to turn all words in the input text into their lemma (compared
to stemming, this allows to distinguish their grammatical role and is more
comfortable to read by humans).

In the integrated system, tasks 2 and 3 in the list above are carried out by DoMI-
nUS when investing the documents, and reused by ConNeKTion.

In processing a (collection of) text(s) in natural language, ConNeKTion considers
common nouns as concepts, proper nouns as instances, and verbs as relationships.
When building the graph, nouns become nodes, and verbs become arcs (if represent-
ing relationships, their direction denoting the role of the source and sink nodes in the

Fig. 2. Graphical representation of the output

relationship) or attributes (if representing properties). Since many words are poly-
semous, the current prototype uses the one domain per discourse assumption [21]

53

Fig. 3. Sample portion of knowledge graph with relative frequencies of occurrence

(“the meanings of close words in a text tend to refer to the same domain, which is
probably the dominant one in that portion of text”). The resulting network can be
considered as a formal, structured representation of the collection.

After building the basic graph representing the text, ConNeKTion further enriches
and structures it in order to obtain a conceptual level, in the form of a taxonomy or
ontology. For this purpose, it assumes that a concept can be defined by (a) the set of
other concepts that interact with it in the world described by the corpus, and (b) the
set of properties and attributes that describe it, expressed by verbs and adjectives. For
this level, additional information is extracted using a purposely developed linguistic
expert system, that produces the following relationships between concepts:

• attribute(C,A) attribute A describes concept C;
• can(C,A) concept C may perform action A;
• be(C,A) concept C may be the object of action A;
• is_a(C1,C2) concept C1 is a subclass of concept C2;
• r(C1,C2) relationship r holds between concepts C1 and C2;

where actions are expressed by verbs, and sentences involving verb ‘to be’ are used
to obtain an initial sub-class structure for the taxonomy: e.g., “penguins are birds”
yields is a(penguin,bird). A representational trick is adopted to treat indirect comple-
ments as direct ones, by embedding the corresponding preposition into the verb: e.g.,
“The cat jumped on the table” becomes jump_on(cat,table). Figure 2 shows the graph
corresponding to sentence “Bell, based in Chicago, makes and distributes electronic,
computer and building products”.

Each arc in the graph is associated to the frequency with which the associated rela-
tionship was found in the processed corpus. More precisely, two frequencies are rec-
orded: one concerning the relationship used in positive form, and the other concerning
its use in negative form (i.e., with the verb negated). This indirectly expresses the

Figure 2 Sample portion of knowledge graph with relative frequencies of occurrence

54

‘typicality’ of the relationships: depending on the balance of frequency for the two
forms, the system can infer whether a given relationship is occasional, typical, manda-
tory, prohibited, etc. for the pairs of concepts. In addition, the frequency distribution
for the different kinds of relationships between two nodes is reported, to understand
which relationships are more relevant to those concepts. This lays the basis for apply-
ing statistical reasoning on the graph. Figure 3 shows a portion of a learned graph.

Note that this part is completely incremental: any time new texts are available, they
can be processed separately and integrated into the existing graph, updating the fre-
quencies of existing nodes/edges and possibly adding new nodes and/or edges.

The basic relation underlying taxonomies is generalization. While part of the tax-
onomy can be extracted directly from the text (as in the case of explicit sentences
such as “penguins are birds”, yielding arc “is_a” between nodes “penguin” and
“bird”), most of its structure must be indirectly inferred by applying suitable reason-
ing/learning techniques to the non-taxonomic information in the learned graph. The
general procedure adopted in ConNeKTion consists of two steps:

1. Grouping: the concepts in the graph are partitioned into separate groups;
2. Generalization: each group obtained in the previous step undergoes

generalization, providing a higher-level concept (that may be new or already
present in the graph).

The higher-level concepts are connected to the lower-level concepts in the corre-
sponding group by “is_a” relationships. The procedure may be applied again and
again to obtain higher and higher-level concepts in the taxonomy.

Of course, albeit learned without the help of external taxonomic resources, if avail-
able they can be added later to the resulting knowledge graph (e.g., [14]).

3.2 Use of ML and DM techniques

The FOL description of a concept/node is obtained in ConNeKTion by running a
Spreading-Activation algorithm to select the neighborhood of the node. The selected
neighboring sub-graph for a concept/node can be interpreted as a formal definition for
it (the smaller the activation decay parameter, the larger the sub-graph, and the more
refined and detailed the definition).

For the grouping step, ConNeKTion adopts pairwise agglomerative clustering: ini-
tially, each concept becomes a singleton cluster; then, clusters are progressively
merged until a stop criterion is met. Specifically, ConNeKTion adopts a complete link
clustering strategy [22]. If several pairs meet the condition, the pair having smallest
(respectively, greatest) average distance for single components is merged. So, each
cluster contains similar concepts that can be generalized in order to create new rela-
tionships. The generalization (that might correspond to an existing concept in the
graph) is introduced as a super-concept of the generalized concepts adding corre-
sponding is_a relationships from it to all of them. Depending on the representation
formalism adopted for concepts, this general strategy must be properly adapted, and
suitable techniques must be applied. ConNeKTion currently adopts two formalisms, a
propositional and a relational one.

55

• In the propositional approach, each concept node c in a graph is described
by a binary feature vector (v1 ,..., vn, vn+1, ..., vn+m), where C = {c1,..., cn} is
the set of concept nodes in the graph, R = {a1 , ..., am} is the set of relation
types (arc labels) in the graph, and:
◦ ∀i = 1,…,n : vi = 1 if there is at least one arc (relationship) connecting c

to ci, or vi = 0 otherwise;
◦ ∀j = 1,…,m : vn+j = 1 if there is at least one outgoing arc (relationship)

from c labeled aj, or vn+j = 0 otherwise.
Based on this representation, the Hamming distance [23] can be applied to
compare pairs of concepts, and the distances between all pairs of concepts
can be used to carry out clustering. Concepts described by all-0 vectors are
ignored.

• The relational representation of the concepts in the learned graph starts from
their definition as determined by the Spreading Activation algorithm
mentioned above, and translates the resulting sub-graph into a conjunctive
FOL formula in which edges are translated using binary predicates, and
nodes as their arguments (the first argument representing the subject of the
relation, the second argument representing the object).
Expressiveness is significantly improved over the propositional solution,
since not only the attributes and relationships directly associated to the root
concept are considered (relation-centric description), but also those among
its neighbors at various levels k of distance (concept-centric description).
Concerning the clustering step, the relational similarity function presented in
[11] can be applied to these concept representations.

A first concept taxonomy for the propositional representations is computed by ap-
plying Formal Concept Analysis [24] to the boolean vectors associated to concepts.

As regards generalization of clusters, based on the relational representation, the
least general generalization operator proposed in [11] is exploited to generalize the
concept descriptions in each cluster, and obtain a FOL description of their generaliza-
tion, which is the subsumer of the cluster. The use of this operator can also support
more advanced tasks, including retrieval of documents of interest.

There are no standard formal techniques to validate the quality of the learned con-
ceptual graph; it can be assessed by the social consensus of domain experts or by its
usability for given business objectives [25]. The different conceptual graph building
and enrichment techniques embedded in ConNeKTion were evaluated using a pur-
posely collected corpus of documents concerning social networks on socio-political
and economic topics, involving 695 nouns and 727 verbs. The size of the dataset was
deliberately kept small in order to have poor knowledge. Several experiments were
run, varying the spreading activation and clustering parameters in order to obtain
taxonomies at different grain-size of detail. 5 experts were asked to evaluate the final
conceptual graphs by rating 100 concept definitions and 100 is_a relationships chosen
at random from the resulting taxonomy. On average, based on their evaluation, 18%
of the items could be considered as substantially correct, and 79% of them as at least

56

sensible. They also reported that the taxonomy and definitions might be a good start-
ing point for manual refinement.

Other graph analysis tools are available in ConNeKTion, and will be described in
the next section, since they are shared with GraphBRAIN.

4 GraphBRAIN

GraphBRAIN is a general-purpose system for the development, management and
(personalized) fruition of a knowledge base. As its name suggests, GraphBRAIN
adopts graphs as the knowledge base structure.

4.1 System Description

GraphBRAIN integrates several data mining tools for extracting relevant knowledge
from the knowledge base and providing it to users and/or other systems, and a com-
fortable interface for expert to manually add, modify and consult ontological
knowledge (both T-BOX, concerning terminology, and A-BOX, concerning specific
instances) in the knowledge base. It can be seen as a more structured and controlled
way to fill a knowledge graph, that may complement the more automatic and unstruc-
tured approach provided by ConNeKTion.

The underlying data management tool is a graph database, currently Neo4j [26]. In
Neo4j, nodes and arcs in the graph may have associated attribute-value maps; nodes
(representing individuals) may be labeled with any number of labels (usually repre-
senting classes), while each arc (representing a relationship) may be labeled with one
type only. No schema handling is provided for, meaning that the user is totally free to
use any type and/or attribute name for any single node and arc. While ensuring great
flexibility, this does not allow one to associate a clear semantics to the graph items.
For this reason, GraphBRAIN requires its users to work according to pre-specified
data schemes, expressed in the form of ontologies. Thus, a characterizing feature of
GraphBRAIN is bringing to cooperation a database management system for efficient-
ly handling, mining and browsing the individuals, with an ontology level that allows it
to carry out formal reasoning and consistency or correctness checks on the individuals
[27].

Using a suitable tool, GraphBRAIN administrators may create, build and maintain
ontologies by specifying the types of entities and relationships to be considered, each
with its attributes and associated datatypes. The universal class is implicit, so the user
must start the description of each ontology from the top-level classes, which are au-
tomatically considered as disjoint by the system. Each top-level class may be the root
of a hierarchy of sub-classes, for which no assumption about disjoints is made. Sever-
al ontologies may be handled by GraphBRAIN; some classes and relationships may
appear in different ontologies, but different ontologies may define different attributes
for the shared classes and relationships, in order to reflect different perspectives on
them.

57

In particular, in addition to various domain-specific ontologies, GraphBRAIN pro-
vides a top-level ontology defining very general and highly reusable concepts and
relationships (e.g., Person, Place; Person.wasIn.Place; etc.). This top-level ontology
plays a crucial role to interconnect the domain-specific ontologies, ensuring an overall
connected knowledge graph. Indeed, there is a single, shared graph underlying all the
domains. In the top-level ontology, currently two very general concept taxonomies are
loaded: WordNet [14] and the Dewey Decimal Classification system hierarchy [28].
Note that the concepts in these taxonomies are not used as node labels in the graphs;
they are reified and used as nodes, so that they may be related by arcs to other nodes
and used by the graph browsing tools included in GraphBRAIN.

Thanks to the classes shared across different domains, this allows the system to re-
use knowledge across domains, and thus to reach a wider range of outcomes for satis-
fying the user’s information needs. So, if an individual is used by different ontologies,
it acts as a bridge among those ontologies, allowing the users of a domain to obtain
additional information coming from other domains, and fostering in this way cross-
fertilization of knowledge. The tool automatically saves the ontologies in an internal
format, used as a schema for the graph database, and may also export them into stand-
ard Semantic Web formats, and made publicly available for reuse. Currently, it can
serialize them to Ontology Web Language (OWL) [29] format, so that it can be pub-
lished and exploited for ensuring semantic access to the knowledge base and making
it interoperable with other resources.

After setting up the ontologies, information is fed into the knowledge base by ex-
plicit interaction with users, or by automatic knowledge extraction from documents
and other kinds of resources (e.g., the Internet) using ConNeKTion. The on-line con-
sultation interface of GraphBRAIN is shown in Figure 4. The top-left screenshot
shows the selection of a domain, while the top-right screenshot shows an overview of
a portion of the overall graph, suitably selected depending on specific user queries
and knowledge about his preferences, aims, background, etc. The bottom-right
screenshot shows the interface for modifying and consulting the entities in the
knowledge base, while the bottom-left screenshot shows the interface for modifying
and consulting the relationships.

More specifically, the interactive interface consists of two form-based tabs, one for
entities (see Figure 4, bottom-left) and one for relationships (Figure 4, bottom-right),
allowing the user to insert/update/remove instances. The forms are automatically gen-
erated by the system starting from the specification of the ontologies provided by the
administrators. For this reason, albeit GraphBRAIN may handle several ontologies,
each specifying a different domain, the form-based interface for data management and
querying requires the user to select one of the available domains in order to load the
corresponding scheme/ontology to be used (see Figure 4, top-left).

58

Fig. 4. Graphical representation of the output

Interesting additional functionality is also provided. First, users may also manage
(add, show, delete) attachments for each instance. This is a very relevant feature, be-
cause in this way GraphBRAIN is not only a knowledge management tool, but it be-
comes a full-fledged digital library, whose content is indirectly organized according

to formal ontologies, and thus may foster interoperability with other systems. Sec-
ond, users may add comments, or approve/disapprove, each entity or relationship
instance, and even each single attribute value thereof. Since GraphBRAIN is a collab-
orative platform for knowledge base development, this feature can be used to ensure
some kind of ‘distributed’ quality assurance on the content of the knowledge base,
and to establish a trust mechanism for the users. Using the comments, the users may
also provide useful suggestions to improve and extend the ontologies. Also, users are
encouraged to provide knowledge, and high-quality knowledge, because using a com-
bination of their number of contributions and trust they are assigned ‘points’ that they
may spend in using advanced features provided by GraphBRAIN.

The same form-based interfaces can be used to query the knowledge base for in-
stances of entities and relationships. The retrieved instances may be graphically dis-
played in another tab, as nodes and arcs in the graph (see Figure 4, top-right). This
allows the user to continue his search in a less structured way, by directly browsing
the graph (by expanding or compressing node neighbors). This is very useful to ex-

59

plore the available knowledge without a pre-defined goal in mind, but letting the data
themselves drive the search. Thus, serendipity in information retrieval is supported,
and the users may find unexpected information that is relevant to their information
needs.

4.2 Use of ML and DM techniques

The knowledge management and extraction functionality provided by
GraphBRAIN is supported by several analysis, mining and information extraction
tools available in the LMS. They allow the users to obtain (personalized) indications
on the relevance of single graph items or to extract suitable portions of the graph that
may satisfy their information needs. Some of these algorithms are reused from the
literature; others have been purposely extended to improve their ability to return per-
sonalized outcomes. This would ensure that each user obtains tailored information,
which is another novelty introduced by GraphBRAIN.

More specifically, various algorithms for the following functionality are currently
included:

• Learning and continuous updating of user-models, in order to capture their
background, preferences and interests, so as to guide the knowledge
extraction tools in identifying portions of the graph that are more relevant to
each single user. It currently implements a decision tree model, based on
features such as frequency of access/modification to the various domains,
nodes, arcs and attributes.

• Assess relevance of nodes and arcs in the graph, and extract the most
relevant ones, based on several centrality indexes provided by Neo4j, in
order to capture different relevance perspectives: Betweenness, PageRank,
Katz, Closeness, Harmonic.

• Extract a portion of the graph that is relevant to some specified starting
points (nodes and/or arcs); the Spreading Activation algorithm is used for
this purpose, suitably adapted to use different (personalized) decay
parameters for different users, also based on the statistics previously
mentioned for the user models.

• Extract frequent patterns of entities and relationships, and associated sub-
graphs; the gSpan algorithm is used for this task, suitably modified to
constrain the search for sub-graphs so as to include specific kinds of nodes,
or even specific nodes.

• predict possible links between nodes, again using the tools provided by
Neo4j.

Due to the peculiarities of the system, no ground truth was available for quantita-
tively evaluating the performance of these tools. We indirectly evaluated it by asking
41 users (undergraduate students aged 23-26, 23 male, 18 female) to use the system
and compile a questionnaire to report their degree of satisfaction. All of them reported
the system provided interesting and/or useful information in at least 80% of the times.
In particular, 88% of them reported various degrees of satisfaction for the functionali-
ty that selects the initial portion of the graph to be displayed, and 76% appreciated the
extraction of frequent patterns in the graph.

60

The set of mining and analysis tools in GraphBRAIN is constantly updated and ex-
tended, directly borrowing solutions from the literature, adapting or extending other
approaches, or developing completely novel ones. E.g., a method for conceptual
graph learning which might be relevant is described in [30], proposing the use of a
frequent subgraph patterns mining approach to summarize graphs into groups of sub-
graphs to be used for further characterization, discrimination, classification, and clus-
ter analysis of a collection of graphs.

5 Conclusions

The number of documents available in electronic format is ever-growing, which leads
to well-known problems of organization and information overloading. This calls for
intelligent digital libraries, that allow to automatize the document processing and
knowledge extraction tasks, and to suitably organize and make available the docu-
ments and the knowledge they contain, so as to provide personalized and focused
access.

This paper described an integrated system that merges intelligent modules covering
all the phases involved in a document lifecycle, from acquisition, to processing, to
information extraction, to personalized fruition for final users. The role and possible
cooperation of Machine Learning and Data Mining techniques in the system is high-
lighted and discussed, along with their importance to provide effective support to both
the building and the fruition of the Digital Library and the underlying knowledge
base.

Quantitative and qualitative results show that both the single techniques, and their
cooperation, may be effective in tackling the above issues and ensuring user satisfac-
tion. Of course, different approaches are appropriate for different tasks, albeit based
on the same representations. In particular, relational (First-Order Logic and Graph-
based) representations and techniques proved to be very powerful and very useful.

Future work will be aimed at further improving effectiveness of the available tools
and systems, and at extending the set of tools. Also, the design of decision support
systems that cleverly exploit the knowledge in the learned graph to help users in car-
rying out their activities is envisaged.

References

1. Esposito, F., Semeraro, G., Fanizzi, N., Ferilli, S.: Multistrategy Theory Revision:
Induction and Abduction in INTHELEX. Machine Learning Journal 38(1/2), 133-
156 (2000).

2. Ferilli, S.: WoMan: Logic-based Workflow Learning and Management. IEEE
Transaction on Systems, Man and Cybernetics: Systems 44(6), 744-756 (2014).

3. Ferilli, S.: The WoMan Formalism for Expressing Process Models. In: Perner, P.
(Ed.) Advances in Data Mining – Applications and Theoretical Aspects. LNAI,
vol. 9728, pp. 363-378, Springer (2016).

61

4. Esposito, F., Ferilli, S., Basile, T.M.A., Di Mauro, N.: Machine Learning for digi-
tal document processing: From layout analysis to metadata extraction. In: Marinai,
S., Fujisawa, H. (Eds.) Machine Learning in Document Analysis and Recognition.
Studies in Computational Intelligence, vol. 90, pp. 105-138, Springer, Berlin
(2008).

5. Ferilli, S.: Automatic Digital Document Processing and Management – Problems,
Algorithms and Techniques. Advances in Pattern Recognition, Springer, London
(2011).

6. Salton, G., Wong, A., Yang, C.: A vector space model for automatic indexing.
Communications of the ACM 18(11), 613-620 (1975).

7. Deerwester, S., Dumais, S.T., Landauer, T.K., Furnas, G., Harshman, R.: Indexing
by latent semantic analysis. Journal of the American Society of Information Sci-
ence 41(6), 391-407 (1990).

8. Esposito, F., Malerba, D., Semeraro G.: A Comparative Analysis of Methods for
Pruning Decision Trees. IEEE Transactions on Pattern Analysis and Machine In-
telligence 19(5), 476-491 (1997).

9. Dietterich, T.G., Lathrop, R.H., Lozano-Perez, T.: Solving the multiple instance
problem with axis-parallel rectangles. Artificial Intelligence 89(1-2), 31-71
(1997).

10. Ferilli, S., Basile, T.M.A., Di Mauro, N.: Markov Logic Networks for Document
Layout Correction. In: Mehrotra, K.G., Chilukuri, M., Oh, J.C., Varshney, P.K.,
Ali, M. (Eds.) Modern Approaches in Applied Intelligence – Part I. LNAI, vol.
6703, pp. 275-284, Springer (2011).

11. Ferilli, S., Basile, T.M.A., Biba, M., Di Mauro, N., Esposito, F.: A General Simi-
larity Framework for Horn Clause Logic. Fundamenta Informaticae 90(1-2), 43-
66, IOS Press (2009).

12. Ferilli, S., De Carolis, B., Esposito, F., Redavid, D.: Sentiment Analysis as a Text
Categorization Task: A Study on Feature and Algorithm Selection for Italian Lan-
guage. In: Gaussier, E., Cao, L., Gallinari, P., Kwok, J., Pasi, G., Zaiane, O. (Eds.)
Proceedings of the IEEE International Conference on Data Science and Advanced
Analytics 2015 (DSAA). pp. 1-10, IEEE (2015).

13. Ferilli, S., Biba, M., Basile, T.M.A., Esposito, F.: Combining Qualitative and
Quantitative Keyword Extraction Methods with Document Layout Analysis. In:
Agosti, M., Esposito, F., Thanos, C. (Eds.) Post-proceedings of the 5th Italian Re-
search Conference on Digital Library Management Systems (IRCDL-2009). pp.
22-33 (2009).

14. Miller, G.A.: Wordnet: A lexical database for English. Communications of the
ACM 38, 39-41 (1995).

15. Ferilli, S., Redavid, D., Angelastro, S.: Activity Prediction in Process Manage-
ment Using the WoMan Framework. In: Perner, P. (Ed.) Advances in Data Min-
ing. Applications and Theoretical Aspects, LNAI, 10357, pp. 194-208, Springer,
2017.

16. Perner, P.: Concepts for Novelty Detection and Handling based on a Case-Based
Reasoning Scheme. In: P. Perner (Ed.) Advances in Data Mining. LNAI, vol.
4597, pp. 21-34, Springer (2007).

62

17. Perner, P.: Novelty Detection and In-Line Learning of novel concepts according
to a case-based reasoning process schema for high-content image analysis in sys-
tem biology and medicine. Computational Intelligence 25(3), 250-263 (2009).

18. Perner, P., Attig, A.: Fuzzy conceptual clustering Quality and Reliability Engi-
neering International 26(8), 909-922 (2010).

19. Rotella, F., Leuzzi, F., Ferilli, S.: Learning and Exploiting Concept Networks with
ConNeKTion. Applied Intelligence 42(1), 87-111, Springer (2015).

20. Maedche, A., Staab, S.: Mining ontologies from text. In: Dieng, R., Corby, O.
(Eds.) International Conference on Knowledge Engineering and Knowledge Man-
agement. pp. 189-202 (2000).

21. Gale, W.A., Church, K.W., Yarowsky, D.: One sense per discourse. In: Markus,
M.P. (Ed.) DARPA Speech and Natural Language Workshop. pp. 233-237, Asso-
ciation for Computational Linguistics (1992).

22. Defays, D.: An efficient algorithm for a complete link method. Comput. J. 20(4),
364-366 (1977).

23. Hamming, R.W.: Error Detecting and Error Correcting Codes. Bell System Tech-
nical Journal 26(2), 147-160 (1950).

24. Wille R.: Formal Concept Analysis as Mathematical Theory of Concepts and
Concept Hierarchies. In: Ganter, B., Stumme, G., Wille, R. (Eds.) Formal Concept
Analysis – Foundations and Applications. LNCS, vol. 3626, Springer (2005).

25. Hasegawa, R., Kitamura, M., Kaiya, H., Saeki, M.: Extracting conceptual graphs
from Japanese documents for software requirements modeling. In: Kirchberg, M.,
Link, S. (Eds.) Conceptual Modelling 2009, Sixth Asia-Pacific Conference on
Conceptual Modelling (APCCM 2009). CRPIT, 96, pp. 87-96, Australian Com-
puter Society (2009).

26. Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly Media, 2nd edn.
(2015).

27. Krötzsch, M.: Ontologies for knowledge graphs? In: Artale, A., Glimm, B., Kont-
chakov, R. (Eds.) Proceedings of the 30th International Workshop on Description
Logics, CEUR Workshop Proceedings, vol. 1879, CEUR-WS.org (2017).

28. Dewey, M.: A classification and subject index for cataloguing and arranging the
books and pamphlets of a library. Amherst (1876).

29. OWL Web Ontology Language Reference, W3C Recommendation,
https://www.w3.org/TR/owl-ref/ (consulted May 6, 2019).

30. Perner, P.: Mining Frequent Subgraph Pattern Over a Collection of Attributed-
Graphs and Construction of a Relation Hierarchy for Result Reporting. In: Perner,
P. (Ed.) Advances in Data Mining. LNAI, vol. 10357, pp. 323-344, Springer
(2017).

https://www.w3.org/TR/owl-ref/

	1 Introduction
	2 Digital Library Management: DoMInUS
	2.1 System Description
	2.2 Use of ML and DM techniques

	3 Conceptual Graph Learning: ConNeKTion
	3.1 System Description
	3.2 Use of ML and DM techniques

	4 GraphBRAIN
	4.1 System Description
	4.2 Use of ML and DM techniques

	5 Conclusions

