16,566 research outputs found

    Development of Texture Weighted Fuzzy C-Means Algorithm for 3D Brain MRI Segmentation

    Get PDF
    The segmentation of human brain Magnetic Resonance Image is an essential component in the computer-aided medical image processing research. Brain is one of the fields that are attracted to Magnetic Resonance Image segmentation because of its importance to human. Many algorithms have been developed over decades for brain Magnetic Resonance Image segmentation for diagnosing diseases, such as tumors, Alzheimer, and Schizophrenia. Fuzzy C-Means algorithm is one of the practical algorithms for brain Magnetic Resonance Image segmentation. However, Intensity Non- Uniformity problem in brain Magnetic Resonance Image is still challenging to existing Fuzzy C-Means algorithm. In this paper, we propose the Texture weighted Fuzzy C-Means algorithm performed with Local Binary Patterns on Three Orthogonal Planes. By incorporating texture constraints, Texture weighted Fuzzy C-Means could take into account more global image information. The proposed algorithm is divided into following stages: Volume of Interest is extracted by 3D skull stripping in the pre-processing stage. The initial Fuzzy C-Means clustering and Local Binary Patterns on Three Orthogonal Planes feature extraction are performed to extract and classify each cluster’s features. At the last stage, Fuzzy C-Means with texture constraints refines the result of initial Fuzzy C-Means. The proposed algorithm has been implemented to evaluate the performance of segmentation result with Dice’s coefficient and Tanimoto coefficient compared with the ground truth. The results show that the proposed algorithm has the better segmentation accuracy than existing Fuzzy C-Means models for brain Magnetic Resonance Image

    Performance characterization of clustering algorithms for colour image segmentation

    Get PDF
    This paper details the implementation of three traditional clustering techniques (K-Means clustering, Fuzzy C-Means clustering and Adaptive K-Means clustering) that are applied to extract the colour information that is used in the image segmentation process. The aim of this paper is to evaluate the performance of the analysed colour clustering techniques for the extraction of optimal features from colour spaces and investigate which method returns the most consistent results when applied on a large suite of mosaic images

    Image Segmentation and Classification of Marine Organisms

    Get PDF
    To automate the arduous task of identifying and classifying images through their domain expertise, pioneers in the field of machine learning and computer vision invented many algorithms and pre-processing techniques. The process of classification is flexible with many user and domain specific alterations. These techniques are now being used to classify marine organisms to study and monitor their populations. Despite advancements in the field of programming languages and machine learning, image segmentation and classification for unlabeled data still needs improvement. The purpose of this project is to explore the various pre-processing techniques and classification algorithms that help cluster and classify images and hence choose the best parameters for identifying the various marine species present in an image

    Segmentation of articular cartilage and early osteoarthritis based on the fuzzy soft thresholding approach driven by modified evolutionary ABC optimization and local statistical aggregation

    Get PDF
    Articular cartilage assessment, with the aim of the cartilage loss identification, is a crucial task for the clinical practice of orthopedics. Conventional software (SW) instruments allow for just a visualization of the knee structure, without post processing, offering objective cartilage modeling. In this paper, we propose the multiregional segmentation method, having ambitions to bring a mathematical model reflecting the physiological cartilage morphological structure and spots, corresponding with the early cartilage loss, which is poorly recognizable by the naked eye from magnetic resonance imaging (MRI). The proposed segmentation model is composed from two pixel's classification parts. Firstly, the image histogram is decomposed by using a sequence of the triangular fuzzy membership functions, when their localization is driven by the modified artificial bee colony (ABC) optimization algorithm, utilizing a random sequence of considered solutions based on the real cartilage features. In the second part of the segmentation model, the original pixel's membership in a respective segmentation class may be modified by using the local statistical aggregation, taking into account the spatial relationships regarding adjacent pixels. By this way, the image noise and artefacts, which are commonly presented in the MR images, may be identified and eliminated. This fact makes the model robust and sensitive with regards to distorting signals. We analyzed the proposed model on the 2D spatial MR image records. We show different MR clinical cases for the articular cartilage segmentation, with identification of the cartilage loss. In the final part of the analysis, we compared our model performance against the selected conventional methods in application on the MR image records being corrupted by additive image noise.Web of Science117art. no. 86
    • 

    corecore