22,081 research outputs found

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Large-Scale Detection of Non-Technical Losses in Imbalanced Data Sets

    Get PDF
    Non-technical losses (NTL) such as electricity theft cause significant harm to our economies, as in some countries they may range up to 40% of the total electricity distributed. Detecting NTLs requires costly on-site inspections. Accurate prediction of NTLs for customers using machine learning is therefore crucial. To date, related research largely ignore that the two classes of regular and non-regular customers are highly imbalanced, that NTL proportions may change and mostly consider small data sets, often not allowing to deploy the results in production. In this paper, we present a comprehensive approach to assess three NTL detection models for different NTL proportions in large real world data sets of 100Ks of customers: Boolean rules, fuzzy logic and Support Vector Machine. This work has resulted in appreciable results that are about to be deployed in a leading industry solution. We believe that the considerations and observations made in this contribution are necessary for future smart meter research in order to report their effectiveness on imbalanced and large real world data sets.Comment: Proceedings of the Seventh IEEE Conference on Innovative Smart Grid Technologies (ISGT 2016

    Fuzzy Least Squares Twin Support Vector Machines

    Full text link
    Least Squares Twin Support Vector Machine (LST-SVM) has been shown to be an efficient and fast algorithm for binary classification. It combines the operating principles of Least Squares SVM (LS-SVM) and Twin SVM (T-SVM); it constructs two non-parallel hyperplanes (as in T-SVM) by solving two systems of linear equations (as in LS-SVM). Despite its efficiency, LST-SVM is still unable to cope with two features of real-world problems. First, in many real-world applications, labels of samples are not deterministic; they come naturally with their associated membership degrees. Second, samples in real-world applications may not be equally important and their importance degrees affect the classification. In this paper, we propose Fuzzy LST-SVM (FLST-SVM) to deal with these two characteristics of real-world data. Two models are introduced for FLST-SVM: the first model builds up crisp hyperplanes using training samples and their corresponding membership degrees. The second model, on the other hand, constructs fuzzy hyperplanes using training samples and their membership degrees. Numerical evaluation of the proposed method with synthetic and real datasets demonstrate significant improvement in the classification accuracy of FLST-SVM when compared to well-known existing versions of SVM

    Unbalanced load flow with hybrid wavelet transform and support vector machine based Error-Correcting Output Codes for power quality disturbances classification including wind energy

    Get PDF
    Purpose. The most common methods to designa multiclass classification consist to determine a set of binary classifiers and to combine them. In this paper support vector machine with Error-Correcting Output Codes (ECOC-SVM) classifier is proposed to classify and characterize the power qualitydisturbances such as harmonic distortion,voltage sag, and voltage swell include wind farms generator in power transmission systems. Firstly three phases unbalanced load flow analysis is executed to calculate difference electric network characteristics, levels of voltage, active and reactive power. After, discrete wavelet transform is combined with the probabilistic ECOC-SVM model to construct the classifier. Finally, the ECOC-SVM classifies and identifies the disturbance type according tothe energy deviation of the discrete wavelet transform. The proposedmethod gives satisfactory accuracy with 99.2% compared with well known methods and shows that each power quality disturbances has specific deviations from the pure sinusoidal waveform,this is good at recognizing and specifies the type of disturbance generated from the wind power generator.НаиболСС распространСнныС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ построСния ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΊΠ»Π°ΡΡΠΎΠ²ΠΎΠΉ классификации Π·Π°ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‚ΡΡ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π½Π°Π±ΠΎΡ€Π° Π΄Π²ΠΎΠΈΡ‡Π½Ρ‹Ρ… классификаторов ΠΈ ΠΈΡ… объСдинСнии. Π’ Π΄Π°Π½Π½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° машина ΠΎΠΏΠΎΡ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² с классификатором Π²Ρ‹Ρ…ΠΎΠ΄Π½Ρ‹Ρ… ΠΊΠΎΠ΄ΠΎΠ² исправлСния ошибок(ECOC-SVM) с Ρ†Π΅Π»ΡŒΡŽ ΠΊΠ»Π°ΡΡΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ‚Π°ΠΊΠΈΠ΅ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ качСства элСктроэнСргии, ΠΊΠ°ΠΊ гармоничСскиС искаТСния, ΠΏΠ°Π΄Π΅Π½ΠΈΠ΅ напряТСния ΠΈ скачок напряТСния, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€ Π²Π΅Ρ‚Ρ€ΠΎΠ²Ρ‹Ρ… элСктростанций Π² систСмах ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ элСктроэнСргии. Π‘Π½Π°Ρ‡Π°Π»Π° выполняСтся Π°Π½Π°Π»ΠΈΠ· ΠΏΠΎΡ‚ΠΎΠΊΠ° нСсиммСтричной Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ Ρ‚Ρ€Π΅Ρ… Ρ„Π°Π· для расчСта разностных характСристик элСктричСской сСти, ΡƒΡ€ΠΎΠ²Π½Π΅ΠΉ напряТСния, Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ ΠΈ Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ мощности. ПослС этого дискрСтноС Π²Π΅ΠΉΠ²Π»Π΅Ρ‚-ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΠ±ΡŠΠ΅Π΄ΠΈΠ½ΡΠ΅Ρ‚ΡΡ с вСроятностной модСлью ECOC-SVM для построСния классификатора. НаконСц, ECOC-SVM классифицируСт ΠΈ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΡƒΠ΅Ρ‚ Ρ‚ΠΈΠΏ возмущСния Π² соотвСтствии с ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ΠΌ энСргии дискрСтного Π²Π΅ΠΉΠ²Π»Π΅Ρ‚-прСобразования. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π΄Π°Π΅Ρ‚ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ 99,2% ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Ρ…ΠΎΡ€ΠΎΡˆΠΎ извСстными ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ΠΈ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ качСства элСктроэнСргии ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ отклонСния ΠΎΡ‚ чисто ΡΠΈΠ½ΡƒΡΠΎΠΈΠ΄Π°Π»ΡŒΠ½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ Π²ΠΎΠ»Π½Ρ‹, Ρ‡Ρ‚ΠΎ способствуСт Ρ€Π°ΡΠΏΠΎΠ·Π½Π°Π²Π°Π½ΠΈΡŽ ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ Ρ‚ΠΈΠΏΠ° возмущСния, Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ Π²Π΅Ρ‚Ρ€ΠΎΠ²Ρ‹ΠΌ Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€ΠΎΠΌ
    • …
    corecore