774 research outputs found

    Neuro-fuzzy knowledge processing in intelligent learning environments for improved student diagnosis

    Get PDF
    In this paper, a neural network implementation for a fuzzy logic-based model of the diagnostic process is proposed as a means to achieve accurate student diagnosis and updates of the student model in Intelligent Learning Environments. The neuro-fuzzy synergy allows the diagnostic model to some extent "imitate" teachers in diagnosing students' characteristics, and equips the intelligent learning environment with reasoning capabilities that can be further used to drive pedagogical decisions depending on the student learning style. The neuro-fuzzy implementation helps to encode both structured and non-structured teachers' knowledge: when teachers' reasoning is available and well defined, it can be encoded in the form of fuzzy rules; when teachers' reasoning is not well defined but is available through practical examples illustrating their experience, then the networks can be trained to represent this experience. The proposed approach has been tested in diagnosing aspects of student's learning style in a discovery-learning environment that aims to help students to construct the concepts of vectors in physics and mathematics. The diagnosis outcomes of the model have been compared against the recommendations of a group of five experienced teachers, and the results produced by two alternative soft computing methods. The results of our pilot study show that the neuro-fuzzy model successfully manages the inherent uncertainty of the diagnostic process; especially for marginal cases, i.e. where it is very difficult, even for human tutors, to diagnose and accurately evaluate students by directly synthesizing subjective and, some times, conflicting judgments

    Theoretical Interpretations and Applications of Radial Basis Function Networks

    Get PDF
    Medical applications usually used Radial Basis Function Networks just as Artificial Neural Networks. However, RBFNs are Knowledge-Based Networks that can be interpreted in several way: Artificial Neural Networks, Regularization Networks, Support Vector Machines, Wavelet Networks, Fuzzy Controllers, Kernel Estimators, Instanced-Based Learners. A survey of their interpretations and of their corresponding learning algorithms is provided as well as a brief survey on dynamic learning algorithms. RBFNs' interpretations can suggest applications that are particularly interesting in medical domains

    Software Effort Estimation using Neuro Fuzzy Inference System: Past and Present

    Get PDF
    Most important reason for project failure is poor effort estimation. Software development effort estimation is needed for assigning appropriate team members for development, allocating resources for software development, binding etc. Inaccurate software estimation may lead to delay in project, over-budget or cancellation of the project. But the effort estimation models are not very efficient. In this paper, we are analyzing the new approach for estimation i.e. Neuro Fuzzy Inference System (NFIS). It is a mixture model that consolidates the components of artificial neural network with fuzzy logic for giving a better estimation

    Predicting Charpy Impact Energy for Heat-Treated Steel using a Quantum-Membership-Function-based Fuzzy Model

    Get PDF
    This study employs quantum membership functions in a neuro-fuzzy modelling structure to model a complex data set derived from the Charpy impact test of heat treated steel for predicting Charpy energy. This is a challenging modelling problem because although the test is governed by a specific standard, several sources of disturbance give rise to uncertainty in the data. The data are also multidimensional, sparsely distributed and the relation between the variables and the output is highly nonlinear. Results are encouraging, with further investigation necessary to better understand quantum membership functions and the effect that quantum intervals have when modelling highly uncertain data
    corecore