1,350 research outputs found

    Multivariate Approaches to Classification in Extragalactic Astronomy

    Get PDF
    Clustering objects into synthetic groups is a natural activity of any science. Astrophysics is not an exception and is now facing a deluge of data. For galaxies, the one-century old Hubble classification and the Hubble tuning fork are still largely in use, together with numerous mono-or bivariate classifications most often made by eye. However, a classification must be driven by the data, and sophisticated multivariate statistical tools are used more and more often. In this paper we review these different approaches in order to situate them in the general context of unsupervised and supervised learning. We insist on the astrophysical outcomes of these studies to show that multivariate analyses provide an obvious path toward a renewal of our classification of galaxies and are invaluable tools to investigate the physics and evolution of galaxies.Comment: Open Access paper. http://www.frontiersin.org/milky\_way\_and\_galaxies/10.3389/fspas.2015.00003/abstract\>. \<10.3389/fspas.2015.00003 \&g

    Automated Global Feature Analyzer - A Driver for Tier-Scalable Reconnaissance

    Get PDF
    For the purposes of space flight, reconnaissance field geologists have trained to become astronauts. However, the initial forays to Mars and other planetary bodies have been done by purely robotic craft. Therefore, training and equipping a robotic craft with the sensory and cognitive capabilities of a field geologist to form a science craft is a necessary prerequisite. Numerous steps are necessary in order for a science craft to be able to map, analyze, and characterize a geologic field site, as well as effectively formulate working hypotheses. We report on the continued development of the integrated software system AGFA: automated global feature analyzerreg, originated by Fink at Caltech and his collaborators in 2001. AGFA is an automatic and feature-driven target characterization system that operates in an imaged operational area, such as a geologic field site on a remote planetary surface. AGFA performs automated target identification and detection through segmentation, providing for feature extraction, classification, and prioritization within mapped or imaged operational areas at different length scales and resolutions, depending on the vantage point (e.g., spaceborne, airborne, or ground). AGFA extracts features such as target size, color, albedo, vesicularity, and angularity. Based on the extracted features, AGFA summarizes the mapped operational area numerically and flags targets of "interest", i.e., targets that exhibit sufficient anomaly within the feature space. AGFA enables automated science analysis aboard robotic spacecraft, and, embedded in tier-scalable reconnaissance mission architectures, is a driver of future intelligent and autonomous robotic planetary exploration

    A new design tool for feature extraction in noisy images based on grayscale hit-or-miss transforms

    Get PDF
    The Hit-or-Miss transform (HMT) is a well known morphological transform capable of identifying features in digital images. When image features contain noise, texture or some other distortion, the HMT may fail. Various researchers have extended the HMT in different ways to make it more robust to noise. The most successful, and most recent extensions of the HMT for noise robustness, use rank order operators in place of standard morphological erosions and dilations. A major issue with the proposed methods is that no technique is provided for calculating the parameters that are introduced to generalize the HMT, and, in most cases, these parameters are determined empirically. We present here, a new conceptual interpretation of the HMT which uses a percentage occupancy (PO) function to implement the erosion and dilation operators in a single pass of the image. Further, we present a novel design tool, derived from this PO function that can be used to determine the only parameter for our routine and for other generalizations of the HMT proposed in the literature. We demonstrate the power of our technique using a set of very noisy images and draw a comparison between our method and the most recent extensions of the HMT

    Rapid Invasion of Spartina Alterniflora in the Coastal Zone of Mainland China: Spatiotemporal Patterns and Human Prevention

    Get PDF
    Given the extensive spread and ecological consequences of exotic Spartina alterniflora (S. alterniflora) over the coast of mainland China, monitoring its spatiotemporal invasion patterns is important for the sake of coastal ecosystem management and ecological security. In this study, Landsat series images from 1990 to 2015 were used to establish multi-temporal datasets for documenting the temporal dynamics of S. alterniflora invasion. Our observations revealed that S. alterniflora had a continuous expansion with the area increasing by 50,204 ha during the considered 25 years. The largest expansion was identified in Jiangsu Province during the period of 1990-2000, and in Zhejiang Province during the periods 2000-2010 and 2010-2015. Three noticeable hotspots for S. alterniflora invasion were Yancheng of Jiangsu, Chongming of Shanghai, and Ningbo of Zhejiang, and each had a net area increase larger than 5000 ha. Moreover, an obvious shrinkage of S. alterniflora was identified in three coastal cities including the city of Cangzhou of Hebei, Dongguan, and Jiangmen of Guangdong. S. alterniflora invaded mostly into mudflats (>93%) and shrank primarily due to aquaculture (55.5%). This study sheds light on the historical spatial patterns in S. alterniflora distribution and thus is helpful for understanding its invasion mechanism and invasive species management
    • 

    corecore