
Geophysical Journal International
Geophys. J. Int. (2014) 198, 357–365 doi: 10.1093/gji/ggu139
Advance Access publication 2014 May 20
GJI Geodynamics and tectonics

3-D object-oriented image analysis of geophysical data

I. Fadel,1,2 N. Kerle1 and M. van der Meijde1

1Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. Box 217, NL-7500 AE, Enschede, the Netherlands.
E-mail: i.e.a.m.fadel@utwente.nl
2Geology Department, Faculty of Science, Helwan University, 11790 Ain Helwan, Egypt

Accepted 2014 April 7. Received 2014 February 28; in original form 2013 December 6

S U M M A R Y
Geophysical data are the main source of information about the subsurface. Geophysical tech-
niques are, however, highly non-unique in determining specific physical parameters and bound-
aries of subsurface objects. To obtain actual physical information, an inversion process is often
applied, in which measurements at or above the Earth surface are inverted into a 2- or 3-D sub-
surface spatial distribution of the physical property. Interpreting these models into structural
objects, related to physical processes, requires a priori knowledge and expert analysis which
is susceptible to subjective choices and is therefore often non-repeatable. In this research,
we implemented a recently introduced object-based approach to interpret the 3-D inversion
results of a single geophysical technique using the available a priori information and the phys-
ical and geometrical characteristics of the interpreted objects. The introduced methodology is
semi-automatic and repeatable, and allows the extraction of subsurface structures using 3-D
object-oriented image analysis (3-D OOA) in an objective knowledge–based classification
scheme. The approach allows for a semi-objective setting of thresholds that can be tested and,
if necessary, changed in a very fast and efficient way. These changes require only changing
the thresholds used in a so-called ruleset, which is composed of algorithms that extract objects
from a 3-D data cube. The approach is tested on a synthetic model, which is based on a
priori knowledge on objects present in the study area (Tanzania). Object characteristics and
thresholds were well defined in a 3-D histogram of velocity versus depth, and objects were
fully retrieved. The real model results showed how 3-D OOA can deal with realistic 3-D
subsurface conditions in which the boundaries become fuzzy, the object extensions become
unclear and the model characteristics vary with depth due to the different physical conditions.
As expected, the 3-D histogram of the real data was substantially more complex. Still, the 3-D
OOA-derived objects were extracted based on their velocity and their depth location. Spatially
defined boundaries, based on physical variations, can improve the modelling with spatially de-
pendent parameter information. With 3-D OOA, the non-uniqueness on the location of objects
and their physical properties can be potentially significantly reduced.

Key words: Image processing; Seismic tomography; Cratons; Continental tectonics: exten-
sional; Africa.

1 I N T RO D U C T I O N

Geophysical data are the main source of information about the sub-
surface. To obtain actual physical information an inversion process
is applied, in which measurements at or above the Earth surface
are inverted into a 2- or 3-D subsurface spatial distribution of the
physical property related to these measurements (e.g. seismic wave
subsurface distribution in case of seismic measurements). However,
the resulting 3-D models need further interpretation to describe the
subsurface lithological and structural components or to define the

subsurface anomalous target, for example, mineral ore, fluid intru-
sion or specific target object.

It is well known that a single geophysical technique cannot de-
termine the lithology, and that the usage of multiple geophysical
techniques is more reliable due to the overlap between the dif-
ferent lithological units within the same range of values of the
physical parameters, for example, limestone and granite have the
same electrical conductivity values but differ in magnetic suscep-
tibilities (Bedrosian 2007). A lot of work has been done on com-
bining two or more geophysical techniques to define an explicit
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Figure 1. (a) Elevation map of the study area with inset map showing the location of the study area within Africa. (b) The shear wave tomography model of
the study area. Adapted from Adams et al. (2012).

lithological interpretation of the studied areas, for example, Bosch
(1999), Bedrosian et al. (2007), Guillen et al. (2008), Infante et al.
(2010) and Bauer et al. (2012). The joint structural and lithological
interpretation of different geophysical techniques was done based
on pixel-by-pixel analysis for the correlated patterns in the result-
ing 3-D models, and assigning trends to distinct lithological units
(Gallardo & Meju 2011). However, these approaches were focusing
on defining specific ranges of physical parameters, for example,
velocity and resistivity, for each classified subsurface object. They
did not take in consideration other parameters such as depth or
geometry, which can help in the classification process.

For a single geophysical technique, for example, seismic reflec-
tion/refraction or tomography, the interpretation and the classifica-
tion have been done without a standardized methodology and were
often done based on contouring or expert interpretation of the 3-D
seismic velocity data cube and a priori information about the studied
area (e.g. Ebbing et al. 2001; Li 2010; Sanchez et al. 2011). How-
ever, this can be sensitive to subjective choices that can often make
the process unrepeatable. The mentioned approaches, either for sin-
gle or joint interpretation techniques, were mainly voxel-based (the
3-D nomenclature of pixel). However, recent object-based analysis
techniques have proven a superior performance over the pixel-based
ones. However, to our knowledge, they were never applied in 3-D
geophysical interpretation.

In this research, we implement a recently introduced object-based
approach to interpret the 3-D inversion results of a single geo-
physical technique using the available a priori information and the
physical and geometrical characteristics of the interpreted objects.
The introduced methodology is semi-automatic and allows the ex-
traction of subsurface structures using 3-D object-oriented image
analysis (3-D OOA) in an objective knowledge–based classification
scheme. 3-D OOA is an advanced image analysis technique that has
originated in the biomedical field (Schönmeyer et al. 2006). To our
knowledge, it is applied here for the first time to 3-D seismological
data to identify 3-D objects. The study area in which we apply this
methodology is the Tanzania Craton and surroundings. The method
is first tested on a synthetic model that simulates the study area.
Subsequently, it is used to extract 3-D subsurface objects from a
real 3-D seismic tomographic model of the study area. However,
it should be kept in mind that this work mainly targets the subsur-

face structures or objects which may not be the same as lithological
classification, which needs more physical parameters to be done.

2 S T U DY A R E A

The study area is the central part of the East African Rift Sys-
tem (Fig. 1a) for which Adams et al. (2012) created a 3-D shear
wave seismic tomography model. It is a voxel-based model that
ranges from a depth of 50 km down to 400 km at 10-km increments.
The subsurface model can be divided into two main parts (Adams
et al. 2012). The upper part of the model (<∼200 km) is charac-
terized by the high velocities of the Tanzanian Craton and the sur-
roundings basement complex, and low velocities of the surrounding
tectonic elements, such as rift branches, Proterozoic mobile belts
and Cenozoic volcanism. The lower part is dominated by low ve-
locities related to a plume head, or part of the deep mantle super
plume in western Africa (see Adams et al. 2012, for more details
about the 3-D shear wave tomography model).

3 M E T H O D O L O G Y

3.1 Synthetic model creation

The synthetic model is a 3-D voxel velocity model that was designed
in IGMAS+ (3-D Interactive Gravity and Magnetic Application
System, Götze & Lahmeyer 1988; Schmidt et al. 2010) based on the
interpretation of the tomography model of the study area provided
by Adams et al. (2012). The vertical and lateral dimensions are
close to reality, and also the velocity variations of the different
objects are physically realistic. It contains four main objects: craton
(C), rift (R), plume (P) and three horizontal layers (L1, L2 and
L3) (Fig. 2). The craton and rifts were equally divided into three
zones (C1, C2 and C3, and R1, R2 and R3, respectively) to simulate
increased velocity with depth (Fig. 2). Vertical gradual boundaries
(RL and RC) were implemented to describe the transition from
rifts to surroundings (either layers or craton, respectively), and a
horizontal gradual diffuse boundary (PB) was defined between the
plume and objects above. The model was gridded into depth slices
using Ordinary Kriging, and subsequently converted into a 3-D
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Figure 2. The composition of the synthetic model. (a) Five vertical sections that compose the synthetic models; (b) the detailed explanation of the objects
vertical section number 3, the model elements are: rift (R), craton (C), layer (L), boundaries between rift and layers (RL), boundaries between rifts and craton
(RC), boundaries between plume and upper objects (PB) and plume (P) (the colours of the section do not describe the velocity of the objects). (c) The detailed
explanation of vertical section number 3 in the grey scale of the 3-D image stack.

image stack using XML code to be used for 3-D OOA in eCognition,
the most widely used commercial OOA software package (Blaschke
2010, www.ecognition.com).

3.2 Real model preparation

The S-wave seismic tomography model (Fig. 1b) was converted
into a 3-D image stack to be used in eCognition. It included 36
slices ranging from a depth of 50–400 km with a 10-km depth
interval and 0.5◦ horizontal spacing in X and Y-directions. The
slices were gridded using a grey scale colour scheme with a linear
colour distribution, as commonly used in the biomedical field (e.g.
Schönmeyer et al. 2006). Then they were converted into a 3-D
image stack in the same way as the synthetic model.

3.3 3-D object-oriented analysis

In general terms, object-oriented analysis (OOA) is a two-step pro-
cedure, comprising image segmentation (creation of contiguous
segments or objects that are relatively homogeneous in terms of
adjacent pixel or point values), and their subsequent classification.
The principal advantage over traditional pixel-based methods is that
the generated segments are associated with attributes (e.g. spectral,
textural, geometric, contextual or physical), which are employed in
the object classification. OOA is thus a form of knowledge-driven
analysis that mimics the approaches of cognitive visual image anal-
ysis (Kerle & de Leeuw 2009; Martha et al. 2011).

Released in 2000, eCognition was the first commercial OOA
software, and has become the most frequently used tool, with some
50–55 per cent of all published scientific studies on OOA using it
(Blaschke 2010). The segmentation/classification process in eCog-
nition is implemented through rulesets. This allows complex pro-
cessing schemes to be developed that can comprise a number of
different segmentation and classification routines, supported by ad-
ditional object refinement steps. The ruleset is semi-automatic since
the used segmentation and classification algorithms are already de-
veloped and existing in eCognition package. The user needs only
to define the optimum thresholds to define the target segmentation
scheme or to extract the target object. 3-D OOA is a recent exten-
sion of these concepts, allowing the processing of data cubes such
as created from laser scanning data (LiDAR) or tomographic anal-
ysis. The origins of this extension lie in the biomedical field, such
as the processing of 3-D X-Ray computed tomography images (CT;

Schönmeyer et al. 2006). More recently, the technique has also been
tested in the remote sensing community through an example of 3-D
OOA processing of LiDAR point cloud data (Willhauck 2012).

Also in the 3-D domain, the process starts with the segmenta-
tion of an image stack into relatively homogenous segments that,
together with their associated attributes, are used in the subsequent
classification process. The main challenge facing OOA is the deter-
mination of the thresholds for both segmentation and classification
steps, and the selection of suitable segment attributes. They usually
are based on user interpretation (knowledge-driven), or on statis-
tical data analysis techniques, such as Random Forests (Stumpf &
Kerle 2011). In this work, the thresholds necessary for defining the
3-D objects are based on analysis of the 3-D histogram of velocity
versus depth of the 3-D subsurface model, supported by a priori
geological knowledge about the subsurface objects, available from
previous studies. The inferred thresholds guided the segmentation
and subsequent classification of the generated segments through
different algorithms as summarized in Table 1.

4 R E S U LT S

4.1 3-D OOA of the synthetic model

The 3-D histogram of the synthetic model (Fig. 3) describes the dis-
tribution of velocity values with depth. The separability of different
objects was used to define the main characteristics of the objects in
the 3-D image stack (Fig. 2). The four main features of the synthetic
model, the plume (P), craton (C), rift (R) and horizontal layering
(L1, L2 and L3), can be identified in the 3-D histogram as distinct
objects. The gradual boundaries between the main features (RL, RC
and RB; Fig. 2) result in small features that are partly overlapping
with the main features.

The cratonic parts (C1, C2 and C3) are distinguishable as three
blocks with higher velocity values (4.575, 4.475 and 4.375 km s−1,
respectively) in the intermediate to shallow depth level. The plume
(P) is visible on the opposite side of the histogram at the deep levels,
but has a relatively low velocity. In between the rift (R1, R2 and R3)
and the horizontal layers (L1, L2 and L3) are positioned. The rift, on
average, has low-velocity values of 3.975, 4.075 and 4.175 km s−1

for the R1, R2 and R3 depth levels, respectively. The horizontal
layers are located at the same depth intervals as the rifts, but have
intermediate velocity values of 4.175, 4.275 and 4.375 km s−1 for
layers 1, 2 and 3, respectively.
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Table 1. An overview of applied segmentation and classification algorithms adapted from eCognition Developer (2011a,b).

Algorithm Description

Multithreshold segmentation: It splits the images into objects and classifies them based on pre-defined thresholds that can be user-defined or can be
adapted with the combination of other automatic approaches.

Classification: The classification algorithm evaluates the likelihood that an image object belongs to a specific class based on a class
description that can be a threshold or membership function for one or a combination of the different object features.
Those can be spectral, textural, geometrical or contextual features. The algorithm allows also the use of fuzzy logic
conditions to describe such functions.

Assign Class: The algorithm determines whether an object belongs to a class or not based on a single threshold condition.

Pixel-based object resizing: It allows a user-defined object to grow, shrink or be coated in a user-defined direction (x and/or y and/or z), or a
user-defined object class, or within specific pixel values. The coating option allows the coating pixels on objects to be
classified into another class, which is different from the growing option that allows the object itself to grow in the
surrounding pixels.

Merge region: The algorithm merges adjacent segments belonging to the same class into one segment.

Convert image objects: It connects the 2-D segments into 3-D segments.

Export view: It exports the classification results with their georeference information into one of different raster formats, for example,
jpeg or tif.

(kms–
1)

Figure 3. 3-D histogram of the synthetic model explaining the process of the object extraction based on the object velocity values and their depths. Rift (R),
Craton (C), layer (L) boundaries between rift and layers (RL), boundaries between rift and craton (RC), boundaries between plume and upper objects (PB) and
plume (P).

The complexity in the interpretation of the 3-D histogram comes
from the gradual boundaries (RL, RC and PB) that have intermedi-
ate velocity values in between the four main features. The boundary
between two objects was divided into three parts that have gradually
changing velocity values. For example, RL1 (Fig. 2b) was divided
into three parts RL1-1, RL1-2 and RL1-3 with velocity values of
4.025, 4.075 and 4.125 km s−1, respectively. They describe the tran-
sition between the first level of the rift (R1: 3.975 km s−1) and layer
1 (L1: 4.175 km s−1) (see the 3-D histogram in Fig. 3). Some of
these boundaries (Fig. 3) have a distinctly different velocity (e.g.
RL1-1), some overlap with the velocity of other units and are only
distinguishable in depth (e.g. C2 and RC3-3, and also RL1-2 and
RC1-1), and some are overlapping in both velocity values and depth
ranges (e.g. L1 and RC1-2, as well as L3, RC3-2 and PB3). Layers

1, 2 and 3 share the same velocity values and depth ranges with the
boundaries between the craton and rift (RC1-2, RC2-2 and RC3-3,
respectively). And although the rift boundaries at the different lev-
els (RL1-1 to RL3-3 and RC1-1 to RC3-3) have a shallow depth
(50–220 km), and the plume boundaries (PB1–PB3) have a deep lo-
cation (190–295 km), there was a zone (190–220 km) in which both
boundaries were mixed in depth but could be separated by velocity
(Figs 2b and c).

The ruleset is based on these distinctions and often use a com-
bination of velocity values and depth (Appendix S1, Supporting
Information). The object extraction process was done in five steps.

In step 1, segments were created and classified based on velocity
values through the multithreshold segmentation algorithm (Table 1).
11 thresholds were used to create the segments and classify them
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Figure 4. 3-D OOA of the synthetic model. Figs (a–h) show the 3-D OOA extraction process with the plume P (a), craton C (b), rifts R (c), layers L1, L2 and
L3 (d, e and f, respectively, and displayed with 50 per cent transparency), the rift boundary RB (g) and the plume boundaries PB (h). Panels (i) and (j) (section
3 in Fig. 2) show the vertical growing process of the rift into the 4.175 km s−1 class. The white circles show the rift and plume boundaries that share the same
velocity value and depth range. The white arrows indicate the growing process in −Z-direction. Panels (k), (l) and (m) (depth slice 60 km) show the process of
correcting the misclassification in the rift boundaries during the classification of layer 1. (l) highlights the misclassified segment and the white arrows indicate
the coating process in the X-direction. Panel (m) shows the corrected segment indicated by the white arrow and surrounded by white line. Panels (n), (o) and
(p) (section 3) illustrate the classification of layers 2 and 3. Figure (n) shows layer 1 and the white arrow indicates the coating process in −Z-direction. The
white arrows in (o) indicate the coating process of layer 2 in −Z-direction to define layer 3. (n) Layer 3 after the coating process. Figs (q), (r) and (s) (section 3)
explain the process of classifying the rift and plume boundaries. Fig. (q) shows a white arrow that indicates the coating process of the plume in +Z-direction
in order to define the plume boundaries. (r) plume and rift boundaries except 4.375 km s−1 class in blue colour, while the white arrow indicates the two-step
growing process of the plume boundaries in order to define the plume boundaries in the 4.375 km s−1 class. (s) The final classification result.

into 12 velocity classes based on the histograms of the 3-D image
stack (Fig. 3).

Step 2 classified the plume and the craton based on their velocity
and depth location, using the assign class algorithm (Table 1). The
plume was classified using a velocity of 4.075 km s−1 and a depth

of >225 km (Fig. 4a). The craton was classified using velocity val-
ues of 4.575 km s−1 for C3, and 4.375 km s−1 at a depth of ≤125 km
for C1, and 4.475 km s−1 at a depth of ≤ 170 km for C2 (Fig. 4b).

In the next step, the rifts (R1–R3) were classified. For R1 and
R2, the same approach was followed as for step 2. They were
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classified based on their velocity values and depth (3.975 km s−1 for
R1, and 4.075 km s−1 with a depth range of 120–200 km for R2),
also using the assign class algorithm. Only the depth range was
used to classify R2 and thereby prevented classifying other objects
(P, RL1-2 and RC1-1) with the same velocity value, but at different
depths (Fig. 3). To classify R3, a different approach was followed
(pixel-based object resizing, Table 1). This was necessary due to the
presence of PB1 with the same velocity and within the same depth
range. The rift (R2) was allowed to grow vertically (−Z-direction
only) and the growing was constrained to within the 4.175 km s−1

velocity class that was related to R3 of the rift (Figs 4i, j and c).
The fourth step focused on the surrounding horizontal layers

(L1–L3). L1 was classified based on its velocity of 4.175 km s−1

and its depth of ≤125 km. This classification included segments that
belonged to the boundaries between the craton and the rift (RC1-2)
(Fig. 3). This misclassification was corrected using the pixel-based
object resizing algorithm with the coating option in the X-direction.
This was done by allowing the coating on the neighbourhood class
of 4.275 km s−1, which was classified as the original boundary class,
as shown in Figs 4(k), (l), (m) and (d). L2 and L3 were classified in
a similar way, using the pixel-based object resizing algorithm with
the coating option, but in the −Z-direction. The segments below
L1 were classified into L2 (Figs 4n and e), and the pixels below L2
were classified into L3 (Figs 4o, p and f).

In the last step, the boundaries were classified. The plume
boundaries (PB1–PB3) have velocity values of 4.175, 4.275
and 4.375 km s−1, respectively. PB1 and PB2 with 4.175 and
4.275 km s−1 velocity, respectively, were classified using the pixel-
based object resizing algorithm with coating only in the +Z-
direction (Fig. 4q). This way pixels coating the plume, and with
velocity values equal to 4.175 and 4.275 km s−1, were classified
into the plume boundaries class (Fig. 4r). The remaining part of the
plume boundary of 4.375 km s−1 was mixed with the rift boundary.
To separate this remaining part of the plume boundaries, first the
other rift boundaries needed to be classified. The largest part of the
rift boundaries (velocity values of 4.025, 4.075, 4.125, 4.175, 4.225,

4.275 and 4.325 km s−1) was classified using the assign class algo-
rithm. Also, the segments of the 4.375 km s−1 class with a shallow
location (<190 km) were classified into rift boundaries (Fig. 4r). The
remaining parts of the plume boundaries in the mixed boundaries
zone were classified using the pixel-based object resizing algorithm
with a growing option in the +Z-direction, and limiting the grow-
ing process to 2 pixels only to prevent including upper pixels that
belonged to the rift boundaries (Fig. 4r). Everything remaining af-
terwards with a velocity of 4.375 km s−1 was assigned to the rift
boundaries (Fig. 4s). The complete 3-D rift boundaries and plume
boundary can be seen in Figs 4(g) and (h), respectively.

The final model mimics the input model perfectly, using a semi-
automatic approach in which we only needed number of thresholds
to be fed in the pre-defined segmentation/classification algorithms
of eCognition. However, the interpretation was accomplished in an
approach similar to cognitive visual image analysis. The four main
classes were accurately resolved. The gradual boundaries were the
most challenging part in the classification process, due to their
overlap in velocity and depth with the four main features. In reality,
boundaries are fuzzy. The information on them, and possibly also
on the main features, might not be known a priori. However, this
additional challenge can be satisfactorily solved as shown for the
3-D seismological model in the next section.

4.2 3-D OOA of real seismological model

The approach for the 3-D seismological model is similar to the one
followed for the synthetic model. Due to different boundary condi-
tions and the available a priori information, however, the steps were
done in a different order and with different thresholds. Thresholds
were again based on the analysis of the 3-D histogram of the seis-
mological model supported by visual interpretation and the a priori
knowledge from the interpretation of the model of Adams et al.
(2012, Fig. 5). The main features and their boundaries were defined
and used to set the corresponding thresholds.

(kms–1)

Figure 5. 3-D histogram explaining the process of the object extraction based on the objects’ velocity values and their depth. Rifts (R), craton (C), shallow
high velocity (SHV), boundary shallow high velocity (BSHV), boundary shallow low velocity (BSLV), low-velocity zone (LV), inner low-velocity zone (ILV),
boundary deep low velocity (BDLV) and deep high velocity (DHV). The white circles indicate the two anomaly clusters of the low-velocity zone (LV), and
(ILV) and the white curved arrows indicate the decay of these anomaly clusters towards the boundary deep low-velocity zone (BDLV).
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A low-velocity zone was defined on the histogram by its ve-
locity (<4.292 km s−1) and location (depth >∼150 km). The zone
was split into an outer (LV) (4.18–4.29 km s−1) and inner (ILV)
(<4.18 km s−1) part based on the presence of two separate low-
velocity clusters around 4.25 and 4.13 km s−1, respectively, as
shown by the white circles in Fig. 5. The rifts showed a charac-
teristic low velocity in the shallow zone (Fig. 5). They were defined
by a depth and velocity ranging from 4.18–4.47 km s−1 at 50-km
depth, to 4.28–4.32 km s−1 at 140-km depth. This low-velocity zone
was differentiated from other objects in the shallow part of the model
by its diffuse character, a zone marked by low counts (frequency)
in a broad range of depths and velocities. The craton and high-
velocity zone in the shallow part (SHV) have a high velocity (4.47–
4.74 km s−1) and a depth of >∼190 km. The zone surrounding these
objects was defined as a fuzzy high-velocity boundary (BSHV) and
a transition between the high-velocity objects (Fig. 5). A similar
fuzzy boundary was identified between the deep low-velocity zone
and the rifts, and is indicated in Fig. 5 as a boundary shallow low
velocity (BSLV). This boundary was too fuzzy to set a specific
velocity range, thus the threshold to define these two boundaries
zones was determined by taking the intermediate velocity between
the high and low-velocity objects (4.37 km s−1). Another deep high-
velocity zone (DHV) exists below the low-velocity zone (LV and
ILV). It has the same velocity characteristics in the 3-D histogram
(velocity >4.4 km s−1) as the shallow-high velocity objects, but is
located at a depth >∼340 km. The boundaries between this object
and the deep low velocity object (BDLV) were determined based
on the decay of the two low-anomaly clusters (Fig. 5). The final
threshold was 4.29 km s−1.

The final ruleset consists here of six steps. Due to the increased
fuzziness, different steps were taken to define the objects compared
to the synthetic example. The maximum velocity in the model was
4.74 km s−1, and the minimum 4.05 km s−1. Adams et al. (2012)
used 10 classes (4.15–4.65 km s−1 with 0.05 km s−1 interval) to
analyse the model.

In the first step, the image stack was classified into 26 velocity
classes (4.05–4.75 km s−1 with ∼0.03 km s−1 interval), to increase
the smoothness of objects only without adding any artefacts to the
original data.

Step 2 classified the deep high-velocity object (DHV) and its
boundary (BDLV), using the assign class algorithm. The thresholds
for the deep high-velocity zone were a velocity of >4.37 km s−1 and
a depth of >340 km. The boundary was classified using a velocity
range of 4.29–4.37 km s−1 and a depth >300 km (Figs 6a and b).

The low-velocity zone was classified in step 3 based on its low
velocity (4.05–4.29 km s−1) and deep location (depth >150 km).
The inner part (ILV) was first defined based on a velocity
of <4.18 km s−1 (Fig. 6c). The outer part (LV) was composed of
the remainder with a velocity of 4.18–4.29 km s−1 (Fig. 6d).

In the fourth step, the rift (R) was classified based on its low
velocity and shallow depth. Both depth and velocity were defined
in ranges to cover the fuzzy characteristics of this object (4.18–
4.47 km s−1 at 50-km depth, to 4.28–4.32 km s−1 at 140-km depth).
A sequence of assign class algorithm steps was applied to define
the velocity range at each depth (Fig. 6f).

Step 5 focused on classifying the craton (C) and the high-velocity
zones (SHV) in the shallow part of the model (50–200 km and 4.47–
4.74 km s−1) into two objects. The first is the craton located within
the rift branches. It was defined using a small part of the depth
range (50–80 km) with the highest velocity in the model that was
characteristic for the craton only (4.67–4.74 km s−1). It was then
allowed to grow in the X, Y and Z-directions until it filled the craton’s

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. 3-D OOA of the real model. Panels (a–h) show the 3-D OOA
extraction process where (a) illustrates the deep high-velocity object (DHV),
(b) the boundary deep low-velocity (BDLV), (c) the inner low velocity zone
(ILV), (d) the outer part of the low-velocity zone (LV), (e) the boundaries
of the shallow low velocity (BSLV), (f) the rifts (R), (g) the boundaries of
the high-velocity objects (BSHV) and (h) the craton (C) and the shallow
high-velocity objects (SHV).

central main part. The remaining high velocities were assigned to
the high-velocity zone surrounding the rift. The extracted craton
and the shallow high-velocity zone can be seen in Fig. 6(h).

The final step classified the high (BSHV) and low-velocity
(BSLV) boundaries using the assign class algorithm based on
their velocity ranges 4.29–4.37 km s−1 for the low-velocity bound-
ary (Fig. 6e), and 4.37–4.47 km s−1 for the high-velocity boundary
(Fig. 6g).

The resulting model (Fig. 6h) showed the possibility to resolve
objects that are known to be present in the region based on a priori
knowledge, which were as much as possible translated into ob-
jective criteria. The uncertainty of the extracted objects is related
to the uncertainty of the shear wave seismic tomography model,
which ranged from 25 to 50 km for the depths between 50–250 km
and 75–100 km for deeper depths. Difficulties in the classification
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process were mainly confined to boundary zones, similar to what
was observed for the synthetic model. The real conditions were
more challenging to resolve than in the synthetic case, since the
boundaries did not have sharp and clear characteristics in the 3-D
histogram and were visually not easily identifiable. Therefore, the
boundaries of the objects were defined in separate classes (Figs 6b,
e and g). These separate classes allowed a degree of freedom to
describe the fuzzy characteristic of the objects and helped in iden-
tifying the body of the main objects.

An issue to be aware of for future use was that eCognition showed
the model as a mirror image around the Y (north–south) axis of
the model. However, this was only a visualization issue since the
exported sections and depth slices had a correct orientation and
georeferenced position.

5 D I S C U S S I O N A N D C O N C LU S I O N S

3-D OOA demonstrated the possibility to extract meaningful objects
from 3-D geophysical data in a semi-automatic way, in which the
user does not need to interpret objects manually. The approach
allows for a semi-objective setting of thresholds that can be tested
and, if necessary, changed in a very fast and efficient way. These
changes require only changing the thresholds used in the ruleset or
by defining additional algorithms to be included in the ruleset for
the extraction process.

The results of the synthetic model analysis showed the capability
of 3-D OOA to retrieve 3-D objects from geophysical data. The
extraction process of the main objects [craton, rift, plume and the
three horizontal layers (Fig. 4)] required a classification based on
the velocity and depth values. However, the combination of dividing
the objects into zones and their gradual boundaries added complex-
ity to the objects configurations and to the object retrieving process,
since there are different parts in different objects that have the same
velocity values. This made an object extraction process for these
objects based on the velocity values and depths alone impossible.
Moreover, it showed the need for the pixel-based object resizing al-
gorithm, and specifically the growing and coating options, in order
to define the objects. With this approach it was possible to define
objects in conditions where the object boundaries were not well-
defined and fuzzy, such as the mixed zone of the rift and plume
boundaries. The synthetic model analysis was driven by the a priori
knowledge on the objects present in the model. Also the object char-
acteristics and thresholds were well defined in the 3-D histogram.
As expected, the 3-D histogram of the real data was substantially
more complex. Furthermore, for the real scenarios no knowledge of
the actual object densities and depths may be available.

The real model results showed how 3-D OOA can deal with re-
alistic 3-D subsurface conditions in which the boundaries become
fuzzy, the object extensions become unclear and the model char-
acteristics vary with depth due to the different physical conditions
going from shallow to large depths in the subsurface. The 3-D
OOA-derived objects, the rifts, the craton, the low-velocity zone
and the deep high-velocity zone (Fig. 6), were extracted based on
their velocity and their depth location. However, most of the objects
boundaries have strong fuzzy characteristics and it was not straight-
forward to define objective measures for accurate definition of these
boundaries. This was solved by using separate classes to define the
objects boundaries which give more confident to the major classified
objects. However, the process to define fuzzy boundaries in a seis-
mological model needs further research to reduce non-uniqueness in
the definition of these boundaries. The smooth transition between

objects and their surroundings is often too fuzzy to be mapped
with confidence. However, eCognition is fundamentally also based
on the concept of fuzzy classification. This means that segments
marked by value transitions, and that may thus belong to more than
one class, can also be classified as such. Moreover, a multiresolu-
tion segmentation algorithm (Baatz & Schäpe 2000; Baatz et al.
2005) can be used instead of the multithreshold segmentation algo-
rithm since it can deal with complex structures which have different
scales. However, the selection of the optimum scale parameter is
a challenging task, even when using the Estimate Scale Parameter
(ESP) tool (Drăguţ et al. 2010) which requires further extension
to allow the processing of 3-D data. The same is true for another
approach for objective segmentation parameter identification, the
Plateau Objective Function by Martha et al. (2011).

The main geophysical application for 3-D OOA is any 3-D in-
version and/or interpretation process. With the boundaries defined,
both spatially as well as in depth, an inversion process can be more
focused on retrieving actual properties and reducing the degrees of
freedom for changing the shape of objects. This might be partic-
ularly useful for the inversion of potential field data where lateral
variations are often reasonably well modelled but the depth resolu-
tion is very poor, thereby leaving a large degree of uncertainty on
the final model in both object boundaries and property character-
istics. A case study implementation for reducing non-uniqueness
in satellite gravity inversions is shown by Fadel et al. (2013). This
also might be particularly relevant for recent satellite gravity studies
which use seismic tomography models (for a review, see van der
Meijde et al. 2013b). A clear example where this might be of added
value is the crustal thickness modelling in Africa (Tugume et al.
2013) and South America (van der Meijde et al. 2013a). In these
studies, uniform densities were assumed throughout the continent,
due to lack of objective and spatially homogeneous information.
Spatially defined boundaries, based on density variations, can im-
prove the modelling with spatially dependent density information.
With 3-D OOA, the uncertainty on objects and physical properties
can be potentially significantly reduced.

The eCognition rulesets developed in this research will be made
available on our website www.itc.nl/ooa-group.
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