29,246 research outputs found

    Derivation of diagnostic models based on formalized process knowledge

    Get PDF
    © IFAC.Industrial systems are vulnerable to faults. Early and accurate detection and diagnosis in production systems can minimize down-time, increase the safety of the plant operation, and reduce manufacturing costs. Knowledge- and model-based approaches to automated fault detection and diagnosis have been demonstrated to be suitable for fault cause analysis within a broad range of industrial processes and research case studies. However, the implementation of these methods demands a complex and error-prone development phase, especially due to the extensive efforts required during the derivation of models and their respective validation. In an effort to reduce such modeling complexity, this paper presents a structured causal modeling approach to supporting the derivation of diagnostic models based on formalized process knowledge. The method described herein exploits the Formalized Process Description Guideline VDI/VDE 3682 to establish causal relations among key-process variables, develops an extension of the Signed Digraph model combined with the use of fuzzy set theory to allow more accurate causality descriptions, and proposes a representation of the resulting diagnostic model in CAEX/AutomationML targeting dynamic data access, portability, and seamless information exchange

    Using Qualitative Hypotheses to Identify Inaccurate Data

    Full text link
    Identifying inaccurate data has long been regarded as a significant and difficult problem in AI. In this paper, we present a new method for identifying inaccurate data on the basis of qualitative correlations among related data. First, we introduce the definitions of related data and qualitative correlations among related data. Then we put forward a new concept called support coefficient function (SCF). SCF can be used to extract, represent, and calculate qualitative correlations among related data within a dataset. We propose an approach to determining dynamic shift intervals of inaccurate data, and an approach to calculating possibility of identifying inaccurate data, respectively. Both of the approaches are based on SCF. Finally we present an algorithm for identifying inaccurate data by using qualitative correlations among related data as confirmatory or disconfirmatory evidence. We have developed a practical system for interpreting infrared spectra by applying the method, and have fully tested the system against several hundred real spectra. The experimental results show that the method is significantly better than the conventional methods used in many similar systems.Comment: See http://www.jair.org/ for any accompanying file

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    Practical Model-Based Diagnosis with Qualitative Possibilistic Uncertainty

    Full text link
    An approach to fault isolation that exploits vastly incomplete models is presented. It relies on separate descriptions of each component behavior, together with the links between them, which enables focusing of the reasoning to the relevant part of the system. As normal observations do not need explanation, the behavior of the components is limited to anomaly propagation. Diagnostic solutions are disorders (fault modes or abnormal signatures) that are consistent with the observations, as well as abductive explanations. An ordinal representation of uncertainty based on possibility theory provides a simple exception-tolerant description of the component behaviors. We can for instance distinguish between effects that are more or less certainly present (or absent) and effects that are more or less certainly present (or absent) when a given anomaly is present. A realistic example illustrates the benefits of this approach.Comment: Appears in Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (UAI1995

    Neuro-fuzzy knowledge processing in intelligent learning environments for improved student diagnosis

    Get PDF
    In this paper, a neural network implementation for a fuzzy logic-based model of the diagnostic process is proposed as a means to achieve accurate student diagnosis and updates of the student model in Intelligent Learning Environments. The neuro-fuzzy synergy allows the diagnostic model to some extent "imitate" teachers in diagnosing students' characteristics, and equips the intelligent learning environment with reasoning capabilities that can be further used to drive pedagogical decisions depending on the student learning style. The neuro-fuzzy implementation helps to encode both structured and non-structured teachers' knowledge: when teachers' reasoning is available and well defined, it can be encoded in the form of fuzzy rules; when teachers' reasoning is not well defined but is available through practical examples illustrating their experience, then the networks can be trained to represent this experience. The proposed approach has been tested in diagnosing aspects of student's learning style in a discovery-learning environment that aims to help students to construct the concepts of vectors in physics and mathematics. The diagnosis outcomes of the model have been compared against the recommendations of a group of five experienced teachers, and the results produced by two alternative soft computing methods. The results of our pilot study show that the neuro-fuzzy model successfully manages the inherent uncertainty of the diagnostic process; especially for marginal cases, i.e. where it is very difficult, even for human tutors, to diagnose and accurately evaluate students by directly synthesizing subjective and, some times, conflicting judgments

    Fuzzy neural network methodology applied to medical diagnosis

    Get PDF
    This paper presents a technique for building expert systems that combines the fuzzy-set approach with artificial neural network structures. This technique can effectively deal with two types of medical knowledge: a nonfuzzy one and a fuzzy one which usually contributes to the process of medical diagnosis. Nonfuzzy numerical data is obtained from medical tests. Fuzzy linguistic rules describing the diagnosis process are provided by a human expert. The proposed method has been successfully applied in veterinary medicine as a support system in the diagnosis of canine liver diseases

    Aided diagnosis of structural pathologies with an expert system

    Get PDF
    Sustainability and safety are social demands for long-life buildings. Suitable inspection and maintenance tasks on structural elements are needed for keeping buildings safely in service. Any malfunction that causes structural damage could be called pathology by analogy between structural engineering and medicine. Even the easiest evaluation tasks require expensive training periods that may be shortened with a suitable tool. This work presents an expert system (called Doctor House or DH) for diagnosing pathologies of structural elements in buildings. DH differs from other expert systems when it deals with uncertainty in a far easier but still useful way and it is capable of aiding during the initial survey 'in situ', when damage should be detected at a glance. DH is a powerful tool that represents complex knowledge gathered from bibliography and experts. Knowledge codification and uncertainty treatment are the main achievements presented. Finally, DH was tested and validated during real surveys.Peer ReviewedPostprint (author's final draft
    corecore