88 research outputs found

    Study of Fuzzy Logic-based Controller for Diff-Serv Bandwidth Broking

    Get PDF
    Combining both voice and data on the same network infrastructure results in need for an advanced network which is to be simple and scalable.  This resulted in new approach for Ethernet where Differentiated Service (Diff-Serv) is introduced. This is taken into consideration as well as QoS as a way of providing class of service to end users. Therefore, optimizing available bandwidth efficacy is one of the goals of this work which is centered on investigating the impact of crucial factors on performance of implementing a fuzzy logic controller. These factors can be external or internal and will be manipulated by Fuzzy Logic controller that will work as bandwidth broker to give each user his optimal Code Point (CP). In this work, the CP will not only consider packet loss rate as external factor  to check the congestion, but it will also consider the internal factors which are a combination of both service-level agreement (SLA) and the type of application being used. This CP will be marked in the transmitted packets, and then the router will check that and will treat it as agreed between user and administrator

    Dynamic QoS Solution for Enterprise Networks Using TSK Fuzzy Interpolation

    Get PDF
    The Quality of Services (QoS) is the measure of data transmission quality and service availability of a network, aiming to maintain the data, especially delay-sensitive data such as VoIP, to be transmitted over the network with the required quality. Major network device manufacturers have each developed their own smart dynamic QoS solutions, such as AutoQoS supported by Cisco, CoS (Class of Service) by Netgear devices, and QoS Maps on SROS (Secure Router Operating System) provided by HP, to maintain the service level of network traffic. Such smart QoS solutions usually only work for manufacture qualified devices and otherwise only a pre-defined static policy mapping can be applied. This paper presents a dynamic QoS solution based on the differentiated services (DiffServ) approach for enterprise networks, which is able to modify the priority level of a packet in real time by adjusting the value of Differentiated Services Code Point (DSCP) in Internet Protocol (IP) header of network packets. This is implemented by a 0-order TSK fuzzy model with a sparse rule base which is developed by considering the current network delay, application desired priority level and user current priority group. DSCP values are dynamically generated by the TSK fuzzy model and updated in real time. The proposed system has been evaluated in a real network environment with promising results generated

    Fuzzy Logic Approach for QoS Routing Analysis

    Get PDF

    Improving perceptual multimedia quality with an adaptable communication protocol

    Get PDF
    Copyrights @ 2005 University Computing Centre ZagrebInnovations and developments in networking technology have been driven by technical considerations with little analysis of the benefit to the user. In this paper we argue that network parameters that define the network Quality of Service (QoS) must be driven by user-centric parameters such as user expectations and requirements for multimedia transmitted over a network. To this end a mechanism for mapping user-oriented parameters to network QoS parameters is outlined. The paper surveys existing methods for mapping user requirements to the network. An adaptable communication system is implemented to validate the mapping. The architecture adapts to varying network conditions caused by congestion so as to maintain user expectations and requirements. The paper also surveys research in the area of adaptable communications architectures and protocols. Our results show that such a user-biased approach to networking does bring tangible benefits to the user

    TONTA: Trend-based Online Network Traffic Analysis in ad-hoc IoT networks

    Get PDF
    Internet of Things (IoT) refers to a system of interconnected heterogeneous smart devices communicatingwithout human intervention. A significant portion of existing IoT networks is under the umbrella of ad-hoc andquasi ad-hoc networks. Ad-hoc based IoT networks suffer from the lack of resource-rich network infrastructuresthat are able to perform heavyweight network management tasks using, e.g. machine learning-based NetworkTraffic Monitoring and Analysis (NTMA) techniques. Designing light-weight NTMA techniques that do notneed to be (re-) trained has received much attention due to the time complexity of the training phase. In thisstudy, a novel pattern recognition method, called Trend-based Online Network Traffic Analysis (TONTA), isproposed for ad-hoc IoT networks to monitor network performance. The proposed method uses a statisticallight-weight Trend Change Detection (TCD) method in an online manner. TONTA discovers predominant trendsand recognizes abrupt or gradual time-series dataset changes to analyze the IoT network traffic. TONTA isthen compared with RuLSIF as an offline benchmark TCD technique. The results show that TONTA detectsapproximately 60% less false positive alarms than RuLSIF.publishedVersio

    Congestion and admission control in WDM optical networks

    Get PDF
    The demand for more communication bandwidth and network resources, has pushed researchers to find faster and more reliable data communication networks. Wavelength division multiplexing (WDM) is a promising technology to meet such increasing demands. To make use of the WDM networks, some issues need to be dealt with. This thesis discusses three problems, constraint-based path selection. Congestion Control and Admission Control. When selecting a path between the source and destination, in which some constraints are present, the choice of the path can have dramatic effects on the Quality of Service (QoS). Three path selection algorithms are compared in order to achieve optimum path selection. These algorithms are presented and analyzed in this thesis. The algorithms do not just deal with one path selection constraint but k-constraints. Two controllers are presented: A proposed congestion controller and the second is a call admission controller in circuit switched networks. The proposed congestion control algorithm is based on the fuzzy logic technique and aims to control the congestion in a WDM network through an adequate adjustment of the delay on the calls that are in the queue of the server. The adaptive admission controller for circuit switched networks is based on the optimization of resources in the network. Numerous Simulation results are presented which show the performance of each controller

    Chronology of the development of Active Queue Management algorithms of RED family. Part 1: from 1993 up to 2005

    Get PDF
    This work is the first part of a large bibliographic review of active queue management algorithms of the Random Early Detection (RED) family, presented in the scientific press from 1993 to 2023. The first part will provide data on algorithms published from 1993 to 2005
    corecore