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A B S T R A C T

Internet of Things (IoT) refers to a system of interconnected heterogeneous smart devices communicating
without human intervention. A significant portion of existing IoT networks is under the umbrella of ad-hoc and
quasi ad-hoc networks. Ad-hoc based IoT networks suffer from the lack of resource-rich network infrastructures
that are able to perform heavyweight network management tasks using, e.g. machine learning-based Network
Traffic Monitoring and Analysis (NTMA) techniques. Designing light-weight NTMA techniques that do not
need to be (re-) trained has received much attention due to the time complexity of the training phase. In this
study, a novel pattern recognition method, called Trend-based Online Network Traffic Analysis (TONTA), is
proposed for ad-hoc IoT networks to monitor network performance. The proposed method uses a statistical
light-weight Trend Change Detection (TCD) method in an online manner. TONTA discovers predominant trends
and recognizes abrupt or gradual time-series dataset changes to analyze the IoT network traffic. TONTA is
then compared with RuLSIF as an offline benchmark TCD technique. The results show that TONTA detects
approximately 60% less false positive alarms than RuLSIF.
1. Introduction

IoT is increasingly recognized as a networking paradigm connecting
heterogeneous smart devices without human intervention [1,2]. The
heterogeneity can be in different aspects such as energy, processing
power, and communication protocols [3]. IoT can be established based
on two types of network infrastructures including: (𝑖) Infrastructure-
dependent networks: Some fixed devices are in charge of connecting
end devices, e.g. routers, switches, and Base Stations (BSs). and (𝑖𝑖)
Infrastructure-independent or ad-hoc networks: No fixed node is available
to establish the network infrastructure. Instead, some resource-rich end-
nodes temporarily work together to establish the network infrastructure
and connect other nodes.

A significant portion of real-world IoT networks is under the um-
brella of ad-hoc networking. In several IoT applications, the nodes
use conventional ad-hoc communication protocols, e.g. Zigbee, or use
Device to Device (D2D)-enabled communication protocols, e.g. WiFi-
Direct and Cellular-D2D [4,5]. Fig. 1 shows an example of ad-hoc IoT
networks. Considering data forwarding tasks in ad-hoc IoT, existing
techniques have been almost successful in establishing an efficient
network infrastructure, e.g. routing and clustering techniques [6–8]. On
the contrary, in case of NTMA, ad-hoc IoT is not mature yet [9].

Monitoring and analyzing the network traffic is a key requirement in
such networks like many other conventional networks. NTMA is a broad
topic, including sub-fields of traffic classification, traffic prediction,
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fault management, and network security, to name a few. Network
Traffic Analysis (NTA) is a sub-field of network traffic prediction [10,
11] which plays an important role in monitoring the network traffic
behavior and efficiency. In addition, it can detect unusual events or
gradual departures from a normal operation by analyzing network
traffic flow characteristics. Generally, given the size and complexity of
data and the dynamicity of the network, NTMA tasks are considered
heavyweight.

In Infrastructure-dependent IoT networks, resource-rich devices,
e.g. routers and switches are to perform heavy tasks of monitoring
and analyzing the network traffic. On the contrary, in infrastructure-
independent networks, most of the infrastructure nodes have not enough
resources to perform such heavy NTMA tasks. Although existing NTMA
solutions have good performance, most of them are based on Machine
Learning (ML) techniques [9]. ML-based NTMA techniques suffer from
some disadvantages in the case of ad-hoc IoT as indicated below [12]:

• Unlike other ML applications, in network management solutions,
ML techniques should be retrained frequently due to the high
dynamicity of networks. Some events can cause ML models re-
training [13] due to daily training [14], changes in analysis re-
quirements (by the NTMA platform itself or human) [15], changes
in the network traffic behavior [16], and starting a new network
traffic (the ML model should be trained from scratch). Most ML
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Fig. 1. A limited-size example of ad-hoc based IoT networks.
techniques need a considerable amount of resources to be trained.
Training the ML models is also a time-consuming task that cannot
support time-sensitive IoT applications.

• Conventional supervised learning techniques are efficient only
in the case of labeled data, but in real-world applications of
networking, most of the data is unlabeled or semi-labeled [17].
Deep Learning (DL) is the most well-known ML technique to work
with unlabeled data [18], but it has some drawbacks, mainly it
demands high resources and time to train the DL model.

Based on the above disadvantages, ML-based NTMA techniques are
considered resource demanding for ad-hoc resource-constrained IoT. To
monitor networking efficiency, we need to invest in more lightweight
methods. Compared to ML techniques, statistical techniques are more
lightweight NTMA methods that generally do not need to be trained.
The network traffic characteristics, e.g. delay, throughput and jitter
can be presented as time-series datasets as they are extracted gradu-
ally from the network in a period of time. In statistical techniques,
pattern recognition methods are the most common solution to dis-
cover trends of time-series datasets [19,20]. Network traffic pattern
recognition is a broad topic and includes some sub-techniques [21],
e.g. anomaly detection and trend change detection. TCD is a solution
generally designed for discovering trends of time-series datasets. TCD
techniques also include various sub-techniques, e.g. time series segmen-
tation and Change Point Detection (CPD) [22]. Among various TCD
sub-techniques, CPD techniques are the most common online solutions
to identify changes in gradually-generated time-series datasets [23].
CPD techniques process the time-series dataset online to detect Change
points (CPs) (as data points) that can divide the datasets into subsets
with predominant trends. Compared to ML techniques, CPD techniques
are very light-weight [24]. In addition, they do not need to be (re-)
trained.

We remedy the lack of lightweight NTA techniques by proposing
a network traffic monitoring technique based on the online TCD tech-
nique. The proposed technique determines the behavior of IoT network
traffic by analyzing network management characteristics gathered as
time-series datasets. The proposed method, called TONTA, can be used
by all nodes in charge of forwarding data, e.g. middle nodes and gate-
ways. To analyze the network traffic based on TONTA, we consider two
2

steps: (𝑖) determining boundaries of network traffic behavior changes
by recognizing CPs of the time-series dataset, and (𝑖𝑖) identifying the
trends between every two continuous boundaries as the network traffic
behavior. The methods introduced in [25,26] are the cornerstone of
TONTA, but it includes fundamental improvements compared to the
above works. The key contributions of this paper include:

• Proposing a new TCD method that does not need (re)training.
• Designing a NTA method to recognize abrupt and gradual changes

in the network traffic in an online manner.
• Formulating a new model for a dynamic-sliding window to pro-

cess datasets gathered from ad-hoc based IoT networks to improve
the time complexity and accuracy of the proposed algorithm.

The rest of the paper is structured as follows. In Section 2, related
work is discussed. In Section 3, we present TONTA, while its efficiency
is evaluated and compared with Relative unconstrained Least-Squares
Importance Fitting (RuLSIF) in Section 4. Finally, Section 5 concludes
the paper and highlights the future directions. Table 1 shows the
acronyms used in this paper.

2. Related work

There are some survey papers reviewing the NTMA techniques, e.g.
[9,27]. To support QoS, the network infrastructure should be monitored
periodically to detect abnormal or abrupt network traffic changes
[28,29]. In terms of traffic prediction, both classic forecasting methods
and machine learning techniques are introduced. As the statistical-
based methods have lower overhead compared to ML techniques, they
have attracted much attention in network monitoring. In [30], the
authors evaluate the three types of predictors including classic time
series, artificial neural networks and wavelet transform-based predic-
tors through real network traces. They show that Double Exponential
Smoothing (DES) as a classic time-series predictor has a good trade-off
between performance and cost overhead. In [31], the authors have dis-
cussed about statistical methods for network surveillance from different
aspects, e.g. network security, data network and dynamic networks.

In case of classic forecasting, Auto Regressive Integrated Moving
Average (ARIMA) is one of the most well-known techniques [32]. In
[33], Mehdi et al. introduce FARIMA based on combining the ARIMA

and fuzzy regression to forecast traffic in cloud computing. They reduce
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Table 1
List of abbreviations.

Abbreviation Description

ANN Artificial Neural Network
ARIMA Auto Regressive Integrated Moving Average
BS Base Station
CDM Curve Detection Method
CP Change Point
CPD Change Point Detection
D2D Device to Device
DES Double Exponential Smoothing
DL Deep Learning
DWT Discrete Wavelet Transform
HIAD Half Interaction Anomaly Degree
IoT Internet of Things
ML Machine Learning
NTA Network Traffic Analysis
NTMA Network Traffic Monitoring and Analysis
OWD One-Way Delay
PLC Probabilistic Link Capacity
QoS Quality of Service
RNN Recurrent Neural Network
RuLSIF Relative unconstrained Least-Squares Importance Fitting
SPI Shallow Packet Inspection
TCD Trend Change Detection
TONTA Trend-based Online Network Traffic Analysis

the need for historical data by ARIMA using the fuzzy regression and
also propose SOFA as an sliding window to improve the accuracy
of the prediction. The authors in [34] apply fractional ARIMA to
predict the network throughput in adaptive video based on HTTP. In
[35], the authors introduce a ARIMA-based modeling for non-Gaussian
traffic data to manage traffic congestion by predicting abnormal status.
They use R for data preprocessing and use the ARIMA to analyze and
predict the traffic. In [36], Schemidt et al. introduce an unsupervised
detection approach for cloud monitoring based on an online ARIMA
prediction technique for online data monitoring to detect degraded
state anomalies. Their results show that online ARIMA is efficient in
case of anomaly detection with high accuracy and low number of false
alarms. In [37], the authors introduce a network traffic prediction
technique based on combining Discrete Wavelet Transform (DWT),
ARIMA and Recurrent Neural Network (RNN). They use the proposed
model to predict the network traffic based on time-series dataset to
improve Quality of Service (QoS) and reduce cost.

Statistical based techniques are also used for supporting QoS. In
[38], the authors use the first and second order statistics to propose a
metric to predict amount of data that can be delivered through a shared
band of a spectrum to guarantee QoS statistically. They introduce a
probabilistic link capacity (PLC) metric based on a distributed robust
data-driven approach. They use the estimation errors to evaluate the
uncertainty of the statistics. In [39], the authors introduce a network
monitoring system based on extensible SDN and NFV. Their proposed
monitoring mechanism is based on a statistical data analysis technique
by NetFlow to collect information through virtual routers.

Anomaly detection as an sub-field of NTMA is very popular for de-
tecting abnormal changes in computer networks [40,41], but they are
generally used to improve security of the network. Anomaly detection
methods monitor the nodes and also traffic flows of the network to eval-
uate the efficiency [42,43]. Although anomaly detection methods are
generally used to improve security, monitoring the network to improve
QoS is another task which can be performed by them [44]. Flow-based
anomaly detection methods determine the behavior of packet streams
to detect abnormal or abrupt changes [45]. Several techniques are
introduced to detect anomalies based on analyzing traffic flows in a
network [46,47].

Although different statistical methods are used to improve the per-
formance of networking, CPD techniques have attracted much atten-
tion. In [48], the authors proposed a model to transform traditional IP
3

flow analyses to stream-based IP flow analysis to improve security and
real-time situational awareness with high throughput, low latency, and
good scalability. The authors in [49] introduce a model for continuous
detection of performance anomalies based on the property of streams
which has two levels. First, they use an adaptive learning model to
estimate an underlying temporal property of the stream. Then, they use
robust control charts based on statistics to recognize deviations. In [50],
the authors use a non-parametric model to describe the congestion
times during transferring a file using a CPD method. They use the
proposed method to create time periods, dividing data into subsets and
put each subset on the time periods called segments to analyze the
subsets.

TCD is also used in anomaly detection techniques. In [51], the
authors introduce a method to detect DDoS attacks based on extracting
HIAD form IP based network flows and analyze it using trend change
detection methods. In [52], M. Alkasassbeh proposed a new prediction
model to estimate network traffic and use a CPD method to detect DDoS
attacks in computer networks.

In [53], the authors introduce an anomaly detector method in
networks based on time variations and correlation among statistics
gathered from the network as time-series datasets. Table 2 compare the
literature as reviewed in this section.

3. Proposed method

Different QoS metrics can be gathered from the network to collect
network traffic characteristics, e.g. throughput, delay and jitter. We focus
on packet delay (briefly delay) as an important metric in time-sensitive
IoT applications. One-way Delay (OWD), also called end-to-end delay,
is an important QoS metric to reveal network traffic behavior changes
as a time-series dataset [54,55]. A time-series dataset follows various
types of trends, but mainly, each of them can be uptrend, downtrend, or
side-way trend. In OWD time-series datasets, uptrend shows the delay
of the packet stream is increasing and QoS cannot be provided after a
while. A downtrend shows the delay is decreasing and some forwarding
resources will be free. A side-way trend shows the packet stream be-
havior is stable and no important change is happening. TONTA follows
some steps to discover the network traffic behavior as listed below:

1. As the first-step of the data pre-processing, before each trigger,
TONTA waits for enough new data points (i.e. OWD raw data) to
perform a sampling method. After gathering enough raw OWD
data, the sampling method is performed to calculate a data
point, called sampled data point. TONTA appends the sampled
data to the end of the time-series dataset. We consider that
the OWD raw data is extracted by Shallow Packet Inspection
(SPI), but performing SPI is out of the scope of this study. When
enough sampled data is appended to the time-series dataset
(𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑇ℎ𝑟), TONTA proceeds to the next step.

2. TONTA adapts the size of a dynamic-sliding window to select an
adequate number of data points from the end of the time-series
dataset.

3. As the second-step of data pre-processing, a smoothing method
is performed on the subset to improve the quality of data and
eliminate the impact of variety of packet generator distribution
functions.

4. TONTA identifies a temporary CP in every selected subset based
on a novel CPD method and divides the subset into two new
temporary subsets called (Sec_1 and Sec_2).

5. The temporary CP is evaluated by a novel Curve Detection
Method (CDM) as the first-step of CP verification. Curves are
intermediate data points transforming two continuous predom-
inant trends, but they are not a new trend as shown in Fig. 3.
The CDM method helps to avoid selecting repetitive CPs or any
data point in curves as CPs.
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Table 2
Comparing the literature.

# Application Network Cornerstone technique
(technology)

Description

1 [33] Traffic prediction Cloud networks ARIMA + Fuzzy regression Reducing the need of historical data + using a novel sliding window

2 [34] Network through put
prediction

Multimedia
networks

ARIMA+ Fractional ARIMA Predict the throughput by FARIMA and RIMA as a long
range-dependent process

3 [35] Abnormal status
prediction

N/A ARIMA Predict non-Gaussian traffic data to manage traffic congestion

4 [36] Detection of degraded
state anomalies

Cloud networks Online ARIMA Proposing an unsupervised anomaly event detection approach for
service monitoring based on ARIMA

5 [37] Network traffic
prediction

Data centers DWT + ARIMA + RNN Predicting the network traffic to improve OoS and reduce cost

6 [38] Data volume
prediction

Wireless networks First and second order
statistics

Predicting amount of data that can be delivered through a shared
band of a spectrum to guarantee the QoS statistically.

7 [39] Network monitoring SDN and NFV Use NetFlow Collecting network information through virtual routers of NetFlow

8 [48] Cyber-threats
detection

IP-based networks Apache Kafka Transforming traditional IP flow analyses to stream-based IP flow
analysis

9 [49] Anomaly detection Performance metric
systems

Adaptive learning+ robust
control charts

Transforming traditional IP flow analyses to stream-based IP flow
analysis

10 [50] Congestion detection FTP Proposed CPD technique Creating time periods, dividing data into subsets and putting each
subset on the time periods

11 [51] DDoS attacks
detection

IP-based networks Cumulative sum time series + Detecting DDoS attacks based on extracting half interaction
anomaly degree (HIAD)

12 [52] DDoS attacks
detection

IP-based networks Artificial Neural Network
(ANN)+

Combining traffic prediction and changing detection.
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6. As the third-step of data pre-processing, an outlier detection
method is performed to remove outliers of the (Sec_1 and Sec_2)
to prepare the subsets to compare.

7. As the second-step of CP verification, two outlier-free subsets are
compared to determine the importance degree of the temporary
CP based on intensities of their trends. If the importance degree
of the temporary CP passes a threshold (𝐼𝑚𝑝_𝑇ℎ𝑟), the CP turns
into a permanent CP, otherwise TONTA stops working and re-
turns to the first step, waiting for new OWD data gathered from
the network.

8. If the temporary CP turns into a permanent CP, intensity of Sec_2
is determined as the current network traffic behavior.

9. By selecting the permanent CP, Sec_1 and all data points before
that are removed from the dataset to avoid re-processing.

ig. 2 shows the activity diagram of TONTA and how its steps identify
he network traffic behavior in an online manner. To adapt TONTA with
he properties of the network streams in IoT, we design it based on
acing some specifications listed below:

• Although TONTA identifies the predominant trend changes, some
events can cause jitters (temporary trend changes), e.g. perfor-
mance of the communication protocols, and network congestion,
to name a few. In addition, some events can cause short-term
network traffic changes, e.g. packet bursting. These short-term
trend changes can conceal predominant trends if they happen
frequently as fluctuations in the time-series datasets. TONTA has
been adapted to face these network properties based on data
pre-processing and CP verification steps.

• IoT nodes can generate packets based on different distribution
functions, e.g. Poisson, constant, normal and exponential. Each
packet stream can changes its distribution function during the
network lifetime. As an example, in healthcare IoT networks,
emergency situations can cause changes in distribution function
of a packet stream. TONTA addresses the challenge based on Step
3.

In the rest of this section, we explain all aforementioned steps of
ONTA.
4

.1. Collecting the network traffic characteristics

As the first step of pre-processing, TONTA tries to optimize the
olume of the data that should be processed. First, a sampling method
educes the volume of OWD raw data to improve the time complexity
f the algorithm. Eq. (1) is used for sampling when r is an OWD raw
ata, and s is the fixed sampling rate. In addition, to improve the time
omplexity and avoid unnecessary data processing, the Interval_Thr pa-
ameter is introduced. As shown in Fig. 2, TONTA gathers enough new
ampled data before processing. Every Interval_Thr of 𝑑 new sampled
ata points trigger TONTA. As an example, when Interval_Thr = 20,
very 20 new sampled data points trigger TONTA; thereby if s = 10 and
nterval_Thr = 20, every 200 new packets trigger TONTA. The reasons
f using the sampling method are listed below:

• Generally, TONTA as an online method, might be triggered after
each new raw OWD data, but it causes high unnecessary data
processing and resource consumption. The sampling method re-
duces the number of times that TONTA is triggered to process a
time-series dataset.

• If TONTA is triggered for every few new raws of OWD data, there
would be a high data redundancy to process in every continuous
trigger. To avoid data redundancy, a high number of new data
points should be appended to a trigger TONTA.

Big Interval_Thr can increase average delay of CP discovery, but it
an also reduce the number of TONTA triggers. The delay is calculated
ased on the time of identifying a CP after occurring. On the contrary,
ig Interval_Thr may decrease the accuracy of TONTA, because in some
ases, CPs will be concealed in a huge number of new data points.

=

∑𝑠
𝑓=1 𝑟𝑓
𝑠

(1)

3.2. Online data analysis by dynamic-sliding window

To determine CPs in an online manner, data points needs to be
analyzed gradually on-the-fly. As explained in Step 2, TONTA, in each
trigger, processes a subset selected from the time-series dataset by
a dynamic-running window. The subset should not be very big to

consume a lot of processing resources. In addition, it should not be
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Fig. 2. Activity diagram of TONTA.
very small resulting in reducing the accuracy of TONTA. To achieve
low time complexity and high accuracy, the dynamic-sliding window
is proposed which runs through the time-series dataset from the end
and select subsets in every trigger to process. The size of the window is
highly dynamic, adapted before each trigger, based on different factors
like last permanent CP, data density, and 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑇 ℎ𝑟.

There are two thresholds for the dynamic-sliding window called
Max_Thr and Min_Thr which show the maximum and minimum number
of data points, selected by the window, respectively. Max_Thr limits the
size of the window to improve the time complexity and resource con-
sumption. TONTA needs a minimum number of data points to discover
the network traffic pattern. Min_Thr is proposed to provide enough
number of data points to process. Algorithm 1 shows the pseudo-code of
the dynamic-sliding window to select a subset of the time-series dataset.
𝑗 is a variable to improve the time complexity by removing unnecessary
data points. It is used when the number of data points in the window
is enough, but exceeding Max_Thr. 𝑗 is used to keep the size of the
dynamic-sliding window between Min_Thr and Max_Thr efficiently. The
default value of 𝑗 is 1.5. The subset selected by the window contains 𝑝
data points.

Algorithm 1 Dynamic-sliding window generator
Input: 𝑑𝑎𝑡𝑎_𝑝𝑜𝑖𝑛𝑡 new data point extracted by SPI
Input: 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑇ℎ𝑟 size of sampled data to trigger TONTA
Input: 𝑠 sampling rate
Input: 𝑀𝑖𝑛_𝑇ℎ𝑟 minimum size of the window
Input: 𝑀𝑎𝑥_𝑇ℎ𝑟 maximum size of the window

𝐼𝑛𝑝𝑢𝑡𝐷𝑆 ← ∅
𝑅𝑎𝑤𝐷𝑎𝑡𝑎 ← ∅
while stream is being monitored do

for i=1 to Interval_Thr do
𝑅𝑎𝑤𝐷𝑎𝑡𝑎 ← 𝑠 number of new 𝑑𝑎𝑡𝑎_𝑝𝑜𝑖𝑛𝑡𝑠 extracted by SPI
sample= Sampling(𝑅𝑎𝑤𝐷𝑎𝑡𝑎)
𝐼𝑛𝑝𝑢𝑡𝐷𝑆[𝑖 + 𝑠𝑖𝑧𝑒(𝐼𝑛𝑝𝑢𝑡𝐷𝑆)]= sample

end for
if size(𝐼𝑛𝑝𝑢𝑡𝐷𝑆) < Min_Thr then

Continue
end if
if Size(𝐼𝑛𝑝𝑢𝑡𝐷𝑆) > Max_Thr then

𝐼𝑛𝑝𝑢𝑡𝐷𝑆=𝐼𝑛𝑝𝑢𝑡𝐷𝑆[Interval_Thr*j : size(𝐼𝑛𝑝𝑢𝑡𝐷𝑆)]
end if
if Size(𝐼𝑛𝑝𝑢𝑡𝐷𝑆) > Min_Thr && Size(𝐼𝑛𝑝𝑢𝑡𝐷𝑆)<Max_Thr then

𝐼𝑛𝑝𝑢𝑡𝐷𝑆=Smoothing(𝐼𝑛𝑝𝑢𝑡𝐷𝑆)
𝐶𝑃𝑇 𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦=TONTA(𝐼𝑛𝑝𝑢𝑡𝐷𝑆)
if 𝐶𝑃𝑇 𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦 is a Permanent CP then

𝐼𝑛𝑝𝑢𝑡𝐷𝑆[1 to 𝐶𝑃𝑇 𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦 ] ← ∅
else

Continue
end if

end if
end while
5

Fig. 3. Example of the Trends and Curves in a time-series dataset. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

3.3. Determining a temporary CP in a time-series dataset

In this step, a temporary CP in the selected subset should be se-
lected. After appending enough new sampled data points, a smoothing
method is performed on the subset to remove jitters and short-term
trend changes. It also helps to transform datasets generated by different
types of distribution functions to a type of dataset that can be processed
by TONTA as explained in step 3. Eq. (2) is used for data smoothing
based on a floating frame when the frame size is 2*m+1. 𝑚 is a
parameter to change the size of the frame and 𝑑𝑖 shows 𝑖𝑡ℎ data point
of the subset. As an example, if 𝑚 = 1, then the smoothing method is
applied on every three sampled data points. Bigger 𝑚 makes the subset
smoother, but high smoothing can possibly conceal the CPs.

𝑋𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛[𝑑𝑖−𝑚, 𝑑𝑖−𝑚+1,… , 𝑑𝑖+𝑚−1, 𝑑𝑖+𝑚] 𝑓𝑜𝑟 𝑖 = 2, 3...𝑝 − 1 (2)

In this step, 𝑋1 = 𝑑1 and 𝑋𝑝 = 𝑑𝑝. To recognize a temporary CP in each
trigger, as the first step, the difference of the smoothing data in the first
order is used by Eq. (3).

𝑇𝑖 = 𝑋𝑖 −𝑋𝑖−1 𝑓𝑜𝑟 𝑖 = 2, 3, 4...𝑝 (3)

To identify the temporary CP in the subset, we use the standard
deviation method to predict existing data points and calculate the error
rate of the prediction. In other words, the existing smoothed data points
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are predicted using the standard deviation method. Then predicted data
points are compared with the smoothed data points to calculate the
standard deviation errors. A novel exponential weighting method is
used to give priority to the latest sampled data points. The weighting
method helps to discover more important trend changes occurred re-
cently as the current network traffic behavior. The weighting method
changes the importance of each data point in the subset. Eq. (4) is used
to calculate the weight for each data point.

𝜃𝑖𝑗 = 𝛼𝑗 (1 − 𝛼𝑗 )𝑝−𝑖 𝑓𝑜𝑟 𝑖 = 1, 2, 3...𝑝 (4)

0 < 𝛼𝑗 < 1 is calculated by Eq. (5) to give weights to the data points of
the subset. when 𝛼 is approaching 1, the latest sampled data points are
more important than older ones. On the contrary, if 𝛼 is approaching
0, the importance of all data points tends to be equal. To identify the
temporary CP, we need to give different weights from low to high to
the smoothed data points to calculate the error rates. Value of 𝛼 is
determined by Eq. (5)

𝛼𝑗 = 𝛼𝑗−1 +
1
𝜖

for j = 2, 3, 4… 𝜖 where 𝛼1 =
1
𝜖

(5)

𝜖 shows the number of times that the data points are compared with
different weights. Eq. (6) calculates the second order finite difference
along with applying the weighting model.

𝛥𝑖𝑗 = 𝜃𝑖𝑗 (𝑇𝑖 − 𝑇𝑖−1) 𝑓𝑜𝑟 𝑖 = 1, 2, 3...𝑝 𝑎𝑛𝑑 j = 1, 2, 3… 𝜖 (6)

Eq. (7) removes the effect of finite order difference, calculates the
standard deviation error of each weighted data point, and finally sums
up the error rates for each 𝜃.

𝑒𝜃𝑖𝑗 =
𝑝
∑

𝑖=1
(𝛥𝑖𝑗 − 𝑇𝑖)2 𝑓𝑜𝑟 𝑖 = 1, 2, 3...𝑝 𝑎𝑛𝑑 j = 1, 2, 3… 𝜖 (7)

Each 𝑒𝜃𝑖𝑗 that shows the minimum prediction error is considered as
the position of the temporary CP in the subset. As an example, if the
minimum of 𝑒𝜃𝑖𝑗 appears in 𝛼𝑗 = 0.81 and 𝑝 = 500, the temporary CP is
0.81 ∗ 500 = 405th data point of the subset.

If 𝜖 = 100 then TONTA compares the data points of the subset by
iving 100 different weights to each data point. To reduce the time
omplexity of TONTA, 𝜖 can be increased, but the accuracy will be
ecreased simultaneously. Changing 𝜖 is based on different factors, e.g.
rocessing power of Node-x as the node that is performing TONTA,
ensitivity of the network traffic to discover accurate CPs, and the
olume of the network traffic. It is noteworthy that if there are more
han one predominant trend in the subset, the last CP is selected as the
ubset is weighting from the end.

.4. Curve detection method

In computer networks, NTA methods encounter an important chal-
enge to process time-series datasets called curves. Unlike other ap-
lications of pattern recognition techniques (e.g. signal processing),
ransforming two continuous network traffic behaviors happens grad-
ally. Curves are data points between two continuous predominant
rends that transform the first one to the second one, but they are
ot new network traffic behaviors individually. Examples of curves and
rends are shown in Fig. 3. Thick (black) lines on top of the time-series
ataset show different predominant trends of the dataset and narrow
blue) lines show subsets of the dataset as curves. To avoid selecting
ata points of curves as a predominant trend, the Curve_Thr variable is
ntroduced. Avoiding the selection of CPs in curves is considered as the
irst-step of CP verification. As shown below, there are two conditions
C1 and C2) that should be satisfied to approve that the temporary CP is
ot in a curve. Len(x) returns the number of data points of x and Pos(y)
hows the position of data point y in the time-series dataset. 𝐶𝑃𝑙𝑎𝑠𝑡
hows the last discovered permanent CP. The first new subset called
𝑒𝑐1 is started from the first data point of the subset to the temporary
P. The second new subset called 𝑆𝑒𝑐2 is started from the temporary
6

P to the end of the subset. d
• 𝐶1 ∶ ((𝐿𝑒𝑛(𝑆𝑒𝑐1) > 𝐶𝑢𝑟𝑣𝑒_𝑇ℎ𝑟)&&(𝐿𝑒𝑛(𝑆𝑒𝑐2) > 𝐶𝑢𝑟𝑣𝑒_𝑇ℎ𝑟))
• 𝐶2 ∶ (𝑃𝑜𝑠(𝐶𝑃 𝑇 𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦) > (𝑃𝑜𝑠(𝐶𝑃𝑙𝑎𝑠𝑡))

his method is called CDM. 𝐶1 helps to avoid identifying curves as
redominant trends. 𝐶2 helps to avoid selecting a CP before the last
P.

.5. Verifying the temporary CP

After identifying the temporary CP, TONTA needs to determine
he importance degree of the CP to turn it into a permanent CP or
efuse it as a false alarm. It is noteworthy that the proposed method
lways determines a temporary CP in each trigger, but it can be
alse or insignificant due to the intense of the network traffic change.
herefore, 𝑆𝑒𝑐1 and 𝑆𝑒𝑐2 need to be compared to identify that how

mportant the change is. As TONTA is very sensitive in terms of outliers,
efore comparing, 𝑆𝑒𝑐1 and 𝑆𝑒𝑐2 should be prepared. To address the
hallenge, an outlier detection method is proposed based on giving
cores to data points. The assigned score is compared with a threshold
o recognize and remove outliers. Eq. (8) calculates the slope of 𝑆𝑒𝑐1
nd 𝑆𝑒𝑐2 when 𝑦 = 𝑚𝑥+𝑏, where 𝑚 is the slope of the desired line and 𝑏
epresents its intercept. Assuming that the line slope is known, one can
laim that the new line equation with 𝑥 is replaced with the mean of
′𝑠 that should result in the mean of 𝑦′𝑠. The score is calculated using
q. (9) for every data point based on detrending the subset. Finally,
q. (10) is used to determine whether each data point is an outlier or
ot. If the result of the Eq. (10) for a data point is 1, it is considered
s an outlier and removed from the subset before comparing 𝑆𝑒𝑐1 and
𝑒𝑐2.

𝑙𝑜𝑝𝑒 = 𝑚 =
∑𝑥

𝑖=1 (𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦′)
∑𝑥

𝑖=1 (𝑥𝑖 − 𝑥′)2
(8)

𝑆𝑐𝑜𝑟𝑒𝑠 = |𝑑 − 𝑦| (9)

𝑓 (𝑥) =

{

0 ∀𝑥|𝑆𝑐𝑜𝑟𝑒(𝑥) ≤ 𝐴𝑣𝑔(𝑆𝑐𝑜𝑟𝑒𝑠) +
√

𝑉 𝑎𝑟(𝑆𝑐𝑜𝑟𝑒𝑠)
1 ∀𝑥|𝑆𝑐𝑜𝑟𝑒(𝑥) > 𝐴𝑣𝑔(𝑆𝑐𝑜𝑟𝑒𝑠) +

√

𝑉 𝑎𝑟(𝑆𝑐𝑜𝑟𝑒𝑠)
(10)

After removing the possible outliers, Eqs. (13), (12) and (14) are used
to compare the 𝑆𝑒𝑐1 and 𝑆𝑒𝑐2.

𝐶𝑆𝑒𝑐1 = 1
𝐿𝑒𝑛(𝑆𝑒𝑐1)

𝑃𝑜𝑠(𝐶𝑃𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦)
∑

𝑖=2
(𝑋𝑖 −𝑋𝑖−1) (11)

𝐶𝑆𝑒𝑐2 = 1
𝐿𝑒𝑛(𝑆𝑒𝑐2)

𝑝
∑

𝑖=𝑃𝑜𝑠(𝐶𝑃𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦+1)
(𝑋𝑖 −𝑋𝑖−1) (12)

𝑖𝑓𝑓 = 𝐴𝐵𝑆(𝐶𝑆𝑒𝑐1 − 𝐶𝑆𝑒𝑐2 ) (13)

𝑃 =

{

If Diff ≥ 𝐴𝐵𝑆(𝑐𝑆𝑒𝑐1 ∗ Imp_Thr) 1
If Diff < 𝐴𝐵𝑆(𝑐𝑆𝑒𝑐1 ∗ Imp_Thr) 0

(14)

𝐷𝑖𝑓𝑓 shows the intensity of the difference between trends of 𝑆𝑒𝑐1
and 𝑆𝑒𝑐2. In addition, 𝐶𝑆𝑒𝑐2 shows the behavior of the trend as the
current network traffic behavior. Eq. (14) shows the final result of
the TONTA method in each trigger. If its result equals 1 for a CP,
the method turns the temporary CP to a permanent CP. 𝐼𝑚𝑝_𝑇ℎ𝑟 is a
parameter which adapts the sensitivity of the TONTA model to turning
a temporary CP into a permanent CP. As an example, if 𝐼𝑚𝑝_𝑇ℎ𝑟− 0.5,
he difference between the trends of 𝑆𝑒𝑐1 and 𝑆𝑒𝑐2 should be at least
0% to select the temporary CP as a permanent CP. In addition, 𝐶𝑆𝑒𝑐2
an have a negative or a positive value. A negative value shows the

elay of the packet stream is decreasing and a positive value shows that
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the delay of the packet stream is increasing. When it is approaching 0,
it shows that the pattern is side-way and means that the delay is stable.

After determining the temporary CP and passing the first and second
verification steps, 𝑆𝑒𝑐1 and all data points before the 𝑆𝑒𝑐1 will be
removed from the time-series dataset. In other words, if the proposed
method selects a new permanent CP, the data points before the CP will
not be processed again. Furthermore, after selecting a new permanent
CP, if the selected subset is bigger than 𝑀𝑎𝑥_𝑇ℎ𝑟 (it happens if 𝑆𝑒𝑐2 +
𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑇ℎ𝑟 > 𝑀𝑎𝑥_𝑇ℎ𝑟), then 𝑀𝑎𝑥_𝑇ℎ𝑟%𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑇ℎ𝑟 extra data
oints will be removed from the start of the subset. Removing the extra
ata means there are enough data points in the window, thereby there
s no need for more data points to discover the CP. The extra data points
re just removed from the window. The original data is kept to be used
o determine permanent CPs shown in Fig. 2. If 𝑆𝑒𝑐2 + 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑇ℎ𝑟 >
𝑎𝑥_𝑇ℎ𝑟, data points will be removed as extra data.

. Evaluating the performance of TONTA

To evaluate the efficiency of TONTA, we use the Riverbed modeler
OPNET modeler) to gradually generate the time-series dataset in an
d-hoc IoT network. Two nodes are the source and destination of a
acket stream, and three nodes are middle nodes to apply the effects
f data forwarding queues. The forwarding rate of every middle node
s 100 Pkt/Sec. The destination node is responsible for gathering OWD
f every packet by SPI and sending it directly to the MATLAB engine
here TONTA is implemented.

Table 3 shows the distribution functions of the packet generator at
he source node for 1000 s. The number of raw data points (i.e., number
f generated packets) without using the sampling method is 99 800 in
000 s. After using sampling methods, 1914 data points are extracted
radually. The sampling rate is a constant equal to 𝑠 = 50. The table
lso shows the expected network traffic behavior based on changing
he distribution function, including Uptrend (UP), Downtrend (DO),
ide-way (S), Very (V), Low (L), Medium (M), and High (H). As
n example, we expect that after 200th second, the behavior of the
etwork traffic changes from side-way to downtrend (DO) with a high
H) intensity, so it is (DO-H). We evaluate all public datasets to mimic
ll possible situations in an ad-hoc IoT network. To the best of our
nowledge, no existing benchmark dataset provides the characteristics
f our generated dataset listed below:

• The dataset provides different network traffic changes like abrupt
changes, gradual changes, short-term changes, jitters, downtrend
to uptrend transformation and vice versa, side-way to down-
trend and uptrend transformations, and vice versa. The generated
dataset can represent all possible transformations to evaluate the
efficiency of TONTA.

• The packet generator’s distribution function changes frequently
to provide a dataset based on different distribution functions, e.g.
normal, Poisson, constant, and exponential.

s there is no public dataset to mimic all types of transformations
nd distribution functions, we generate the dataset using the OPNET
imulator. The 𝑥-axis of all figures of the performance evaluation
ection is ‘‘𝑇 𝑖𝑚𝑒(𝑆𝑒𝑐𝑜𝑛𝑑)’’, whereas the 𝑦-axis denotes ‘‘OWD (10 ms)’’.
n all figures, the red labels show permanent CPs based on Eq. (14) and
he red values show the exact time of every CP.

.1. The effects of TONTA parameters

In this section, we evaluate the effects of all parameters mentioned
n Table 9. As it is impossible to evaluate all possible values of the
arameters, we have assigned some default values to the parameters.
or each performance figure, the effects of changing the value of
he parameter, which is under evaluation, is investigated. The default
alues are Min_Thr = 100, Max_Thr = 300, Interval_Thr = 50, Imp_Thr =
.5 and 𝜖 = 100. The reasons for assigning these values are discussed
n Section 4.1.1. The following issues should be considered to evaluate
he performance of TONTA:
7

able 3
istribution functions of packet generator at source node to generate the evaluated
acket stream.
Start time Distribution function Parameter (s) Traffic behavior

0 Exponential 0.00980392 UP-H
100 Exponential 0.00990099 S-M

200 Normal 0.01030927 DO-H0.001030927

300 Constant 0.01 S-H
400 Poisson 0.00952380 UP-VH
500 Exponential 0.01010101 DO-L
600 Exponential 0.00970873 UP-M

700 Normal 0.00952380 UP-M0.000952380

800 Constant 0.01 S-H
900 Poisson 0.01010101 S-L

• TONTA needs to determine CPs every 100 s, but according to
the effects of curves and forwarding queues, it is practically
impossible to recognize CPs in the destination node right after
changing the distribution function in the data generator of the
source node. After each change in the distribution function of
the packet generator, it takes some time to have a considerable
network traffic change in OWD of packets at the destination node.

• As an online method, it is not expected that TONTA recognizes
the current network traffic behavior exactly after arising the CP
as it needs some new data points after the new CP to extract the
new network traffic behavior.

• As the distribution functions of the packet generator changes ev-
ery 100 s, we expect the methods to identity CPs close to the time
of the changes. By considering the effects of queuing in middle
nodes and curves, to evaluate the efficiency of techniques, we
accept alarms 30 data points before or after the time of changing
the distribution function. As TONTA is an online method, it may
select CPs before curves, therefore we accept CPs that are up to
30 data points before changing.

The effects of Interval_Thr. Table 4 shows the effects of changing
the value of 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑇ℎ𝑟 from 10 to 100 each step 10. The table
shows that by assigning a very small value to 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑇ℎ𝑟, TONTA
gets stuck in short-term trend changes because it has no time to wait
for new data points. In addition, having a small 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑇ℎ𝑟 can make
a high negative impact on the performance of TONTA because TONTA
needs to process the same data points several times in each triggering.
A small 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑇ℎ𝑟 causes concealing the CPs in new data points.
As shown in the table, the number of false-positive alarms is very
high when 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑇ℎ𝑟 is small, whereas TONTA misses the CPs when
𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑇ℎ𝑟 is big.
The effects of 𝜖. 𝜖 is a parameter to improve accuracy and time
complexity of TONTA by reducing the number of times that data points
should be compared to detect a CP in a subset. Fig. 4a shows that
some CPs are missed at 𝜖 = 25. As an example, in 350th as well as
50th seconds, there are abrupt changes that TONTA cannot recognize.
aluing 𝜖 is related to the density of data so that 𝜖 cannot be very small

because it causes concealing CPs and cannot be very large because
it negatively affects the time complexity. Figs 4b and 4c show that
increasing the value of 𝜖 improves the accuracy of TONTA. As shown in
Table 5, increasing the value of 𝜖 can reduce the false negative alarms
and increase the true alarms. The results show that higher 𝜖 improves
the accuracy of TONTA, but based on the time complexity of TONTA,
it also increases the time complexity simultaneously.
The effects of dynamicity of the window size. To analyze the effects
of the window size, specifically 𝑀𝑎𝑥_𝑇ℎ𝑟 and 𝑀𝑖𝑛_𝑇ℎ𝑟, TONTA has
been performed for more than 50 times based on different parameter
values. The value of 𝑀𝑖𝑛_𝑇ℎ𝑟 is between 50 and 300, each step 50, and
the value of 𝑀𝑎𝑥_𝑇ℎ𝑟 is between 100 and 600, each step 50. We do
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Fig. 4. The results of TONTA for default parameters values and (a) 𝜖 = 25; (b) 𝜖 = 50 and (c) 𝜖 = 75.
Fig. 5. The results of TONTA for default parameters values and (a) Min_Thr = 100 and Max_Thr = 150; (b) Min_Thr = 100 and Max_Thr = 600.
not consider scenarios where 𝑀𝑖𝑛_𝑇ℎ𝑟 ≥ 𝑀𝑎𝑥_𝑇ℎ𝑟. The results show
that when these two parameters are close to each other, the number
of false alarms increases. Although TONTA can recognize most of the
abrupt changes in this case, for subsets that contain long curves, it is
unable to recognize CPs. When 𝑀𝑎𝑥_𝑇ℎ𝑟 is much bigger than 𝑀𝑖𝑛_𝑇ℎ𝑟,
the results are more reliable, but it is obvious that smaller values of
𝑀𝑎𝑥_𝑇ℎ𝑟 can improve the time complexity of the algorithm as shown
in Section 4.3. To show the performance of the window parameters, we
have selected three types of parameter values to compare the results.
8

Fig. 5a shows the results for small 𝑀𝑖𝑛_𝑇ℎ𝑟 and 𝑀𝑎𝑥_𝑇ℎ𝑟 where
their values are close to each other. As shown in the figure, TONTA
is unable to recognize abrupt changes and also the number of false
alarms is very high. The reason is that, by assigning two close values
to these parameters, the dynamic-sliding window removes older data
points very fast to provide enough space in the window for new data
points. Thus, TONTA has not much chance to compare new data points
with previous ones. Fig. 5b shows that when 𝑀𝑎𝑥_𝑇ℎ𝑟 is greater than
𝑀𝑖𝑛_𝑇ℎ𝑟, the results are highly accurate. By having a high 𝑀𝑎𝑥_𝑇ℎ𝑟,
TONTA does not remove data points for a long time and compare new
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Table 4
The effects of changing the 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑇ℎ𝑟 on the results of TONTA.

Interval_Thr # of CPs CPs positions False negative False positive True
alarm alarm alarm

10 23 81, 124, 165, 213, 260, 303, 354, 451, 500, 541, 569, 615, 662, 700, 761, 801, 845,
893, 940, 985

11 1 9

20 18 78, 121, 158, 226, 290, 334, 382, 461, 521, 571, 673, 713, 774, 819, 854, 919, 963 8 0 10
30 15 105, 189, 209, 294, 333, 409, 455, 521, 586, 641, 705, 767, 845, 904, 971 6 1 9
40 13 85, 146, 198, 305, 362, 419, 516, 595, 625, 712, 836, 922 4 1 9
50 13 41, 85, 143, 190, 289, 342, 414, 544, 601, 737, 856, 930, 978 5 3 7
60 10 138, 195, 259, 351, 412, 530, 628, 746, 813, 932 5 4 6
70 5 118, 365, 414, 718, 839 2 7 3
80 6 188, 303, 420, 584, 867, 918 1 6 4
90 5 113, 205, 302, 712, 935 1 6 4
100 5 82, 125, 173, 383, 942 2 7 3
Fig. 6. The results of TONTA for default parameters values and Min_Thr = 300 and
Max_Thr = 600.

Table 5
Comparing TONTA and RuLSIF.

𝜖 = 25 𝜖 = 50 𝜖 = 75

False positive alarm 3 6 7
False negative alarm 3 1 1
True alarm 7 9 9

data points with old ones several times, increasing the time complexity
of the algorithm. Although a high 𝑀𝑎𝑥_𝑇ℎ𝑟 can improve the results,
the time complexity of TONTA would be a challenge. Fig. 6 shows
that, when both 𝑀𝑖𝑛_𝑇ℎ𝑟 and 𝑀𝑎𝑥_𝑇ℎ𝑟 are high, TONTA is unable to
identify predominant trends based on Table 3. The reason of missing
the CPs is that a high number of data points in the window can conceal
the CPs. Therefore, it needs to have a smaller 𝑀𝑖𝑛_𝑇ℎ𝑟 to trigger
TONTA.
The effects of Imp_Thr. 𝐼𝑚𝑝_𝑇ℎ𝑟 is also used to change the sensitivity
of TONTA in terms of identifying CPs. Smaller values of 𝐼𝑚𝑝_𝑇ℎ𝑟 helps
TONTA recognize changes with a low intensity as CPs. Higher values
cause considering a change point as a permanent CP if it happens
because of an abrupt change. Fig. 7a shows the results of TONTA for
Imp_Thr = 0.2. As shown, most of selected CPs connect two trends
with no big difference between their intensities. The main reason that
smaller Imp_Thr cannot identify the right CPs is that TONTA selects
short-term changes and curves as predominant trends. Selecting these
trends can cause concealing the real predominant trends based on CDM.
Fig. 7b shows the results when 𝐼𝑚𝑝_𝑇ℎ𝑟 = 0.8, in which only abrupt
changes are considered as permanent CPs and gradual changes are
concealed by other data points. Fig. 7c shows the results when TONTA
selects changes for which the difference between intensity of the two
continuous trends is 100%. As shown in the figure, only abrupt changes
9

are selected as TONTA is unable to detect short-term and predominant
trends in this case.

4.1.1. Optimal values of parameters of TONTA
Based on the results of evaluating different parameters, we have

extracted some rules as listed below:

• Based on parameters 𝜖 and window size, TONTA needs to ana-
lyze a minimum number of data points in each trigger equal to
𝑀𝑖𝑛_𝑇ℎ𝑟 for 𝜖 number of times. In this case, the value of 𝜖 needs
to be adapted based on the value of 𝑀𝑖𝑛_𝑇ℎ𝑟 to optimize the
time complexity. If the value of 𝑀𝑖𝑛_𝑇ℎ𝑟 is very high, 𝜖 should be
small. On the contrary, if 𝑀𝑖𝑛_𝑇ℎ𝑟 is not very high, 𝜖 can be a bit
bigger to improve accuracy, therefore there is a trade-off between
𝜖 and 𝑀𝑖𝑛_𝑇ℎ𝑟.

• As shown for window size, 𝑀𝑎𝑥_𝑇ℎ𝑟 has a high correlation with
𝑀𝑖𝑛_𝑇ℎ𝑟, where their values should not be very close. In addition,
big values of 𝑀𝑎𝑥_𝑇ℎ𝑟 can cause inefficiency in terms of the time
complexity.

• The best results for 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑇ℎ𝑟 emerges when 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑇ℎ𝑟 = 40
which is approximately equal to 𝑀𝑖𝑛_𝑇ℎ𝑟

2 . In the case of very big
𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑇ℎ𝑟, important trend changes are concealed by curves.
The results shown in Table 4 indicate that the best value for
𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑇ℎ𝑟 is half of 𝑀𝑖𝑛_𝑇ℎ𝑟, improving the time complexity
as well as accuracy.

• The value of 𝐼𝑚𝑝_𝑇ℎ𝑟 can be adapted based on the number
of outliers removed in the second step of CP verification. If
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠

𝑝 is high, then 𝐼𝑚𝑝_𝑇ℎ𝑟 should be small. On the
contrary, the small number of outliers shows that the packet
stream cannot have many jitters. Generally, 50% is a good value
to cover all possible situations.

• 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑇ℎ𝑟 is related to 𝑀𝑖𝑛_𝑇ℎ𝑟, where the best results are
shown for 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑇ℎ𝑟 ∗ 2 ≈ 𝑀𝑖𝑛_𝑇ℎ𝑟.

Based on aforementioned rules, we assign the values of Min_Thr =
100, Max_Thr = 300, Interval_Thr = 50, Imp_Thr = 0.5 and 𝜖 = 100.
Fig. 8 shows the results of executing TONTA based on default parameter
values.

By considering that the time-series dataset is gathered gradually in
an online manner, TONTA can recognize important changes without
the need to wait long after each CP. The time between arising a
CP and identifying it is related to the 𝑀𝑎𝑥_𝑇ℎ𝑟 and 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑇ℎ𝑟
parameters. In TONTA, a CP should be determined after arising in a
maximum 𝑀𝑎𝑥_𝑇ℎ𝑟 number of new data points; otherwise, the CP will
be removed. Table 6 shows details of selecting the permanent CPs based
on Fig. 8. The table shows how many data points are appended to the
dataset before identifying a CP.

As the final results of TONTA, the table shows the network traffic
behavior between every two continuous CPs of Fig. 8 based on Eq. (13).
The number of appended data points before identifying a CP is an
important metric showing the delay of TONTA. As an example, between
143th and 190th seconds, there are 111 data points, but TONTA
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Fig. 7. The results of TONTA for default parameters values and (a) Imp_Thr = 0.2; (b) Imp_Thr = .8 and (c) Imp_Thr = 1.0.
Table 6
Network traffic behavior analyzed by TONTA and delay of TONTA to recognize CPs based on default scenario.

CP Trends (s) Network Traffic
Behavior

Number of Data
points before CP

Number of Data
Points after CP

Difference

1 0–41 0.393 51 14 39%
2 41–85 0.191 117 22 −20%
3 85–143 0.147 86 13 −3.4%
4 143–190 −0.0072 92 19 −14.6%
5 190–289 −0.1405 16 33 −14%
6 289–348 0.02517 116 19 16.5%
7 348–414 −0.0405 85 18 −2.5%
8 414–544 0.20973 224 34 21%
9 544–601 −0.0422 155 31 −20%
10 601–737 0.09696 202 29 14%
11 737–858 0.12498 196 32 3%
12 858–930 −0.0517 107 26 −17.5%
13 930–1000 0.00397 77 16 5.4%
recognizes the CP at 190th second, after appending 19 new sampled
data points. Network traffic behavior is also approximately 0, which
means that the delay is stable.

Table 6 shows that TONTA as an online method is fast enough to
recognize important changes. In most cases, TONTA identifies CPs in
1
2 × 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑇ℎ𝑟 number of new data points. The average number of
data points after CP is 23.5, where 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑇ℎ𝑟 = 50. The results show
that the delay of TONTA to identify CPS is related to 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑇ℎ𝑟. If
the value of 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑇ℎ𝑟 is very small, TONTA cannot discover the CPs
right after appending new data points and needs to wait for more data,
therefore the current trigger is useless and consumes resources without
any significant results. Moreover, the value of 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑇ℎ𝑟 should not
be very high, resulting in concealing the CP among a high volume of
new data points.
10
4.2. Benchmarking

We compare TONTA with RuLSIF [56] as a benchmark TCD algo-
rithm to process time-series datasets. RuLSIF has been widely used for
TCD in different applications, e.g. computer networks [57], healthcare
[58], and daily activity segmentation [59], to name a few. In addition,
several state-of-the-art TCD techniques are compared with RuLSIF to
evaluate their performance [23,57,60–63]. It is noteworthy that RuL-
SIF, as an offline method, needs the whole dataset at once to process.
Although comparing an offline and an online method is not the best
option, it can express the robustness of TONTA. In addition, RuLSIF has
been selected to be compared with TONTA because of their similarities,
e.g. both methods use the running window and try to reduce overlapped
data points.
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Fig. 8. The results of the TONTA for default parameter values.

Table 7
The results of RuLSIF based on Fig. 9.

CP Trends (s) Network traffic behavior Difference

1 0–45 0.382 38%
2 45–88 0.201 −18%
3 88–90 0.41 Absolutely false
4 90–202 0.0523 −35%
5 202–250 −0.173 −22.5%
6 250–251 −0.2 Absolutely false
7 251–297 −0.148 5%
8 297–402 0.025 17%
9 402–447 0.353 13%
10 447–497 0.382 2.7%
11 497–499 −0.35 Absolutely false
12 499–538 0.017 36%
13 538–602 −0.05 −6%
14 602–603 0.26 Absolutely false
15 603–652 0.04 −22%
16 652–697 0.07 %3
17 697–744 0.09 %2
18 744–745 −0.4 Absolutely false
19 745–808 0.323 36%
20 808–860 0.21 −11%
21 860–902 −0.06 −28%
22 902–903 0.42 Absolutely false

RuLSIF is used to assess the ratio of relative density among sub-
sequences of a time-series dataset. It uses divergence of data points to
measure the relative density. Three parameters are important to adapt
RuLSIF, including 𝑛: the number of overlapped windows, 𝑘: the size of
each overlapped window, and 𝑎: the relationship among data points.
If the data points in a time-series dataset are highly related to each
other, a higher 𝑎 is needed. Using a supervised learning method, we
have extracted values as 𝑛 = 100, 𝑘 = 10 and 𝑎 = 0.1 based on our
generated time-series dataset.

Fig. 9 shows the results of the RuLSIF method. Red peaks show the
scores of RuLSIF for data points as RuLSIF assigns a score to each data
point. 0.1 is considered as the threshold to recognize CPs, therefore
most of the peaks are considered as change points. Table 7 also shows
the results of RuLSIF in details. We use the same method for RuLSIF as
we used in TONTA to calculate network traffic behavior between two
continuous CPs.

As shown in Table 7, there are some absolutely false alarms show-
ing that RuLSIF detects a CP very close to another CP. Comparing
Tables 3, 6 and 4 shows that TONTA has a high accuracy compared
to RuLSIF. Although it is difficult to calculate the accuracy of both
methods because of the delays of queues in middle nodes, comparing
the tables shows that TONTA detects better CPs compared to RuLSIF
based on expected network traffic behaviors mentioned in Table 3. As
an example, it is expected that both TONTA and RuLSIF detect network
traffic behavior between 600th and 700th as an uptrend with high
11
Fig. 9. The results of RuLSIF (𝑛 = 100, 𝑘 = 10 and 𝑎 = 0.1). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 8
Comparing TONTA and RuLSIF.

TONTA RuLSIF Efficiency of TONTA
compared to RuLSIF

False positive alarm 5 13 61%
False negative alarm 3 1 −20%
True alarm 7 9 −20%

intensity. TONTA detects two CPs in 601th and 737th seconds, and the
network traffic behavior between them is 0.09696, showing that the
delay is increasing. As the maximum network traffic behavior is 0.5, the
result shows 20% increase in the delay of every packet which is high.
RuLSIF detects four CPs in 602th, 603th, 652th, and 697th seconds and
behaviors of the network traffic between each two continuous CPs are
0.26, 0.04, and 0.07, respectively. Even if we consider the average of
values, it is 0.123, but the number of false alarms is very high as we
change the rate of the packet generator one time, but we receive four
alarms from the CPD model.

As the number of false alarms in RuLSIF is very high, they conceal
the important network traffic changes and make it hard to trust the
results. In addition, divergence of each two continuous changes that
TONTA selects is higher than RuLSIF based on comparing the Difference
field in Tables 6 and 7. The comparison shows that TONTA selects more
important network traffic behaviors as there are some small values in
the results of RuLSIF, e.g. 2% and 5%. Comparing TONTA and RuLSIF
shows that the accuracy of TONTA is higher than RuLSIF based on the
positions of CPs, which are recognized in a common time-series dataset.
We consider three types of alarms to compare the efficiency of TONTA
and RuLSIF, as shown in Table 8. As the application of TONTA is NTA,
false alarms can highly affect the performance of the network.

4.3. Time complexity of TONTA

Based on Section 4.1, we evaluate the effect of the parameters on the
accuracy of TONTA. In addition, we calculate the time complexity of
TONTA to show how the proposed method performs on weak machines.
The time complexity of the sampling method is O(1) and the smoothing
method is O(Max_Thr). In terms of detecting the temporary CP, the
time complexity is equal to O(Max_Thr*(𝜖)). Time complexity of outlier
detection is also O(Max_Thr), therefore the whole time complexity of
TONTA is equal to O((2*Max_Thr)+Max_Thr*(𝜖)). 2 is removed from
the time complexity as a constant. Thus, the final time complexity
would be O(Max_Thr+(Max_Thr*𝜖)).

Table 9 shows different parameters of TONTA and their effects on
the time complexity of the proposed method and its accuracy in terms
of TCD based on Section 4.1.
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Table 9
Parameters of TONTA and their effects on time complexity and accuracy.

Parameter Accuracy Time complexity

𝜖 High High
Max_Thr Very low High
Min_Thr High Low
Imp_Thr High Very low
Interval_Thr High Low

5. Conclusions and future work

NTMA is not a mature field in ad-hoc IoT networks as today’s
network resources are not capable of executing complicated NTMA
techniques. Although different NTMA techniques have been introduced
based on machine learning solutions, they suffer from high time-
complexity of training and the need for labeled data. To address
the aforementioned challenges, we focus on using statistical NTA
techniques. We proposed TONTA to enable IoT nodes to recognize
abrupt or gradual network traffic changes based on TCD techniques.
TONTA proposes a lightweight method integrated with a dynamic-
sliding window to reduce time complexity and resource consumption,
along with improving the accuracy of NTA. Unlike most of the trend
change detection methods, TONTA does not need to process a large
amount of data at once to detect CPs, while it can detect CPs in an
online manner based on time-series datasets. It uses a dynamic-running
window to select data for processing, which makes it compatible with
weak nodes of IoT. The results of TONTA can be used to improve QoS
and security of IoT networks. TONTA can be used hop by hop in a
route as a distributed method to recognize the location of events that
cause network behavior changes, which is part of our future work.
Using TONTA as a distributed method to discover the reasons for the
changes is also considered as our future work. In addition, TONTA can
be improved in terms of security to handle false data injection attacks
or manipulative attacks.
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