8 research outputs found

    Likelihood-based Imprecise Regression

    Get PDF
    We introduce a new approach to regression with imprecisely observed data, combining likelihood inference with ideas from imprecise probability theory, and thereby taking different kinds of uncertainty into account. The approach is very general and applicable to various kinds of imprecise data, not only to intervals. In the present paper, we propose a regression method based on this approach, where no parametric distributional assumption is needed and interval estimates of quantiles of the error distribution are used to identify plausible descriptions of the relationship of interest. Therefore, the proposed regression method is very robust. We apply our robust regression method to an interesting question in the social sciences. The analysis, based on survey data, yields a relatively imprecise result, reflecting the high amount of uncertainty inherent in the analyzed data set

    The likelihood interpretation as the foundation of fuzzy set theory

    Get PDF
    In order to use fuzzy sets in real-world applications, an interpretation for the values of membership functions is needed. The history of fuzzy set theory shows that the interpretation in terms of statistical likelihood is very natural, although the connection between likelihood and probability can be misleading. In this paper, the likelihood interpretation of fuzzy sets is reviewed: it makes fuzzy data and fuzzy inferences perfectly compatible with standard statistical analyses, and sheds some light on the central role played by extension principle and α-cuts in fuzzy set theory. Furthermore, the likelihood interpretation justifies some of the combination rules of fuzzy set theory, including the product and minimum rules for the conjunction of fuzzy sets, as well as the probabilistic-sum and bounded-sum rules for the disjunction of fuzzy sets

    Eliciting density ratio classes

    Get PDF
    AbstractThe probability distributions of uncertain quantities needed for predictive modelling and decision support are frequently elicited from subject matter experts. However, experts are often uncertain about quantifying their beliefs using precise probability distributions. Therefore, it seems natural to describe their uncertain beliefs using sets of probability distributions. There are various possible structures, or classes, for defining set membership of continuous random variables. The Density Ratio Class has desirable properties, but there is no established procedure for eliciting this class. Thus, we propose a method for constructing Density Ratio Classes that builds on conventional quantile or probability elicitation, but allows the expert to state intervals for these quantities. Parametric shape functions, ideally also suggested by the expert, are then used to bound the nonparametric set of shapes of densities that belong to the class and are compatible with the stated intervals. This leads to a natural metric for the size of the class based on the ratio of the total areas under upper and lower bounding shape functions. This ratio will be determined by the characteristics of the shape functions, the scatter of the elicited values, and the explicit expert imprecision, as characterized by the width of the stated intervals. We provide some examples, both didactic and real, and conclude with recommendations for the further development and application of the Density Ratio Class

    How to be an imprecise impermissivist

    Get PDF
    Rational credence should be coherent in the sense that your attitudes should not leave you open to a sure loss. Rational credence should be such that you can learn when confronted with relevant evidence. Rational credence should not be sensitive to irrelevant differences in the presentation of the epistemic situation. We explore the extent to which orthodox probabilistic approaches to rational credence can satisfy these three desiderata and find them wanting. We demonstrate that an imprecise probability approach does better. Along the way we shall demonstrate that the problem of “belief inertia” is not an issue for a large class of IP credences, and provide a solution to van Fraassen’s box factory puzzle

    Does non-measurability favour imprecision?

    Get PDF

    Generalized Bayesian inference under prior-data conflict

    Get PDF
    This thesis is concerned with the generalisation of Bayesian inference towards the use of imprecise or interval probability, with a focus on model behaviour in case of prior-data conflict. Bayesian inference is one of the main approaches to statistical inference. It requires to express (subjective) knowledge on the parameter(s) of interest not incorporated in the data by a so-called prior distribution. All inferences are then based on the so-called posterior distribution, the subsumption of prior knowledge and the information in the data calculated via Bayes' Rule. The adequate choice of priors has always been an intensive matter of debate in the Bayesian literature. While a considerable part of the literature is concerned with so-called non-informative priors aiming to eliminate (or, at least, to standardise) the influence of priors on posterior inferences, inclusion of specific prior information into the model may be necessary if data are scarce, or do not contain much information about the parameter(s) of interest; also, shrinkage estimators, common in frequentist approaches, can be considered as Bayesian estimators based on informative priors. When substantial information is used to elicit the prior distribution through, e.g, an expert's assessment, and the sample size is not large enough to eliminate the influence of the prior, prior-data conflict can occur, i.e., information from outlier-free data suggests parameter values which are surprising from the viewpoint of prior information, and it may not be clear whether the prior specifications or the integrity of the data collecting method (the measurement procedure could, e.g., be systematically biased) should be questioned. In any case, such a conflict should be reflected in the posterior, leading to very cautious inferences, and most statisticians would thus expect to observe, e.g., wider credibility intervals for parameters in case of prior-data conflict. However, at least when modelling is based on conjugate priors, prior-data conflict is in most cases completely averaged out, giving a false certainty in posterior inferences. Here, imprecise or interval probability methods offer sound strategies to counter this issue, by mapping parameter uncertainty over sets of priors resp. posteriors instead of over single distributions. This approach is supported by recent research in economics, risk analysis and artificial intelligence, corroborating the multi-dimensional nature of uncertainty and concluding that standard probability theory as founded on Kolmogorov's or de Finetti's framework may be too restrictive, being appropriate only for describing one dimension, namely ideal stochastic phenomena. The thesis studies how to efficiently describe sets of priors in the setting of samples from an exponential family. Models are developed that offer enough flexibility to express a wide range of (partial) prior information, give reasonably cautious inferences in case of prior-data conflict while resulting in more precise inferences when prior and data agree well, and still remain easily tractable in order to be useful for statistical practice. Applications in various areas, e.g. common-cause failure modeling and Bayesian linear regression, are explored, and the developed approach is compared to other imprecise probability models.Das Thema dieser Dissertation ist die Generalisierung der Bayes-Inferenz durch die Verwendung von unscharfen oder intervallwertigen Wahrscheinlichkeiten. Ein besonderer Fokus liegt dabei auf dem Modellverhalten in dem Fall, dass Vorwissen und beobachtete Daten in Konflikt stehen. Die Bayes-Inferenz ist einer der Hauptansätze zur Herleitung von statistischen Inferenzmethoden. In diesem Ansatz muss (eventuell subjektives) Vorwissen über die Modellparameter in einer sogenannten Priori-Verteilung (kurz: Priori) erfasst werden. Alle Inferenzaussagen basieren dann auf der sogenannten Posteriori-Verteilung (kurz: Posteriori), welche mittels des Satzes von Bayes berechnet wird und das Vorwissen und die Informationen in den Daten zusammenfasst. Wie eine Priori-Verteilung in der Praxis zu wählen sei, ist dabei stark umstritten. Ein großer Teil der Literatur befasst sich mit der Bestimmung von sogenannten nichtinformativen Prioris. Diese zielen darauf ab, den Einfluss der Priori auf die Posteriori zu eliminieren oder zumindest zu standardisieren. Falls jedoch nur wenige Daten zur Verfügung stehen, oder diese nur wenige Informationen in Bezug auf die Modellparameter bereitstellen, kann es hingegen nötig sein, spezifische Priori-Informationen in ein Modell einzubeziehen. Außerdem können sogenannte Shrinkage-Schätzer, die in frequentistischen Ansätzen häufig zum Einsatz kommen, als Bayes-Schätzer mit informativen Prioris angesehen werden. Wenn spezifisches Vorwissen zur Bestimmung einer Priori genutzt wird (beispielsweise durch eine Befragung eines Experten), aber die Stichprobengröße nicht ausreicht, um eine solche informative Priori zu überstimmen, kann sich ein Konflikt zwischen Priori und Daten ergeben. Dieser kann sich darin äußern, dass die beobachtete (und von eventuellen Ausreißern bereinigte) Stichprobe Parameterwerte impliziert, die aus Sicht der Priori äußerst überraschend und unerwartet sind. In solch einem Fall kann es unklar sein, ob eher das Vorwissen oder eher die Validität der Datenerhebung in Zweifel gezogen werden sollen. (Es könnten beispielsweise Messfehler, Kodierfehler oder eine Stichprobenverzerrung durch selection bias vorliegen.) Zweifellos sollte sich ein solcher Konflikt in der Posteriori widerspiegeln und eher vorsichtige Inferenzaussagen nach sich ziehen; die meisten Statistiker würden daher davon ausgehen, dass sich in solchen Fällen breitere Posteriori-Kredibilitätsintervalle für die Modellparameter ergeben. Bei Modellen, die auf der Wahl einer bestimmten parametrischen Form der Priori basieren, welche die Berechnung der Posteriori wesentlich vereinfachen (sogenannte konjugierte Priori-Verteilungen), wird ein solcher Konflikt jedoch einfach ausgemittelt. Dann werden Inferenzaussagen, die auf einer solchen Posteriori basieren, den Anwender in falscher Sicherheit wiegen. In dieser problematischen Situation können Intervallwahrscheinlichkeits-Methoden einen fundierten Ausweg bieten, indem Unsicherheit über die Modellparameter mittels Mengen von Prioris beziehungsweise Posterioris ausgedrückt wird. Neuere Erkenntnisse aus Risikoforschung, Ökonometrie und der Forschung zu künstlicher Intelligenz, die die Existenz von verschiedenen Arten von Unsicherheit nahelegen, unterstützen einen solchen Modellansatz, der auf der Feststellung aufbaut, dass die auf den Ansätzen von Kolmogorov oder de Finetti basierende übliche Wahrscheinlichkeitsrechung zu restriktiv ist, um diesen mehrdimensionalen Charakter von Unsicherheit adäquat einzubeziehen. Tatsächlich kann in diesen Ansätzen nur eine der Dimensionen von Unsicherheit modelliert werden, nämlich die der idealen Stochastizität. In der vorgelegten Dissertation wird untersucht, wie sich Mengen von Prioris für Stichproben aus Exponentialfamilien effizient beschreiben lassen. Wir entwickeln Modelle, die eine ausreichende Flexibilität gewährleisten, sodass eine Vielfalt von Ausprägungen von partiellem Vorwissen beschrieben werden kann. Diese Modelle führen zu vorsichtigen Inferenzaussagen, wenn ein Konflikt zwischen Priori und Daten besteht, und ermöglichen dennoch präzisere Aussagen für den Fall, dass Priori und Daten im Wesentlichen übereinstimmen, ohne dabei die Einsatzmöglichkeiten in der statistischen Praxis durch eine zu hohe Komplexität in der Anwendung zu erschweren. Wir ermitteln die allgemeinen Inferenzeigenschaften dieser Modelle, die sich durch einen klaren und nachvollziehbaren Zusammenhang zwischen Modellunsicherheit und der Präzision von Inferenzaussagen auszeichnen, und untersuchen Anwendungen in verschiedenen Bereichen, unter anderem in sogenannten common-cause-failure-Modellen und in der linearen Bayes-Regression. Zudem werden die in dieser Dissertation entwickelten Modelle mit anderen Intervallwahrscheinlichkeits-Modellen verglichen und deren jeweiligen Stärken und Schwächen diskutiert, insbesondere in Bezug auf die Präzision von Inferenzaussagen bei einem Konflikt von Vorwissen und beobachteten Daten

    Ein ontologiebasiertes Verfahren zur automatisierten Bewertung von Bauwerksschäden in einer digitalen Datenumgebung

    Get PDF
    Neue Technologien im Bereich der Bauwerks- und Schadenserfassung führen zu einer Automatisierung und damit verbundenen Effizienzsteigerung von Inspektionsprozessen. Eine adäquate Digitalisierung des erfassten Bauwerkzustandes in ein BIM-Modell ist jedoch gegenwärtig nicht problemlos möglich. Eine Hauptursache hierfür sind fehlende Spezifikationen für ein digitales Modell, das aufgenommene Schäden repräsentieren kann. Ein Problem bilden dabei Unschärfen in der Informationsmodellierung, die üblicherweise bei BIM-Verfahren im Neubau nicht auftreten. Unscharfe Informationen, wie z.B. die Klassifizierung detektierter Schäden oder Annahme weiterer verborgener Schäden, werden derzeit manuell von Experten evaluiert, was oftmals eine aufwendige Auswertung kontextueller Informationen in einer Vielzahl verteilter Bauwerksdokumente erfordert. Eine automatisierte Bewertung detektierter Schäden anhand des Bauwerkskontextes wird derzeit noch nicht in der Praxis umgesetzt. In dieser Dissertation wird ein Konzept zur Repräsentation von Bauwerksschäden in einem digitalen, generisch strukturierten Schadensmodell vorgestellt. Das entwickelte Konzept bietet hierbei Lösungsansätze für Probleme gegenwärtiger Schadensmodellierung, wie z.B. die Verwaltung heterogener Dokumentationsdaten, Versionierung von Schadensobjekten oder Verarbeitung der Schadensgeometrie. Das modulare Schema des Schadensmodells besteht aus einer generischen Kernkomponente, die eine allgemeine Beschreibung von Schäden ermöglicht, unabhängig von spezifizierenden Faktoren, wie dem betroffenen Bauwerkstyp oder Baumaterial. Zur Definition domänenspezifischer Informationen kann die Kernkomponente durch entsprechende Erweiterungsschemata ergänzt werden. Als präferierte Serialisierungsmöglichkeit wird das Schadensmodell in einer wissensbasierten Ontologie umgesetzt. Dies erlaubt eine automatisierte Bewertung der modellierten Schadens- und Kontextinformationen unter Nutzung digitalisierten Wissens. Zur Evaluation unscharfer Schadensinformationen wird ein wissensbasiertes Bewertungsverfahren vorgestellt. Das hierbei entwickelte Schadensbewertungssystem ermöglicht eine Klassifizierung detektierter Schäden, sowie Folgerung impliziter Bewertungsinformationen, die für die weitere instandhalterische Planung relevant sind. Außerdem ermöglicht das Verfahren eine Annahme undetektierter Schäden, die potentiell im Inneren des Bauwerks oder schwer erreichbaren Stellen auftreten können. In der ontologischen Bewertung werden dabei nicht nur Schadensmerkmale berücksichtigt, sondern auch Informationen bezüglich des Bauwerkskontext, wie z.B. der betroffene Bauteil- oder Materialtyp oder vorliegende Umweltbedingungen. Zur Veranschaulichung der erarbeiteten Spezifikationen und Methoden, werden diese abschließend an zwei Testszenarien angewendet.New technologies in the field of building and damage detection lead to an automation of inspection processes and thus an increase in efficiency. However, an adequate digitalisation of the recorded building data into a BIM model is currently not possible without problems. One main reason for this is the lack of specifications for a digital model that can represent recorded damages. Thereby, a primary problem are uncertainties and fuzzy data in the information modelling, which usually does not occur when applying BIM for new buildings. Fuzzy information, such as the classification of detected damages or the assumption of further hidden damages, is currently evaluated manually by experts, which often requires a complex evaluation of contextual information in a multitude of distributed building documents. An automated evaluation of detected damages based on the building context is applied or implemented in practice. In this thesis a concept for the representation of structural damages in a digital, generically structured damage model is presented. The developed concept offers solutions for problems of current damage modelling, e.g. the management of heterogeneous documentation data, versioning of damage objects or processing of the damage geometry. The modular scheme of the damage model consists of a generic core component, which allows a general description of damages, independent of specifying factors, such as the type of construction or building material concerned. For the definition of domain-specific information, the core component can be supplemented by corresponding extension schemes. As a preferred serialisation option, the damage model is implemented in a knowledge-based ontology. This allows an automated evaluation of the modelled damage and context information using digitised knowledge. For the evaluation of fuzzy damage information, a knowledge-based evaluation procedure is presented. The developed damage evaluation system allows a classification of detected damages as well as the conclusion of implicit evaluation information relevant for further maintenance planning. In addition, the method allows the assumption of undetected damages that can potentially occur inside the structure or in places that are difficult to reach. In the ontological assessment, not only damage characteristics are considered, but also information regarding the building context, such as the affected component or material type as well as existing environmental conditions. To illustrate the developed specifications and methods, the whole concept is applied to two test scenarios
    corecore