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Abstract

In order to use fuzzy sets in real-world applications, an interpretation for the values of membership functions is needed.
The history of fuzzy set theory shows that the interpretation in terms of statistical likelihood is very natural, although
the connection between likelihood and probability can be misleading. In this paper, the likelihood interpretation of
fuzzy sets is reviewed: it makes fuzzy data and fuzzy inferences perfectly compatible with standard statistical analyses,
and sheds some light on the central role played by extension principle and α-cuts in fuzzy set theory. Furthermore,
the likelihood interpretation justifies some of the combination rules of fuzzy set theory, including the product and
minimum rules for the conjunction of fuzzy sets, as well as the probabilistic-sum and bounded-sum rules for the
disjunction of fuzzy sets.
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1. Introduction

As far as works on fuzzy set theory remain in the realm of pure mathematics, a precise interpretation for the
values of membership functions is not needed. However, as soon as examples of application are included, such an
interpretation is necessary, otherwise not only the membership functions themselves will be arbitrary, but also all rules
applied to them will be unjustified [1–4]. Unfortunately, most works involving application examples of fuzzy sets do
not specify any clear interpretation of their membership values, and as a consequence it is not completely clear what
those fuzzy sets exactly represent, or why some particular rules and not others have been employed [5–29].

The present paper, which is an extended version of [30], studies a possible interpretation of the values of mem-
bership functions: the one in terms of likelihood. This is probably the oldest interpretation of fuzzy sets, and despite
some initial controversy, it is relatively common today [31]. The controversy stemmed from the close connection
between likelihood and probability, which can generate the impression that this interpretation equates fuzzy set theory
with probability theory. However, the concepts of probability and likelihood were clearly distinguished by Fisher
[32]: likelihood is simpler, more intuitive, and better suited to information fusion [33–38].

In [32] Fisher also clearly stated that likelihood is defined only up to a multiplicative constant. The consequences
of this fact for the likelihood interpretation of fuzzy sets have been often overlooked in the literature, and are analyzed
in the present paper. Furthermore, this paper investigates which rules of fuzzy set theory are implied by the likelihood
interpretation. These rules include the extension principle for fuzzy sets, the product and minimum rules for the
conjunction of fuzzy sets, as well as the probabilistic-sum and bounded-sum rules for the disjunction of fuzzy sets.

Hence, if in applications of fuzzy set theory the likelihood interpretation is adopted, then not only the values of
membership functions have a clear meaning, but the use of the above rules is justified, since these rules are implied by
the considered interpretation. In this sense, the likelihood interpretation can be seen as the foundation of the version
of fuzzy set theory based on these rules.

The paper is organized as follows. In Section 2 the likelihood interpretation is presented, and some of its connecti-
ons with other interpretations are briefly discussed. Section 3 studies the consequences of the likelihood interpretation
of fuzzy data, including a natural concept of independence for fuzzy sets, and the justification of an expression for the
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likelihood function induced by fuzzy data that appeared often in the literature [12, 23, 29, 39, 40], but was not clearly
justified. Furthermore, Section 3 explores the connections of the likelihood interpretation of fuzzy data with the as-
sumption that the data are coarsened at random [41, 42], as well as with errors-in-variables models or measurement
error models [43]. The implications of the likelihood interpretation of fuzzy sets are analyzed further in Section 4,
which discusses in particular the interpretation of α-cuts as confidence intervals, as well as the correspondence bet-
ween extension principle and profile likelihood. Finally, in Section 5 the combination rules for fuzzy sets mentioned
above are derived from the likelihood interpretation, while the last section concludes the paper.

2. The Likelihood Interpretation

A fuzzy set is described by its membership function µ : X → [0, 1], where X is a nonempty (crisp) set [44]. A
standard example is the fuzzy set representing the meaning of the word “tall” in relation to a man, where the elements
of X are the possible values of a man’s height in cm [5–7]. We can expect for instance that µ(180) > µ(160), because
the attribute “tall” fits better to a 180 cm man than to a 160 cm one. However, the concept of a fuzzy set as described
by a real-valued membership function µ can only be used to model the reality if we have an (operational) interpretation
for the numerical values of µ, allowing us to (more or less precisely) quantify our ideas.

In fact, a clear interpretation of membership functions should be the starting point of a theory of fuzzy sets that
describes the real world, and all rules of the theory should be a consequence of the interpretation [1–4]. This is for
example the case with the theory of probability, whose rules are a consequence of each of its interpretations (at least
on finite spaces) [45, 46]. As suggested by this example, it is not necessary that the interpretation of fuzzy sets is
unique, but only the rules that are implied by the considered interpretation should be used in applications. Moreover,
in the same way as subjective interpretations of probability are based on analogies with games of chance, or on
hypothetical situations involving bets or preferences among actions, an interpretation of fuzzy sets based on analogies
or hypothetical situations can also be sufficient.

One of the first aspects to consider when discussing the interpretation of fuzzy sets is if they are used in an
epistemic or ontic sense [23, 47]. Fuzzy sets have an ontic interpretation when they are themselves the object of
inquiry, while they have an epistemic interpretation when their membership function µ : X → [0, 1] only gives
information about the real object of inquiry, which is the value of x ∈ X. In this paper, we will only consider
epistemic fuzzy sets, and focus on their interpretation in terms of likelihood.

The likelihood interpretation of a fuzzy set consists in interpreting its membership function µ : X → [0, 1] as the
likelihood function lik on X induced by the observation of an event D:

µ(x) = lik(x |D) ∝ P(D | x) (1)

for all x ∈ X, where P(D | x) was the probability of the event D (before its realization) given the value of x ∈ X.
For example, “John is tall” is a piece of information that can be modeled by a fuzzy set with membership function

µ : X → [0, 1] with µ(x) ∝ P(D | x), where the elements of X are the possible values of John’s height in cm, and
P(D | x) is the conditional probability of the event D of getting the information that “John is tall” given that John’s
height is x cm. Hence, the exact meaning of the interpretation of fuzzy sets in terms of likelihood depends on the
interpretation given to probability values, but as noted above, the choice of this interpretation does not affect the rules
of probability theory.

More specifically, we can imagine that for each possible value of x ∈ X, a person chosen at random from a given
population is asked to assign to John one out of a given list of possible attributes such as “tall” or “very tall”, when
the only information about John is that his height is x cm. In this case, D would be the event that the person selects
the attribute “tall”, and P(D | x) could represent subjective probabilities (i.e. our degrees of belief in the occurrence
of D given x) or objective probabilities (i.e. the proportions of persons in the population that would have selected the
attribute “tall”, depending on x) [45, 46]. Of course, the whole situation could also be only hypothetical, and the exact
meaning of the resulting membership function (1) would also depend on other aspects (besides the interpretation of
probability), such as which population was considered, which possible attributes were listed, and how exactly the
question was posed [48]. Anyway, when we have a membership function, we can always interpret it as the likelihood
induced by the observation of an event in a completely specified situation (real or hypothetical): this is the likelihood
interpretation, and the rules of fuzzy set theory implied by it do not depend on the details of the situation.
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The likelihood interpretation is probably the oldest interpretation of fuzzy sets [31]: it has been more or less
explicitly used directly after [49] and even before [50, 51] the mathematical concept of fuzzy set was introduced
by Zadeh [44], and has later been studied in detail by several authors [52–64]. However, most of them interpreted
membership functions µ in terms of (conditional) probability values µ(x) = P(D | x), instead of likelihood values
µ(x) = lik(x |D). Historically, the subtle distinction between probability and likelihood confused several great minds,
before the likelihood of x ∈ X was clearly defined by Fisher as proportional to the conditional probability of the
observed event D given x [32, 65, 66].

The proportionality constant in the definition of lik(x |D) can depend on anything but the value of x ∈ X. The
reason for defining the likelihood function lik only up to a multiplicative constant is that otherwise lik would strongly
depend on irrelevant information. For example, in the above situation with now two persons chosen at random from
a population, assume that they assign to John the attributes “tall” and “very tall”, respectively (without knowing
the choice of the other person). Let D1 be the event that the first person selects “tall” and the second one “very
tall”, while D2 is the event that the first person selects “very tall” and the second one “tall”. Because of symmetry,
P(D1 | x) = P(D2 | x), and therefore P(D1∪D2 | x) = 2 P(Di | x), where D1∪D2 is the event that one of the two persons
selects “tall” and the other one “very tall”. Hence, if we interpreted membership functions in terms of (conditional)
probability values, then the resulting fuzzy set would change completely if we had or did not have the (irrelevant)
additional information about which person said “tall” and which one “very tall”, while this does not happen with the
likelihood interpretation (the only difference between the two interpretations is that likelihood is defined only up to a
multiplicative constant).

Interpreting fuzzy sets in terms of likelihood thus implies that proportional membership functions have the same
meaning. Uniqueness of representation is recovered by assuming, as we will do in the rest of the paper and is
often done anyway, that all fuzzy sets are normalized. That is, their membership functions µ : X → [0, 1] satisfy
supx∈X µ(x) = 1, and are thus uniquely determined by µ(x) ∝ P(D | x). Surprisingly, very few authors seem to have
somehow considered this important aspect of the likelihood interpretation, and not in a very explicit way [3, 53, 58,
59].

The likelihood interpretation of fuzzy sets is strictly related to two other interpretations often discussed in the
literature: the ones based on random sets and on imprecise probability, respectively. The random set interpretation
of a (not necessarily normalized) fuzzy set consists in interpreting its membership function µ : X → [0, 1] as the
coverage function of a random subset S of X: that is, µ(x) = P(x ∈ S ) for all x ∈ X [54–56, 59, 67–69]. Except for
the issue of normalization, the random set interpretation can be seen as a special case of the likelihood interpretation,
because the observation of the event x ∈ S induces on X the likelihood function proportional to µ (technically, the
event x ∈ S depends on x, but this is a minor detail that can be amended in various ways).

The imprecise probability interpretation of a (normalized) fuzzy set consists in interpreting the corresponding
possibility measure on X (i.e. the one whose restriction to singletons corresponds to the membership function of the
fuzzy set) as an upper probability measure [2, 54, 56, 59, 68, 70, 71], although then it is not clear why we should
limit ourselves to describe our ideas using only possibility measures instead of much more general upper probability
measures. Anyway, the connection with the likelihood interpretation comes from the fact that when an event D is
observed, the upper probability measure on X is updated by means of the induced likelihood function µ on X.

3. Fuzzy Data

A basic advantage of the likelihood interpretation of fuzzy sets is that it allows to directly obtain statistical infe-
rences from fuzzy data. The only condition on the statistical methods used is that the data enter them through the
likelihood function only. In particular, all methods from the likelihood and Bayesian approaches to statistics can be
straightforwardly generalized to the case of fuzzy data.

As discussed in Section 2, the membership function of a fuzzy set µ(x) ∝ P(D | x) is interpreted as the likelihood
function induced by the observation of an event D. Now, if we have a probability distribution on x ∈ X, depending on
an unknown parameter θ ∈ Θ, then the observation of the event D induces also a likelihood function lik on Θ:

lik(θ |D) ∝ P(D | θ) =
∫
X

P(D | x) dP(x | θ) ∝
∫
X

µ(x) dP(x | θ) (2)

for all θ ∈ Θ, where P(D | x) is assumed to be a measurable function of x that does not depend on θ.
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Zadeh [39] defined the probability of the fuzzy event described by a membership function µ : X → [0, 1] as the
right-hand side of (2), without justifying this choice through a clear interpretation of the values of µ. The likelihood
interpretation provides only a partial justification: the right-hand side of (2) is proportional to the probability of the
event D that induced the fuzzy information described by µ, where the proportionality constant can depend on anything
but θ (or x).

Anyway, the unknown proportionality constant is not needed in order to obtain statistical inferences based on
the likelihood function (2). In fact, the likelihood interpretation of fuzzy data can be seen as a generalization from
crisp to fuzzy sets of the assumption that the data are coarsened at random, which itself is a generalization of the
assumption that the data are missing at random [41, 42]. More precisely, data are coarsened at random to a crisp
set with indicator (or membership) function µ : X → [0, 1] when the likelihood function on X induced by their
observation is proportional to µ, where the proportionality constant can depend on anything but θ (or x). The likelihood
interpretation is a direct generalization of this to fuzzy data, which can be seen as meaning that the fact that we have
observed some particular fuzzy data does not give us any information besides the one described by the membership
functions. On the other hand, fuzzy data themselves can also be interpreted as describing the information we get from
data that are crisply coarsened, but not at random.

In [39] Zadeh introduced also the concept of probabilistic independence for fuzzy events, again without a clear
justification. The likelihood interpretation clarifies another concept of independence, which is extremely important
in fuzzy set theory: the concept of independence among the pieces of information described by different fuzzy sets,
which is usually implicitly or explicitly assumed [4, 64]. The pieces of information described by the membership
functions µ1, . . . , µn : X → [0, 1] with µi(x) ∝ P(Di | x) can be interpreted as independent when the events D1, . . . ,Dn

that induced them were conditionally independent given x. In this case, the joint fuzzy information is described by
the membership function µ : X → [0, 1] with

µ(x) = lik(x |D) ∝ P(D | x) =
n∏

i=1

P(Di | x) ∝
n∏

i=1

µi(x) (3)

for all x ∈ X, where D = D1 ∩ · · · ∩ Dn.
In particular, if X = X1 × · · · × Xn, the components xi of x = (x1, . . . , xn) are probabilistically independent (for all

θ), and each piece of fuzzy information µi(xi) ∝ P(Di | x) is about a different component of x, then the assumption of
their independence is very natural, and by combining (2) and (3) we obtain

lik(θ |D) ∝
∫
X

n∏
i=1

µi(xi) dP(x | θ) =
n∏

i=1

∫
Xi

µi(xi) dP(xi | θ) (4)

for all θ ∈ Θ. This likelihood function has been considered by several authors [12, 23, 29, 40], but was only justified
on the basis of Zadeh’s rather arbitrary definition of the probability of a fuzzy event [39]. By contrast, the likelihood
interpretation of fuzzy sets provides a sound justification for the likelihood function (4) induced by fuzzy data.

The likelihood function (4) induced by fuzzy data with membership functions µi : Xi → [0, 1] is often too complex
to be handled analytically [12], but this is nowadays a typical situation in the likelihood and Bayesian approaches to
statistics [35, 72]. In particular, x1, . . . , xn play the role of unobserved variables in (4), and therefore the EM algorithm
can be used to maximize the likelihood [23]. Several examples of numerical calculations of maximum likelihood
estimates based on fuzzy data are given for instance in [23, 29].

When the data are fuzzy numbers, in the sense that Xi ⊆ R, the likelihood function (4) can also be interpreted
as resulting from an errors-in-variables model or measurement error model [43]. In this case, the value ξi of a proxy
x∗i is assumed to be observed instead of the value of the variable xi, where ξi ∈ R is an arbitrarily chosen constant,
while the measurement error εi = x∗i − xi is random with density fi ∝ µi(ξi − · ) and independent of everything else.
In this model, each fuzzy number µi(xi) ∝ fi(ξi − xi) ∝ lik(xi | x∗i = ξi) describes the information about the unknown
value of xi obtained from the observed value of its proxy x∗i , and the likelihood function lik( · | x∗1 = ξ1, . . . , x∗n = ξn)
on Θ induced by these observations is the one in (4). The description of fuzzy data in terms of measurement errors is
particularly useful when the various components combine well mathematically, as in the following example.

Example 1. Assume that x1, . . . , xn is a sample from a normal distribution with known variance σ2 and unknown
expectation θ ∈ R, but we have only fuzzy data with membership functions µi(xi) = exp

(
−(xi−ξi)2/(2σ2

i )
)
, where ξi, σi
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are known constants. Then the proxy variables x∗1, . . . , x
∗
n are independent, and each x∗i is normally distributed with

expectation θ and variance σ2 + σ2
i . Hence, the likelihood function induced by the fuzzy data is given by

lik(θ | x∗1 = ξ1, . . . , x∗n = ξn) ∝ exp
(
−

(θ−θ̂)2

2 τ2

)
(5)

for all θ ∈ R, where the maximum likelihood estimate θ̂ is a weighted average of the centers ξi of the fuzzy numbers,
with weights τ2/(σ2+σ2

i ) depending on their precision 1/σ2
i , while 1/τ2 =

∑n
i=1

1/(σ2+σ2
i ) is the precision of θ̂ (which is

normally distributed with expectation θ and variance τ2).
Besides the maximum likelihood estimate θ̂, for each α ∈ (0, 1) we obtain a likelihood-based confidence interval

for θ: {
θ ∈ R : lik(θ) > α lik(θ̂)

}
=
(
θ̂ ± τ

√
−2 lnα

)
, (6)

with exact level Fχ2
1
(−2 lnα), where Fχ2

1
is the cumulative distribution function of the chi-squared distribution with 1

degree of freedom. Alternatively, we can combine the likelihood function (5) induced by the fuzzy data with a Bayesian
prior for θ, and base our conclusions on the resulting posterior. In particular, if the prior is a normal distribution
with expectation ϑ0 and variance ς2

0 , then the posterior is a normal distribution with expectation ϑ1 and variance ς2
1 ,

where ϑ1 is a weighted average of ϑ0 and θ̂, with weights proportional to their precision 1/ς2
0 and 1/τ2, respectively,

which add up to the posterior precision 1/ς2
1 = 1/ς2

0 + 1/τ2.
Furthermore, since the sample x1, . . . , xn was only imprecisely observed, we could be interested in its conditional

distribution given the fuzzy data [73]. For each possible value of θ, this distribution is as follows: x1, . . . , xn are
independent, and each xi is normally distributed with expectation θ̂i and variance τ̂2

i , where θ̂i is a weighted average
of θ and ξi, with weights proportional to 1/σ2 and 1/σ2

i , respectively, which add up to the precision 1/τ̂2
i = 1/σ2 + 1/σ2

i . In
the likelihood approach to statistics, the value of θ is unknown, but the maximum likelihood estimate of the conditional
distribution of the sample x1, . . . , xn given the fuzzy data is simply the above distribution when we replace θ with θ̂. By
contrast, in the Bayesian approach to statistics we have a posterior distribution for θ, and thus in general x1, . . . , xn

are not independent, but only conditionally independent given θ.

4. Fuzzy Inference

Besides allowing the direct use of fuzzy data in statistical methods, the likelihood interpretation of fuzzy sets also
leads naturally to fuzzy statistical inference. In fact, the likelihood function on Θ induced by the (fuzzy or crisp) data
can be interpreted as the membership function µ : Θ→ [0, 1] of a fuzzy set describing the information obtained from
the data about the unknown value of the parameter θ ∈ Θ.

In particular, the α-cuts of this fuzzy set,
{θ ∈ Θ : µ(θ) > α} (7)

with α ∈ (0, 1), correspond to the likelihood-based confidence intervals (or regions) for θ, such as the ones in (6). Both
α-cuts and likelihood-based confidence intervals are usually defined using the non-strict inequality, but the choice of
the strict inequality in (6) and (7) provides a better agreement with the concept of profile likelihood function [35, 74],
which is of central importance in the likelihood approach to statistics, and corresponds to the extension principle
[5–7, 75], which is equally central in fuzzy set theory.

More precisely, the extension principle states that the image under a function g : Θ→ Γ of the fuzzy set described
by µ is the fuzzy set with membership function µg : Γ→ [0, 1] with

µg(γ) = sup {µ(θ) : θ ∈ Θ, g(θ) = γ} (8)

for all γ ∈ Γ (where sup∅ = 0). The α-cuts of the fuzzy set described by µg correspond to the images under g of the
α-cuts (7) of the fuzzy set described by µ:{

γ ∈ Γ : µg(γ) > α
}
= {g(θ) : θ ∈ Θ, µ(θ) > α} (9)

for all α ∈ (0, 1). This simple result would not be valid in general if the inequalities in (7) and (9) were not strict,
because the supremum in (8) is not necessarily always a maximum. Anyway, in the likelihood approach to statistics
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we have exactly the same concepts under other names: the sets (9) are the likelihood-based confidence intervals (or
regions) for γ = g(θ), while µg is (proportional to) the profile likelihood function on Γ obtained from µ through g
[35, 74]. These concepts are illustrated in an example about the addition of two fuzzy numbers at the end of the
current section, and will then be employed in a similar way in the next section.

A correspondence between α-cuts and (general) confidence intervals has also been suggested as an alternative
interpretation of some fuzzy sets [17, 76]. However, this interpretation is afflicted by the fact that confidence inter-
vals are rather arbitrary constructs, and in particular do not usually satisfy the extension principle, when they are not
likelihood-based confidence intervals. The interpretation of fuzzy sets in terms of likelihood-based confidence inter-
vals (i.e. the likelihood interpretation) has the advantage of uniqueness, invariance, and general applicability, although
a simple expression for the confidence level based on the chi-squared distribution, as in Example 1, is valid (exactly
or asymptotically) only under some regularity conditions [77].

Since each value of θ ∈ Θ corresponds to a probability measure P( · | θ), a fuzzy set with membership function
µ : Θ → [0, 1] can also be interpreted as a fuzzy probability measure [36, 78]. This likelihood-based model of fuzzy
probability bears important similarities to the Bayesian model of probability, and can be used as a basis for statistical
inference and decision making [36, 38, 78]. It is also closely related to other models of fuzzy probability discussed in
the literature, with either the imprecise probability interpretation of fuzzy sets briefly mentioned at the end of Section 2
[79–82], or no clear interpretation [10, 17, 20, 25, 28].

Example 2. Let µ1, µ2 : R → [0, 1] be the membership functions of two fuzzy numbers, interpreted as the likelihood
functions induced by the observation of the events D1,D2, respectively: µi(xi) ∝ P(Di | xi), with x1, x2 ∈ R. As
discussed in Section 3, if we assume that the pieces of information described by µ1 and µ2 are independent, then
the joint fuzzy information is described by the membership function µ(x1, x2) = µ1(x1) µ2(x2) on R2. In this case,
the membership function of the sum of the two fuzzy numbers corresponds to the profile likelihood function µg on R
obtained from µ through the function g(x1, x2) = x1 + x2 on R2:

µg(x) = sup
y∈R

(µ1(y) µ2(x − y)) (10)

for all x ∈ R. Hence, the product-sum (10) of fuzzy numbers [83–85] is justified by the likelihood interpretation when
the independence of the fuzzy numbers is assumed.

The question of how to add two fuzzy numbers is slightly more complicated when their independence is not as-
sumed, because in this case the conditional probability of D1 ∩ D2 given x1, x2 cannot in general be obtained from
the ones of D1 and D2. Moreover, since likelihood functions are defined only up to a multiplicative constant, we only
know that P(Di | xi) = ci µi(xi) for all xi ∈ R, where c1, c2 ∈ (0, 1] can be interpreted as additional parameters that are
orthogonal to x1, x2 in the terminology of the likelihood approach to statistics [35]. However, all that we know about
the conditional probability of D1 ∩ D2 given x1, x2 (and c1, c2) are the Fréchet bounds:

(c1 µ1(x1) + c2 µ2(x2) − 1) ∨ 0 ≤ P(D1 ∩ D2 | x1, x2) ≤ (c1 µ1(x1)) ∧ (c2 µ2(x2)) (11)

for all x1, x2 ∈ R. In order to completely determine this probability, we can introduce a further additional (infinitely
dimensional) parameter π : R2 → [0, 1] such that P(D1 ∩ D2 | x1, x2) is a weighted average of the lower and upper
Fréchet bounds (11), with weights 1 − π(x1, x2) and π(x1, x2), respectively, for all x1, x2 ∈ R. Now, the conditional
probability of D1 ∩ D2 given the value of the parameters corresponds to the membership function µ(x1, x2, c1, c2, π)
of the joint fuzzy information, while the membership function of the sum of the two fuzzy numbers corresponds to the
profile likelihood function µg on R obtained from µ through the function g(x1, x2, c1, c2, π) = x1 + x2:

µg(x) = sup
y∈R

(µ1(y) ∧ µ2(x − y)) (12)

for all x ∈ R, since the maximum over c1, c2, π is always attained at c1 = c2 = π(x1, x2) = 1. Hence, the minimum-sum
(12) of fuzzy numbers [5–7, 83, 84] is justified by the likelihood interpretation when the independence of the fuzzy
numbers is not assumed.
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5. Information Fusion

The theory of fuzzy sets is also a theory of information fusion. In particular, (3) shows that the product rule for
the conjunction of independent pieces of information is a consequence of the likelihood interpretation of fuzzy sets
(1). Although this is the only combination rule straightforwardly implied by the definition of likelihood function, the
rules for other logical connectives, with or without the independence assumption, can be obtained through the concept
of profile likelihood (i.e. the extension principle), in the same way as the rules for the addition of two fuzzy numbers
were obtained in Example 2.

More precisely, let µ1, µ2 : X → [0, 1] be two membership functions describing two pieces of information,
respectively, for instance “John is tall” and “John is very tall”. The likelihood interpretation of fuzzy sets consists in
interpreting each membership function µi as the likelihood function on X induced by the observation of an event Di.
Hence, the conjunction and disjunction of the two pieces of information are described by the membership functions
µ1∩2 and µ1∪2 on X corresponding to the likelihood functions induced by the observation of D1 ∩ D2 and D1 ∪ D2,
respectively.

The conditional probabilities of D1 ∩ D2 and D1 ∪ D2 given x ∈ X can be obtained from the ones of D1 and D2
only in particular situations, such as when their independence is assumed. However, even in this case, the conditional
probabilities of D1 and D2 given x cannot be obtained from µ1 and µ2, because likelihood functions are defined only
up to a multiplicative constant: we only know that P(Di | x) = ci µi(x) for all x ∈ X, where c1, c2 ∈ (0, 1]. The standard
technique for getting rid of this kind of uncertainty is the same in the likelihood approach to statistics (the technique
of profile likelihood) and in fuzzy set theory (the extension principle), consisting in the elimination of the nuisance
parameters by taking the maximum (or supremum) of the likelihood or membership functions over them.

If the pieces of information described by µ1 and µ2 are independent, in the sense discussed in Section 3 (i.e. D1
and D2 are conditionally independent given x), then their conjunction and disjunction correspond to the product and
sum of fuzzy sets [39, 44], respectively:

µ1∩2(x) ∝ µ1(x) µ2(x), (13)
µ1∪2(x) = µ1(x) + µ2(x) − µ1(x) µ2(x), (14)

for all x ∈ X. The product rule for the independent conjunction of two fuzzy sets (13) is a direct consequence of the
definition of (conditional) independence, and (3) shows that the exact values of c1 and c2 play no role in it. By contrast,
they play an important role in the probabilistic sum rule for the independent disjunction of two fuzzy sets (14), which
is obtained by choosing the values of c1 and c2 that maximize its right-hand side: c1 = c2 = 1 (independently of x).

The same values of c1 and c2 maximize (independently of x) the right-hand sides of the minimum and bounded
sum rules obtained, respectively, for the conjunction and disjunction of fuzzy sets whose independence is not assumed:

µ1∩2(x) ∝ µ1(x) ∧ µ2(x), (15)
µ1∪2(x) = (µ1(x) + µ2(x)) ∧ 1, (16)

for all x ∈ X. Moreover, since the independence of the pieces of information described by µ1 and µ2 is not assumed,
the maximum possible values of the conditional probabilities of D1 ∩ D2 and D1 ∪ D2 given x are used in the right-
hand sides of (15) and (16), respectively, again in accordance with the standard technique for eliminating nuisance
parameters in the likelihood approach to statistics and in fuzzy set theory.

The rule for the complement of a fuzzy set can be obtained in the same way: the negation of the piece of infor-
mation represented by µ1 is described by the membership function µ¬1 on X corresponding to the likelihood function
induced by the observation of Dc

1. For example, if µ1 describes the piece of information “John is tall”, then µ¬1 des-
cribes the lack of this piece of information: this corresponds to “John is not tall” only when we are sure to get one of
these two pieces of information (e.g. when we get an answer to the yes–no question “Is John tall?”). Anyway, even in
this case the resulting fuzzy set is vacuous:

µ¬1(x) = 1, (17)

for all x ∈ X. This rule is obtained by taking the supremum of its right-hand side over all possible values of c1 ∈ (0, 1],
which in this case corresponds to taking the limit c1 → 0.
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Except for the independent conjunction rule (13), the derivation of all above rules from the likelihood interpretation
of fuzzy sets involved getting rid of uncertainty about nuisance parameters through likelihood maximization. As a
consequence, the rules (14)–(17) must be applied with care, and cannot in particular be freely combined, because the
maximization step should be carried out only once at the end of the process. For instance, if we simply apply two
times the negation rule (17) to µ1 we do not recover µ1, while this is the case when we postpone the (then irrelevant)
maximization step until the end of the calculation, obtaining the likelihood function µ1 induced by the observation of
(Dc

1)c = D1.

6. Conclusion

In order to use fuzzy sets in real-world applications, an (operational) interpretation for the values of membership
functions is needed. The interpretation does not need to be unique, and can be based on analogies or hypothetical
situations. However, in each real-world application of fuzzy set theory it should be clear which interpretation is used,
and only the rules implied by this interpretation should be employed.

In this paper, the likelihood interpretation of fuzzy sets has been reviewed and some of its consequences analyzed.
It consists in interpreting membership functions as likelihood functions, and as such it is an epistemic interpretation,
and for normalized fuzzy sets only (since proportional likelihood functions are equivalent). The history of fuzzy set
theory shows that the likelihood interpretation is very natural, but the connection between likelihood and probability
can be misleading. However, likelihood and probability are complementary descriptions of uncertainty.

Not surprisingly, with the likelihood interpretation fuzzy data and fuzzy inferences are perfectly compatible with
standard statistical analyses. In particular, the likelihood interpretation of fuzzy data justifies the use of expression (4)
for the induced likelihood function, and establishes a fruitful connection with errors-in-variables models or measure-
ment error models, as illustrated by Example 1. Furthermore, the link between this interpretation and the likelihood
approach to statistics sheds some light on the central role played by extension principle and α-cuts in fuzzy set theory.

Finally, the likelihood interpretation justifies some of the combination rules of fuzzy set theory, including the
product (13) and minimum (15) rules for the conjunction of fuzzy sets (with and without the assumption of their
independence, respectively), as well as the probabilistic-sum (14) and bounded-sum (16) rules for the disjunction of
fuzzy sets (again with and without the assumption of their independence, respectively).
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