179 research outputs found

    Transshipment Problem and Its Variants: A Review

    Get PDF
    The transshipment problem is a unique Linear Programming Problem (LLP) in that it considers the assumption that all sources and sinks can both receive and distribute shipments at the same time (function in both directions). Being an extension of the classical transportation problem, the transshipment problem covers a wide range of scenarios for logistics and/or transportation inputs and products and offers optimum alternatives for same. In this work the review of literatures from the origin and current trends on the transshipment problem were carried out. This was done in view of the unique managerial needs and formulation of models/objective functions. It was revealed that the LLP offers a wide range of decision alternative for the operations manager based on the dynamic and challenging nature of logistics management. Key words: Transshipment problem, Linear Programming Problems (LPP), model, objective functions, decision alternative

    Supply Chain

    Get PDF
    Traditionally supply chain management has meant factories, assembly lines, warehouses, transportation vehicles, and time sheets. Modern supply chain management is a highly complex, multidimensional problem set with virtually endless number of variables for optimization. An Internet enabled supply chain may have just-in-time delivery, precise inventory visibility, and up-to-the-minute distribution-tracking capabilities. Technology advances have enabled supply chains to become strategic weapons that can help avoid disasters, lower costs, and make money. From internal enterprise processes to external business transactions with suppliers, transporters, channels and end-users marks the wide range of challenges researchers have to handle. The aim of this book is at revealing and illustrating this diversity in terms of scientific and theoretical fundamentals, prevailing concepts as well as current practical applications

    Advanced approach for the public transportation regulation system based on cybercars

    Get PDF
    International audienceIn the last decade, the authorities require the use of safe, comfortable vehicles to assure a door to door aspect with respect of environment in the urban context. In this paper, we propose an advanced approach of transport regulation where we integrate cybercars into a regulation process as an alternative in disruption cases. For that, we propose an ITS architecture including public transportation and cybercars into the same framework. We will show that collaboration between these two systems provides better results than managing them separably

    Optimization in container liner shipping

    Get PDF
    We will give an overview of several decision problem encountered in liner shipping. We will cover problems on the strategic, tactical and operational planning levels as well as problems that can be considered at two planning levels simultaneously. Furthermore, we will shortly discuss some related problems in terminals, geographical bottlenecks for container ships and provide an overview of operations research methods used in liner shipping problems. Thereafter, the decision problems will be illustrated using a case study for six Indonesian ports

    Best matching processes in distributed systems

    Get PDF
    The growing complexity and dynamic behavior of modern manufacturing and service industries along with competitive and globalized markets have gradually transformed traditional centralized systems into distributed networks of e- (electronic) Systems. Emerging examples include e-Factories, virtual enterprises, smart farms, automated warehouses, and intelligent transportation systems. These (and similar) distributed systems, regardless of context and application, have a property in common: They all involve certain types of interactions (collaborative, competitive, or both) among their distributed individuals—from clusters of passive sensors and machines to complex networks of computers, intelligent robots, humans, and enterprises. Having this common property, such systems may encounter common challenges in terms of suboptimal interactions and thus poor performance, caused by potential mismatch between individuals. For example, mismatched subassembly parts, vehicles—routes, suppliers—retailers, employees—departments, and products—automated guided vehicles—storage locations may lead to low-quality products, congested roads, unstable supply networks, conflicts, and low service level, respectively. This research refers to this problem as best matching, and investigates it as a major design principle of CCT, the Collaborative Control Theory. The original contribution of this research is to elaborate on the fundamentals of best matching in distributed and collaborative systems, by providing general frameworks for (1) Systematic analysis, inclusive taxonomy, analogical and structural comparison between different matching processes; (2) Specification and formulation of problems, and development of algorithms and protocols for best matching; (3) Validation of the models, algorithms, and protocols through extensive numerical experiments and case studies. The first goal is addressed by investigating matching problems in distributed production, manufacturing, supply, and service systems based on a recently developed reference model, the PRISM Taxonomy of Best Matching. Following the second goal, the identified problems are then formulated as mixed-integer programs. Due to the computational complexity of matching problems, various optimization algorithms are developed for solving different problem instances, including modified genetic algorithms, tabu search, and neighbourhood search heuristics. The dynamic and collaborative/competitive behaviors of matching processes in distributed settings are also formulated and examined through various collaboration, best matching, and task administration protocols. In line with the third goal, four case studies are conducted on various manufacturing, supply, and service systems to highlight the impact of best matching on their operational performance, including service level, utilization, stability, and cost-effectiveness, and validate the computational merits of the developed solution methodologies

    A Bi-Objective Fuzzy Credibilistic Chance-Constrained Programming Approach for the Hazardous Materials Road-Rail Multimodal Routing Problem under Uncertainty and Sustainability

    Get PDF
    Hazardous materials transportation involves extensive risk and cannot be avoided in practice. An advanced routing, however, can help to reduce the risk by planning the best transportation routes for hazardous materials that can make effective tradeoffs between the risk objective and the economic objective. In this study, we explore the hazardous materials routing problem in the road-rail multimodal transportation network with a hub-and-spoke structure, in which the risk is measured by the multiplication of population exposure and the associated volume of hazardous materials, and minimizing the total risk of all the transportation orders of hazardous materials is set as the risk objective. It is difficult to estimate the population exposure exactly during the routing decision-making process, which results in its uncertainty. In this study, we formulate the uncertain population exposure from a fuzzy programming perspective by using triangular fuzzy numbers. Moreover, the carbon dioxide emission constraint is formulated to realize the sustainable transportation of hazardous materials. To optimize the problem under the above framework, we first establish a bi-objective fuzzy mixed integer nonlinear programming model, and then develop a three-stage exact solution strategy that the combines fuzzy credibilistic chance constraint, linearization technique, and the normalized weighting method. Finally, a computational experiment is carried out to verify the feasibility of the proposed method in dealing with the problem. The experimental results indicate that tradeoffs between the two conflicting objectives can be effectively made by using the Pareto frontier to the hazardous materials routing problem. Furthermore, the credibility level and carbon dioxide emission cap significantly influence the hazardous materials routing optimization. Their effects on the optimization result are quantified by using sensitivity analysis, which can draw some useful insights to help decision makers to better organize the hazardous materials road-rail multimodal transportation under uncertainty and sustainability. Document type: Articl
    • …
    corecore