184,322 research outputs found

    Approximation properties of the neuro-fuzzy minimum function

    Get PDF
    The integration of fuzzy logic systems and neural networks in data driven nonlinear modeling applications has generally been limited to functions based upon the multiplicative fuzzy implication rule for theoretical and computational reasons. We derive a universal approximation result for the minimum fuzzy implication rule as well as a differentiable substitute function that allows fast optimization and function approximation with neuro-fuzzy networks. --Fuzzy Logic,Neural Networks,Nonlinear Modeling,Optimization

    An immune algorithm based fuzzy predictive modeling mechanism using variable length coding and multi-objective optimization allied to engineering materials processing

    Get PDF
    In this paper, a systematic multi-objective fuzzy modeling approach is proposed, which can be regarded as a three-stage modeling procedure. In the first stage, an evolutionary based clustering algorithm is developed to extract an initial fuzzy rule base from the data. Based on this model, a back-propagation algorithm with momentum terms is used to refine the initial fuzzy model. The refined model is then used to seed the initial population of an immune inspired multi-objective optimization algorithm in the third stage to obtain a set of fuzzy models with improved transparency. To tackle the problem of simultaneously optimizing the structure and parameters, a variable length coding scheme is adopted to improve the efficiency of the search. The proposed modeling approach is applied to a real data set from the steel industry. Results show that the proposed approach is capable of eliciting not only accurate but also transparent fuzzy models

    Reducing fuzzy answer set programming to model finding in fuzzy logics

    Get PDF
    In recent years, answer set programming (ASP) has been extended to deal with multivalued predicates. The resulting formalisms allow for the modeling of continuous problems as elegantly as ASP allows for the modeling of discrete problems, by combining the stable model semantics underlying ASP with fuzzy logics. However, contrary to the case of classical ASP where many efficient solvers have been constructed, to date there is no efficient fuzzy ASP solver. A well-known technique for classical ASP consists of translating an ASP program P to a propositional theory whose models exactly correspond to the answer sets of P. In this paper, we show how this idea can be extended to fuzzy ASP, paving the way to implement efficient fuzzy ASP solvers that can take advantage of existing fuzzy logic reasoners
    • …
    corecore