research

An immune algorithm based fuzzy predictive modeling mechanism using variable length coding and multi-objective optimization allied to engineering materials processing

Abstract

In this paper, a systematic multi-objective fuzzy modeling approach is proposed, which can be regarded as a three-stage modeling procedure. In the first stage, an evolutionary based clustering algorithm is developed to extract an initial fuzzy rule base from the data. Based on this model, a back-propagation algorithm with momentum terms is used to refine the initial fuzzy model. The refined model is then used to seed the initial population of an immune inspired multi-objective optimization algorithm in the third stage to obtain a set of fuzzy models with improved transparency. To tackle the problem of simultaneously optimizing the structure and parameters, a variable length coding scheme is adopted to improve the efficiency of the search. The proposed modeling approach is applied to a real data set from the steel industry. Results show that the proposed approach is capable of eliciting not only accurate but also transparent fuzzy models

    Similar works

    Available Versions

    Last time updated on 01/04/2019