128 research outputs found

    Fuzzy Goal Programming Procedure to Bilevel Multiobjective Linear Fractional Programming Problems

    Get PDF
    This paper presents a fuzzy goal programming (FGP) procedure for solving bilevel multiobjective linear fractional programming (BL-MOLFP) problems. It makes an extension work of Moitra and Pal (2002) and Pal et al. (2003). In the proposed procedure, the membership functions for the defined fuzzy goals of the decision makers (DMs) objective functions at both levels as well as the membership functions for vector of fuzzy goals of the decision variables controlled by first-level decision maker are developed first in the model formulation of the problem. Then a fuzzy goal programming model to minimize the group regret of degree of satisfactions of both the decision makers is developed to achieve the highest degree (unity) of each of the defined membership function goals to the extent possible by minimizing their deviational variables and thereby obtaining the most satisfactory solution for both decision makers. The method of variable change on the under- and over-deviational variables of the membership goals associated with the fuzzy goals of the model is introduced to solve the problem efficiently by using linear goal programming (LGP) methodology. Illustrative numerical example is given to demonstrate the procedure

    Fuzzy Random Noncooperative Two-level Linear Programming through Absolute Deviation Minimization Using Possibility and Necessity

    Get PDF
    This paper considers fuzzy random two-level linear programming problems under noncooperative behaviorof the decision makers. Having introduced fuzzy goals of decision makers together with the possibiliy and necessity measure, following absolute deviation minimization, fuzzy random two-level programin problems are transformed into deterministic ones. Extended Stackelberg solutions are introduced andcomputational methods are also presented

    NEUTROSOPHIC MULTI-OBJECTIVE LINEAR PROGRAMMING

    Get PDF
    For modeling imprecise and indeterminate data for multi-objective decision making, two different methods: neutrosophic multi-objective linear/non-linear programming neutrosophic goal programming, which have been very recently proposed in the literatuire. In many economic problems, the well-known probabilities or fuzzy solutions procedures are not suitable because they cannot deal the situation when indeterminacy inherently involves in the problem. In this case we propose a new concept in optimization problem under uncertainty and indeterminacy. It is an extension of fuzzy and intuitionistic fuzzy optimization in which the degrees of indeterminacy and falsity (rejection) of objectives and constraints are simultaneously considered together with the degrees of truth membership (satisfaction/acceptance). The drawbacks of the existing neutrosophic optimization models have been presented and new framework of multi-objective optimization in neutrosophic environment has been proposed. The essence of the proposed approach is that it is capable of dealing with indeterminacy and falsity simultaneously

    Two Weighted Fuzzy Goal Programming Methods to Solve Multiobjective Goal Programming Problem

    Get PDF
    We propose two new methods to find the solution of fuzzy goal programming (FGP) problem by weighting method. Here, the relative weights represent the relative importance of the objective functions. The proposed methods involve one additional goal constraint by introducing only underdeviation variables to the fuzzy operator λ (resp., 1-λ), which is more efficient than some well-known existing methods such as those proposed by Zimmermann, Hannan, Tiwari, and Mohamed. Mohamed proposed that every fuzzy linear program has an equivalent weighted linear goal program where the weights are restricted as the reciprocals of the admissible violation constants. But the above proposition of Mohamed is not always true. Furthermore, the proposed methods are easy to apply in real-life situations which give better solution in the sense that the objective values are sufficiently closer to their aspiration levels. Finally, for illustration, two real examples are used to demonstrate the correctness and usefulness of the proposed methods

    An Efficient Ranking Technique for Intuitionistic Fuzzy Numbers with Its Application in Chance Constrained Bilevel Programming

    Get PDF
    The aim of this paper is to develop a new ranking technique for intuitionistic fuzzy numbers using the method of defuzzification based on probability density function of the corresponding membership function, as well as the complement of nonmembership function. Using the proposed ranking technique a methodology for solving linear bilevel fuzzy stochastic programming problem involving normal intuitionistic fuzzy numbers is developed. In the solution process each objective is solved independently to set the individual goal value of the objectives of the decision makers and thereby constructing fuzzy membership goal of the objectives of each decision maker. Finally, a fuzzy goal programming approach is considered to achieve the highest membership degree to the extent possible of each of the membership goals of the decision makers in the decision making context. Illustrative numerical examples are provided to demonstrate the applicability of the proposed methodology and the achieved results are compared with existing techniques

    Improved two-phase solution strategy for multiobjective fuzzy stochastic linear programming problems with uncertain probability distribution

    Get PDF
    Multiobjective Fuzzy Stochastic Linear Programming (MFSLP) problem where the linear inequalities on the probability are fuzzy is called a Multiobjective Fuzzy Stochastic Linear Programming problem with Fuzzy Linear Partial Information on Probability Distribution (MFSLPPFI). The uncertainty presents unique difficulties in constrained optimization problems owing to the presence of conflicting goals and randomness surrounding the data. Most existing solution techniques for MFSLPPFI problems rely heavily on the expectation optimization model, the variance minimization model, the probability maximization model, pessimistic/optimistic values and compromise solution under partial uncertainty of random parameters. Although these approaches recognize the fact that the interval values for probability distribution have important significance, nevertheless they are restricted by the upper and lower limitations of probability distribution and neglected the interior values. This limitation motivated us to search for more efficient strategies for MFSLPPFI which address both the fuzziness of the probability distributions, and the fuzziness and randomness of the parameters. The proposed strategy consists two phases: fuzzy transformation and stochastic transformation. First, ranking function is used to transform the MFSLPPFI to Multiobjective Stochastic Linear Programming Problem with Fuzzy Linear Partial Information on Probability Distribution (MSLPPFI). The problem is then transformed to its corresponding Multiobjective Linear Programming (MLP) problem by using a-cut technique of uncertain probability distribution and linguistic hedges. In addition, Chance Constraint Programming (CCP), and expectation of random coefficients are applied to the constraints and the objectives respectively. Finally, the MLP problem is converted to a single-objective Linear Programming (LP) problem via an Adaptive Arithmetic Average Method (AAAM), and then solved by using simplex method. The algorithm used to obtain the solution requires fewer iterations and faster generation of results compared to existing solutions. Three realistic examples are tested which show that the approach used in this study is efficient in solving the MFSLPPFI

    Multilevel decision-making: A survey

    Full text link
    © 2016 Elsevier Inc. All rights reserved. Multilevel decision-making techniques aim to deal with decentralized management problems that feature interactive decision entities distributed throughout a multiple level hierarchy. Significant efforts have been devoted to understanding the fundamental concepts and developing diverse solution algorithms associated with multilevel decision-making by researchers in areas of both mathematics/computer science and business areas. Researchers have emphasized the importance of developing a range of multilevel decision-making techniques to handle a wide variety of management and optimization problems in real-world applications, and have successfully gained experience in this area. It is thus vital that a high quality, instructive review of current trends should be conducted, not only of the theoretical research results but also the practical developments in multilevel decision-making in business. This paper systematically reviews up-to-date multilevel decision-making techniques and clusters related technique developments into four main categories: bi-level decision-making (including multi-objective and multi-follower situations), tri-level decision-making, fuzzy multilevel decision-making, and the applications of these techniques in different domains. By providing state-of-the-art knowledge, this survey will directly support researchers and practical professionals in their understanding of developments in theoretical research results and applications in relation to multilevel decision-making techniques

    A fuzzy goal programming approach to solving decentralized bi-level multi-objective linear fractional programming problems

    Get PDF
    This paper presents a new approach for solving decentralized bi-level multi-objective linear fractional programming problems. The main goal was to find a simple algorithm with high confidence of decision-makers in the results. First, all the linear fractional programming models on the given set of constraints were solved separately. Next, all the linear fractional objective functions were linearized, membership functions of objective functions and decision variables controlled by decision-makers at the highest level calculated, and a fuzzy multi-objective linear programming model formed and solved as linear goal programming problem by using simplex algorithm. The efficiency of the proposed algorithm was investigated using an economic example, and the obtained results compared with those obtained using an existing method
    corecore