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Abstract. This paper presents a new approach for solving decentralized bi-level multi-objective linear
fractional programming problems. The main goal was to find a simple algorithm with high confidence
of decision-makers in the results. First, all the linear fractional programming models on the given set
of constraints were solved separately. Next, all the linear fractional objective functions were linearized,
membership functions of objective functions and decision variables controlled by decision-makers at the
highest level calculated, and a fuzzy multi-objective linear programming model formed and solved as
linear goal programming problem by using simplex algorithm. The efficiency of the proposed algorithm
was investigated using an economic example, and the obtained results compared with those obtained
using an existing method.
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1. Introduction

Decentralized complex hierarchical systems have two or more decision-making levels. Decisions
made at the highest level determine the frameworks of decisions made at lower levels. Decision-
makers at both levels try to maximize utility functions on given sets of constraints. They
also try to control variables. Decisions made by a decision-maker (DM) at the higher level
influences those made by DMs at the lower level. In addition, decisions made by DMs at the
lower level affect the degree to which decisions are achieved at the higher level. Equilibrium is
achieved when all DMs simultaneously realize their utility function maximum on the given sets
of constraints.

This method of decision-making is complex. The DM at the higher level must have complete
information on the goals, constraints, and parameters of the DMs at the lower level in order to
make a decision to achieve his own maximum utility function, while also achieving the maxi-
mum utility functions of the DMs at lower levels. When a decentralized model contains only
two DMs at two levels, the decision-making problem can be presented as a sequential model
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with complete information, known as Stackelberg’s model [23]. Bi-level programming includes
inverse induction in the procedure of problem-solving. Solving bi-level programming problems
using Stackelberg’s model causes several mathematical problems related to non-convexity and
disconnectedness, even for simpler bi-level programming problems, leading to obtaining domi-
nated solutions in many situations [20]. Bi-level programming is an NP-hard problem [6]. Many
methods have been developed to solve bi-level programming problems. An overview is presented
in [20]. Most of the methods developed are unsuitable for solving real problems. Solving bi-level
programming problems becomes more complicated when DMs have more objective functions,
especially when objective functions and/or constraints are non-linear.

Here we propose a methodology for solving decentralized, bi-level, multi-objective, linear
fractional programming (DBL-MOLFP) problems. It includes two methods: i) a method for the
linearization of linear fractional objective functions, and ii) fuzzy goal programming (FGP). The
proposed methodology should improve the decision-making process in decentralized business
systems with conflicting goals, which would lead to the better functioning of the entire complex
system. The efficiency of the proposed methodology is presented using an example of production
plan, inventory and promotion cost determination for a company.

The rest of the paper is organized as follows. Section 2 gives literature review. In Section 3
the methodology for solving a DBL-MOLFP problem is presented. Section 4 gives an application
example, and the conclusion, in the last section (Section 5), gives the main research results.

2. Literature review

In order to avoid problems solving bi-level and multi-level programming problems caused by
methods based on Stackelberg’s model, many authors see them as multi-objective programming
problems in which decision-makers try to maximize objective functions while simultaneously
controlling variables. A number of papers refer to decentralized bi-level multi-objective linear
programming (DBL-MOLP) problems [2, 3, 4, 15, 17, 18, 19, 21, 22].

Sakawa and Nishizaki [16] propose an interactive fuzzy programming methodology to solve
two-level linear fractional programming problems with essentially cooperative decision-makers.
A satisfactory solution is obtained by changing the satisfactory level of the decision-maker at the
higher level, providing a satisfactory balance between levels overall. Ahlatcioglu and Tiryaki [1]
present two interactive fuzzy programming methodologies to solve decentralized two-level linear
fractional programming problems with one DM at the upper level and multiple DMs at the lower
level. In the first methodology, the decision-maker at the highest level (DM0) determines the
minimal satisfactory level of his objective function to form membership function, and decreases
it to improve the objective functions of DMs at the lower level. The second methodology
extends the first by including the membership functions for upper-level decision variables.

Mishra [9] uses a weighting method to solve the DBL-LFP problem. Here, the weights are
calculated using the Analytic Hierarchy Process (AHP) method and the objective functions of
both levels are included in one objective function. Lachhwani and Poonia [8] use a fuzzy goal
programming method to solve multilevel fractional programming problems. Emam [5] proposes
an interactive approach to solving bi-level multi-objective fractional programming problems. It
begins by finding the convex hull of the original constraints set using a cutting plane algorithm,
and the Charnes-Cooper transformation to linearize the fractional objective functions. In the
second phase, the problem is transformed into a separate multi-objective linear programming
problem and solved by the ε-constraint method.

Lachhwani [7] presents a new method based on fuzzy goal programming to solve multi-level,
multi-objective, linear fractional programming problems. The numerator and denominator
functions of each objective function are transformed into fuzzy goals and different linear mem-
bership functions are determined for the numerator and denominator of each objective function.
Toksari and Bilim, [24] present an interactive fuzzy goal programming method to solve decen-
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tralized bi-level multi-objective fractional programming (DBL-MOFP) problems. The member-
ship functions of all objective functions are linearized using the Jacobian matrix and then fuzzy
goal programming is solved. Osman, Raslan and Emam [11] use a fuzzy goal programming
model to solve ML-MOFP problems with rough intervals in the objective functions.

3. Methodology for solving DBL-MOLFP problems

3.1. DBL-MOLFP model

Let suppose that decision model consists of two levels, the upper and lower level, where one
decision-maker is at the upper level (DM0) and p decision-makers at the lower level (DMi, i =
1, 2, ..., p). The model contains variable vectors x = (x0, x1, ...,xp) ∈ Rn, x0 ∈ Rn0 , xk ∈ Rnk ,
where n = n0 + n1 + ... + np, x0 = (x01, x02, ..., x0n0) and xk = (xk1, xk2, ..., xknk

) for
k = 1, 2, ..., p. Decision maker DM0 controls variables x0, decision maker DM1 controls
variables x1, etc. The DBL-MOLFP model can be presented as follows:

zo = max
x∈S

z0(x) =
c00x0 + c10x1 + · · ·+ cp0xp + α0

d00x0 + d10x1 + · · ·+ dp0xp + β0
,

z1 = max
x∈S

z1(x) =
c00x0 + c10x1 + · · ·+ cp0xp + α1

d00x0 + d10x1 + · · ·+ dp0xp + β1
,

z2 = max
x∈S

z2(x) =
c00x0 + c10x1 + · · ·+ cp0xp + α2

d00x0 + d10x1 + · · ·+ dp0xp + β2
,

...

zp = max
x∈S

p2(x) =
c00x0 + c10x1 + · · ·+ cp0xp + αp
d00x0 + d10x1 + · · ·+ dp0xp + βp

,

(1)

where S is non empty set:

S =
{

x ∈ Rn : A0x0 + A1x1 + · · ·+ Apxp (≤,=,≥) b,

x =
[
x0,x1, ...,xp

]T
≥ 0, b ∈ Rm

}
= ∅,

(2)

and c0k, c
1
k, ..., c

p
k, d0k, d

1
k, ..., d

p
k are vectors of coefficients of the numerator and denominator

of the k-th objective function, cik = (cik1, c
i
k2, ..., c

i
knk

), dik = (dik1, d
i
k2, ..., d

i
knk

) i, k = 0, 1, ..., p
are vector coefficients (with components) of objective functions, αk and βk are constants in
objective functions, A0, Ai, i = 1, 2, ..., p are the matrices of the constraint coefficients, and
o is a null vector.The coefficients c and d may be sales prices per unit, gross profit per unit,
inventory cost per unit, etc. α and β are constants that may be fixed costs, fixed income, etc.
The variables x in the model can be the number of product units, stock quantity of products,
investment in promotion of products, etc.

3.2. Linear fractional objective function linearization and objective
function weights determination

To solve bi-level, multi-objective, linear fractional programming problems using the linear goal
programming method, linear fractional objective functions must be linearized. This can be
done using different methods [12, 13, 14]. Here we present the linearization method in [12].
The following linearization is proposed:
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ckx + αk
dkx + βk

≤ (≥)z̄k, dkx + βk > 0 ∀x, k = 0, 1, . . . , p

ckx + αk ≤ (≥)z̄k(dkx + βk)

(ck − z̄kdk)x ≤ (≥)z̄kβk − αk
Ckx− Z̄k ≤ (≥)0

zk,lin = Ckx− Z̄k, k = 1, 2, . . . ,K.

(3)

where z̄k is the aspired acceptable value of the kth objective function determined by the
decision-maker, or its optimal value, Ck = ck−z̄kdk, Z̄k = z̄kβk−αk, and zk,lin is the linearized
objective function zk, k = 0, 1, ...,K.

The objective function weights should enable an objective function with a higher weight to
be met more than an objective function with a lower objective function weight. To determine
the weights of the objective functions, we propose using the AHP method, so that decision-
maker DM0 compares the importance of the function z0 with functions z1, z2, ..., zp, decision-
maker DM1 compares objective function z1 with functions z2, z3, ..., zp, decision-maker DM2

compares objective function z2 with functions z3, z4, ..., zp, etc. The objective function weights
are calculated in three steps:

Step 1. The DMs evaluate objective functions by comparing their objective function with the
remaining objective functions using Satty’s scale (from 1 to 9). Their evaluations are marked
with eij , where eij = 1 for i = j and eij = eji for i 6= j.

Step 2. Calculate dij =
eij∑p
i=0 eij

∀j = 0, 1, ..., p

Step 3. Calculate the objective functions weights w0 =

∑p
j=0 d0j

p+ 1
,...,wp =

∑p
j=0 dpj

p+ 1
.

3.3. Membership of objective functions and decision variables

This paper proposes a fuzzy goal programming methodology to solve DBL-MOLFP problems in
which DMs must determine the acceptable value of the objective functions, and the DM at the
higher level must determine the allowed negative (tL0j) and positive (tR0j) deviation of the decision
variables they control. On this basis, the membership functions of the linearized objective
functions and the decision variables controlled by the decision maker DM0 are calculated:

µzk,lin
(zk,lin) =



1 if zk,lin = z̄k,lin

zk,lin − zmink,lin

z̄k,lin − zmink,lin

if zk,lin < z̄k,lin

zmaxk,lin − zk,lin

zmaxk,lin − z̄k,lin
if zk,lin > z̄k,lin

0 if zk,lin = zmink,lin

(4)

µx0j
(x0j) =



µL0j(x0j) =
x0j − (x∗0j − tL0j)

tL0j
if (x∗0j − tL0j) ≤ xoj ≤ x∗0j

µR0j(x0j) =
(x∗0j + tR0j)− x0j

tR0j
if (x∗0j ≤ x0j ≤ (x∗0j + tR0j)

0 otherwise

(5)
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3.4. Decentralized bi-level fuzzy goal programming (DBL-FGP) model

The DBL-FGP model looks like this:

min
x∈S1

(
p∑
k=0

wk

(
d−k + d+k

)
+

n0∑
j=1

wx0j

(
µLx0j

+ µRx0j

))
(6)

where

S1 =
{

(x,d) : µzk,lin
(zk,lin) + d−k − d

+
k = 1, k = 0, 1, ..., p

A0x0 + A1x1 + · · ·+ Apxp (≤,=,≥) b, b ∈ Rm,

x = x0 + x1 + · · ·+ xp ≥ 0, d−k , d
+
k , λ ≥ 0, d−k d

+
k = 0

}
= ∅,

(7)

Model in eq.(6) can be converted into a linear programming problem as min λ
x,d,λ∈S2

, and solvable

by the simplex method, where

S2 =
{

(x,d, λ) : µzk,lin
(zk,lin) + d−k − d

+
k = 1, λ− d−k − d

+
k ≤ 0, k = 0, 1, ..., p

λ+ wkd
−
k + wkd

+
k ≤ 1, λ ≤ µLx0j

(x0j), λ ≤ µRx0j
(x0j), j = 1, 0, ..., n0

A0x0 + A1x1 + · · ·+ Apxp (≤,=,≥) b, b ∈ Rm,

x = x0 + x1 + · · ·+ xp ≥ 0, d−k , d
+
k , λ ≥ 0, d−k d

+
k = 0

}
= ∅

(8)

If the obtained solution is a non empty set, the DMs should accept the obtained solution
as preferred, since it is calculated based on information obtained from them. If the obtained
solution is an empty set, the DMs should change the aspired acceptable value of the objective
functions or/and the allowed negative (t0jL) and positive (t0jR) deviation of the decision vari-
ables they control. To determine the acceptable values of the objective functions that will not
cause decision deadlocks in the process of obtaining the preferred solution, DMs should choose
the acceptable value of the objective functions between their minimum and maximum values
presented in the payoff table. Consequently, decision-makers in a decentralized business system
should cooperate in modelling and base their decisions on the obtained results. This should
lead to the optimal functioning of the entire business system.

3.5. Algorithm to solve DBL-MOLFP problem

To solve the DBL-MOLFP problem, we propose the FGP methodology presented by the fol-
lowing algorithm:

Step 1. Determine the individual optimal value of all objective functions on the set of
constraints S and form the pay-off table.

Step 2. Determine the acceptable value z̄k of the objective function zk.
Step 3. Linearize all objective functions using the linearization form in eq.(3).
Step 4. Determine acceptable negative and positive deviations tL0j and tR0j for j = 1, 2, ..., n0

for all decision variables controlled by the decision-maker at the highest level, and form fuzzy
membership functions µLx0j

and µRx0j
using forms in eq.(4) and eq.(5).

Step 5. Using the AHP method, determine the weights of the objective functions.
Step 6. Form the DBL-FGP model in eq.(6).
Step 7. Form and solve the LP model in eq.(8) to obtain a solution to the DBL-MOLFP

problem.
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Step 8. If the obtained solution is not an empty set, go to Step 9, otherwise go to Step 10.
Step 9. Stop. A satisfactory solution of the DBL-MOLFP problem is obtained.

Step 10. Modify the acceptable aspiration levels of the objective functions and the positive
and negative deviation of the decision variables controlled by decision-maker DM0, determine
the new membership functions and go back to Step 4.

4. Practical example

Consider a company that manufactures five products: P1, P2, P3, P4, P5. Suppose that the
costs and required capital are proportional to individual activities. The company requires that
all products should be produced in at least 50 units. In addition, the company should stock no
less than 12% of its total production to ensure delivery safety. The management of the enterprise
has set the inventory limit for each product to at least 14, 11, 9, 15, and 13, to at most 50% of
total production, and to at most 44, 56, 52, 45, and 50 for the respective products. It is also
stipulated that total inventory costs per product should not exceed 100 m.u. (monetary units).
Enterprise management has determined that investment in promotion must not exceed 20% of
the total gross profit of the company. Per product, promotion investments must not exceed
22, 18, 24, 20, and 19% respectively of the total gross profit of the company, while promotion
investments for the first product may not exceed 800 m.u. and 400 m.u. for other products.
The total production must be at least 750 units. Table 1 shows manufacturing data which are
fixed.

P1 P2 P3 P4 P5

Raw material with capacity 1500 units 1 4 2 3 2
Machines with capacity 1600 h 2 1.5 0.5 1.2 0.2
Capital employed per unit of product 20 25 30 22 11
Sales price per unit of product (m.u.) 120 130 90 110 70
Gross profit per unit of product (m.u.) 11 9 10 6 10
Inventory cost per unit of product (m.u.) 2 1 1.5 2 1.8

Table 1: Practical example data (per unit)

Each decision-maker tends to maximize his objective function: the decision maker at the
highest level maximizes the ratio of the total net profit (the difference between the gross profit
and the total inventory costs and total investment in promotion) and total invested capital,
while decision-makers at the lower level maximize the ratio of the total inventory of products
and total production, and the ratio of the total investment in promotion and the total revenue,
respectively.

Let x1, x2, x3, x4, x5 be production quantities, i1, i2, i3, i4, i5 stock quantities and
p1, p2, p3, p4, p5 investments in the promotion of products P1, P2, P3, P4, P5 respectively.
Based on the above data, we can form the DBL-MOLFP model:

max z0
(x,i,p)∈S

=
11x1 + 9x2 + 10x3 + 6x4 + 10x5 − 2i1 − i2 − 1.5i3 − 2i4 − 1.8i5 − p1 · · · − p5

20x1 + 25x2 + 30x3 + 22x4 + 11x5

max z1
(x,i,p)∈S

=
i1 + i2 + i3 + i4 + i5
x1 + x2 + x3 + x4 + x5

max z2
(x,i,p)∈S

=
p1 + p2 + p3 + p4 + p5

120x1 + 130x2 + 90x3 + 140x4 + 70x5

(9)

where S is:
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S =
{
x1 + 4x2 + 2x3 + 3x4 + 2x5 ≤ 1500, 2x1 + 1.5x2 + 0.5x3 + 1.2x4 + 0.2x5 ≤ 1600

20x1 + 25x2 + 30x3 + 22x4 + 15x5 ≤ 22000, 0.12(x1 + x2 + x3 + x4 + x5) ≤ (i1+

i2 + i3 + i4 + i5), 0.14x1 ≤ i1, 0.11x2 ≤ i2, 0.09x3 ≤ i3, 0.15x4 ≤ i4, 0.13x5 ≤ i5
0.5(x1 + x2 + x3 + x4 + x5) ≥ (i1 + i2 + i3 + i4 + i5), 0.44x1 ≥ i1, 0.56x2 ≥ i2
0.52x3 ≥ i3, 0.48x4 ≥ i4, 0.5x5 ≥ i5, i1, i2, i3, i4, i5 ≤ 100

2.2x1 + 1.8x2 + 2x3 + 1.2x4 + 2x5 ≥ p1 + p2 + p3 + p4 + p5, 2.42x1 ≥ p1
1.62x2 ≥ p2, 2.4x3 ≥ p3, 1.2x4 ≥ p4, 1.9x5 ≥ p5, p1 ≤ 800

p1, p2, p3, p4, p5 ≤ 400, x1 + x2 + x3 + x4 + x5 ≥ 750

x1, x2, x3, x4, x5, i1, i2, i3, i4, i5, p1, p2, p3, p4, p5 ≥ 0
}

(10)

Using the Charnes-Cooper model, we obtain the maximum solutions of the objective functions
z0, z1 and z2 on the given set S presented in Table 2.

objective function values z0 z1 z2
x1 = 15, x2 = 50, x3 = 50, x4 = 50, x5 = 450,

max z0
(x,i,p)∈S

i1 = 21, i2 = 5, i3 = 5, i4 = 8, i5 = 49, 0.6138 0.1293 0.0000

p1 = p2 = p3 = p4 = p5 = 0
x1 = 291, x2 = 93, x3 = 128, x4 = 104, x5 = 133,

max z1
(x,i,p)∈S

i1 = 50, i2 = 52, i3 = 67, i4 = 50, i5 = 67, 0.4333 0.3818 0.0000

p1 = p2 = p3 = p4 = p5 = 0
x1 = 229, x2 = 50, x3 = 167, x4 = 50, x5 = 254,

max z2
(x,i,p)∈S

i1 = 30, i2 = 5, i3 = 15, i4 = 8, i5 = 33, 0.3954 0.1240 0.0207

p1 = 555, p2 = 81, p3 = 400, p4 = 60, p5 = 400

Table 2: Payoff values

Table 2 indicates the conflict between objective functions z0, z1 and z2. Decision-maker
DM0 makes a decision first, leading to a small degree of achievement of the objective func-
tions of decision-makers DM1 and DM2. Decision-makers at the lower level (DM1 and DM2)
then maximize their objective functions, which causes a major reduction in the fulfillment of
the upper level objective function. The decision-makers are consequently encouraged to co-
operate, which should produce an acceptable degree of satisfaction at both levels and lead to
the acceptable functioning of the entire business system [14].

According to the algorithm of the proposed methodology, decision-makers determine the
aspiration levels for their objective functions, while the decision-maker at the higher level de-
termines the positive and negative deviations from the value of the decision variables which he
controls, as shown in Table 3.

z̄0 z̄1 z̄2 tL01 tR01 tR02 tR03 tR04 tL05
Aspiration level 0.6138 0.3818 0.0207 50 150 150 150 150 100

Table 3: Acceptable objective function value and acceptable positive and negative deviations of
decision variables (tL02 = tL03 = tL04 = tR05 = 0)
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The objective function weights are calculated using AHP method as follows:

z0 z1 z2
z0 1 2 2
z1 1/2 1 1
z2 1/2 1 1∑
j ej 2 4 4

z0 z1 z2
z0 0.50 0.50 0.50
z1 0.25 0.25 0.25
z2 0.25 0.25 0.25

w0

w1

w2

 =

0.50
0.25
0.25

 (11)

The linearized objective functions look like this:

z0,lin = 1.276x1 − 6.345x2 − 8.414x3 − 7.504x4 − 3.248x5 − 2i1 − i2 − 1.5i3 − 2i4

−1.5i5 − p1 − p2 − p3 − p4 − p5
z1,lin = 0.3818(−x1 − x2 − x3 − x4 − x5) + i1 + i2 + i3 + i4 + i5

z2,lin = −1.276x1 − 2.689x2 − 1.862x3 − 2.870x4 − 1.448x5 + p1 + p2 + p3 + p4 + p5

(12)

Using forms in eq.(4) and eq.(5) and calculations zmax
0,lin = −2923.25, zmin

0,lin = −4867.44,

zmax
1,lin = −524.08, zmin

1,lin = −605.80, zmax
2,lin = −246.91, zmin

2,lin = −1350.98 the membership
functions of the linearized objective functions and decision variables xoj , j = 1, 2, ..., 5 are
calculated:

µz0,lin
= (z0,lin + 4867.44)/1944.19, for − 4876.44 ≤ z0,lin ≤ −2923.25

µz1,lin
= (z1,lin + 605.80)/81.72, for − 605.80 ≤ z1,lin ≤ −524.08

µz2,lin
= (z2,lin + 1350.98)/1597.89, for − 1350.98 ≤ z2,lin ≤ −246.91

(13)

The FLGP model of the DBL-MOLFP problem looks like this:

max λ
(x,i,p,d,λ)∈S2

S2 =
{

(x, i,p,d, λ) : (x, i,p) ∈ S ∩
{

1.276x1 − 6.345x2 − 8.414x3 − 7.504x4 − 3.248x5

−2i1 − i2 − 1.5i3 − 2i4 − 1.5i5 − p1 − p2 − p3 − p4 − p5 + 1944.19d−0 = −2923.25,

0.3818(−x1 − x2 − x3 − x4 − x5) + i1 + i2 + i3 + i4 + i5 + 81.72d−1 = −524.08,

−1.276x1 − 2.689x2 − 1.862x3 − 2.870x4 − 1.448x5 + p1 + p2 + p3 + p4 + p5

+1597.89d−2 = −246.91, λ− d−k ≤ 0, λ+ wkd
−
k ≤ 1, k = 0, 1, 2

λ ≤ (x1 − 100)/50, λ ≤ (300− x1)/150, λ ≤ (200− x2)/150,

λ ≤ (200− x3)/150, λ ≤ (200− x4)/150 λ ≤ (x5 − 300)/100,

x1, x2, x3, x4, x5, i1, i2, i3, i4, i5, p1, p2, p3, p4, p5, d
−
0 , d

−
1 , d

−
2 , λ ≥ 0

}}

(14)

The following solutions are obtained: (x1, x2, x3, x4, x5) = (150, 50, 116, 50, 384), (i1, i2, i3,
i4, i5) = (38, 7, 60, 24, 50), (p1, p2, p3, p4, p5) = (363, 81, 157, 0, 0), λ = 0.55528, (z0, z1, z2) =
(0.497, 0.239, 0.008), (µ0, µ1, µ2) = (0.47, 0.45, 0.42).

Model in eq.(9) is for comparison, subsequently solved by using goal programming method-
ology [10]. The same data are used as input as in the previous methodology. The follow-
ing solutions are obtained: (x1, x2, x3, x4, x5) = (357, 50, 50, 50, 243), (i1, i2, i3, i4, i5) =
(50, 6, 5, 8, 32), (p1, p2, p3, p4, p5) = (0, 0, 120, 60, 208), (z0, z1, z2) = (0.51467, 0.13467, 0.00498),
(µ0, µ1, µ2) = (0.55, 0.04, 0.24).

Comparing the obtained solutions, it can be concluded that they differ significantly, even
though the same parameters are used in both methodologies. However, the FGP methodol-
ogy gives more uniform membership function values of the objective functions than the goal
programming methodology.
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5. Conclusion

Choosing a methodology for solving DBL-MOLFP problems is very demanding. In this paper,
we propose a FGP methodology to solve DBL-MOLFP problems. The proposed methodology
was tested using an example of an fictitious company’s the production plan, inventory products
and promotion cost determination. The results obtained indicate the possibility of using the
proposed methodology to solve such problems. The proposed methodology can be simply
applied to solve real problems. The results obtained also indicate the advantages of the proposed
methodology related to the GP methodology.

For future research, we recommend testing the efficiency of the proposed methodology to
solve more practical DBL-MOLFP examples and its further development.
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