1,864 research outputs found

    Robustness analysis of evolutionary controller tuning using real systems

    Get PDF
    A genetic algorithm (GA) presents an excellent method for controller parameter tuning. In our work, we evolved the heading as well as the altitude controller for a small lightweight helicopter. We use the real flying robot to evaluate the GA's individuals rather than an artificially consistent simulator. By doing so we avoid the ldquoreality gaprdquo, taking the controller from the simulator to the real world. In this paper we analyze the evolutionary aspects of this technique and discuss the issues that need to be considered for it to perform well and result in robust controllers

    Multi-objective evolutionary–fuzzy augmented flight control for an F16 aircraft

    Get PDF
    In this article, the multi-objective design of a fuzzy logic augmented flight controller for a high performance fighter jet (the Lockheed-Martin F16) is described. A fuzzy logic controller is designed and its membership functions tuned by genetic algorithms in order to design a roll, pitch, and yaw flight controller with enhanced manoeuverability which still retains safety critical operation when combined with a standard inner-loop stabilizing controller. The controller is assessed in terms of pilot effort and thus reduction of pilot fatigue. The controller is incorporated into a six degree of freedom motion base real-time flight simulator, and flight tested by a qualified pilot instructor

    Genetic algorithm optimization and control system design of flexible structures

    Get PDF
    This paper presents an investigation into the deployment of genetic algorithm (GA)-based controller design and optimization for vibration suppression in flexible structures. The potential of GA is explored in three case studies. In the first case study, the potential of GA is demonstrated in the development and optimization of a hybrid learning control scheme for vibration control of flexible manipulators. In the second case study, an active control mechanism for vibration suppression of flexible beam structures using GA optimization technique is proposed. The third case study presents the development of an effective adaptive command shaping control scheme for vibration control of a twin rotor system, where GA is employed to optimize the amplitudes and time locations of the impulses in the proposed control algorithm. The effectiveness of the proposed control schemes is verified in both an experimental and a simulation environment, and their performances are assessed in both the time and frequency domains

    Computational intelligence techniques for HVAC systems: a review

    Get PDF
    Buildings are responsible for 40% of global energy use and contribute towards 30% of the total CO2 emissions. The drive to reduce energy use and associated greenhouse gas emissions from buildings has acted as a catalyst in the development of advanced computational methods for energy efficient design, management and control of buildings and systems. Heating, ventilation and air conditioning (HVAC) systems are the major source of energy consumption in buildings and an ideal candidate for substantial reductions in energy demand. Significant advances have been made in the past decades on the application of computational intelligence (CI) techniques for HVAC design, control, management, optimization, and fault detection and diagnosis. This article presents a comprehensive and critical review on the theory and applications of CI techniques for prediction, optimization, control and diagnosis of HVAC systems.The analysis of trends reveals the minimization of energy consumption was the key optimization objective in the reviewed research, closely followed by the optimization of thermal comfort, indoor air quality and occupant preferences. Hardcoded Matlab program was the most widely used simulation tool, followed by TRNSYS, EnergyPlus, DOE–2, HVACSim+ and ESP–r. Metaheuristic algorithms were the preferred CI method for solving HVAC related problems and in particular genetic algorithms were applied in most of the studies. Despite the low number of studies focussing on MAS, as compared to the other CI techniques, interest in the technique is increasing due to their ability of dividing and conquering an HVAC optimization problem with enhanced overall performance. The paper also identifies prospective future advancements and research directions

    An Adaptive Intelligent Integrated Lighting Control Approach for High-Performance Office Buildings

    Get PDF
    abstract: An acute and crucial societal problem is the energy consumed in existing commercial buildings. There are 1.5 million commercial buildings in the U.S. with only about 3% being built each year. Hence, existing buildings need to be properly operated and maintained for several decades. Application of integrated centralized control systems in buildings could lead to more than 50% energy savings. This research work demonstrates an innovative adaptive integrated lighting control approach which could achieve significant energy savings and increase indoor comfort in high performance office buildings. In the first phase of the study, a predictive algorithm was developed and validated through experiments in an actual test room. The objective was to regulate daylight on a specified work plane by controlling the blind slat angles. Furthermore, a sensor-based integrated adaptive lighting controller was designed in Simulink which included an innovative sensor optimization approach based on genetic algorithm to minimize the number of sensors and efficiently place them in the office. The controller was designed based on simple integral controllers. The objective of developed control algorithm was to improve the illuminance situation in the office through controlling the daylight and electrical lighting. To evaluate the performance of the system, the controller was applied on experimental office model in Lee et al.’s research study in 1998. The result of the developed control approach indicate a significantly improvement in lighting situation and 1-23% and 50-78% monthly electrical energy savings in the office model, compared to two static strategies when the blinds were left open and closed during the whole year respectively.Dissertation/ThesisDoctoral Dissertation Architecture 201

    Hierarchically organised genetic algorithm for fuzzy network synthesis

    Get PDF

    Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems

    Get PDF
    Many areas in power systems require solving one or more nonlinear optimization problems. While analytical methods might suffer from slow convergence and the curse of dimensionality, heuristics-based swarm intelligence can be an efficient alternative. Particle swarm optimization (PSO), part of the swarm intelligence family, is known to effectively solve large-scale nonlinear optimization problems. This paper presents a detailed overview of the basic concepts of PSO and its variants. Also, it provides a comprehensive survey on the power system applications that have benefited from the powerful nature of PSO as an optimization technique. For each application, technical details that are required for applying PSO, such as its type, particle formulation (solution representation), and the most efficient fitness functions are also discussed

    Switching control systems and their design automation via genetic algorithms

    Get PDF
    The objective of this work is to provide a simple and effective nonlinear controller. Our strategy involves switching the underlying strategies in order to maintain a robust control. If a disturbance moves the system outside the region of stability or the domain of attraction, it will be guided back onto the desired course by the application of a different control strategy. In the context of switching control, the common types of controller present in the literature are based either on fuzzy logic or sliding mode. Both of them are easy to implement and provide efficient control for non-linear systems, their actions being based on the observed input/output behaviour of the system. In the field of fuzzy logic control (FLC) using error feedback variables there are two main problems. The first is the poor transient response (jerking) encountered by the conventional 2-dimensional rule-base fuzzy PI controller. Secondly, conventional 3-D rule-base fuzzy PID control design is both computationally intensive and suffers from prolonged design times caused by a large dimensional rule-base. The size of the rule base will increase exponentially with the increase of the number of fuzzy sets used for each input decision variable. Hence, a reduced rule-base is needed for the 3-term fuzzy controller. In this thesis a direct implementation method is developed that allows the size of the rule-base to be reduced exponentially without losing the features of the PID structure. This direct implementation method, when applied to the reduced rule-base fuzzy PI controller, gives a good transient response with no jerking

    Evolution of Controllers for the Speed Control in Thyristor Fed Induction Motor Drive

    Get PDF
    Induction Motors (IMs) are now becoming the pillar of almost all the motoring applications related to the industry and household. The practical applications of IMs usually require constant motoring speed. As a result, different types of control systems for IM's speed controlling have been shaped. One of the important techniques is the utilization of thyristor fed drive. Although, the thyristor fed induction motor drive (TFIMD) offers stable speed performance, the practical speed control demand is much more precise. Hence, this drive system utilizes additional controllers to attain precise speed for practical applications. This paper offers a detailed review of the controllers utilized with the thyristor fed IM drive in the past few decades to achieve good speed control performance. The clear intent of the paper is to provide a comprehensible frame of the pros and cons of the existing controllers developed for the TFIMD speed control requirements. Keywords: Thyristor Fed Drives, Induction Motors, Speed Controller, Conventional Controllers, and Soft Computing Techniques
    corecore