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ABSTRACT 

This paper presents an investigation into the deployment of genetic algorithm (GA)-

based controller design and optimization for vibration suppression in flexible structures. 

The potential of GA is explored in three case studies. In the first case study, the potential 

of GA is demonstrated in the development and optimization of a hybrid learning control 

scheme for vibration control of flexible manipulators. In the second case study, an active 

control mechanism for vibration suppression of flexible beam structures using GA 

optimization technique is proposed. The third case study presents the development of an 

effective adaptive command shaping control scheme for vibration control of a twin rotor 

system, where GA is employed to optimize the amplitudes and time locations of the 

impulses in the proposed control algorithm. The effectiveness of the proposed control 

schemes is verified in both an experimental and a simulation environment, and their 

performances are assessed in both the time and frequency domains.  
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1. INTRODUCTION

Genetic algorithm (GA) is one of the global stochastic search algorithms based 

on natural biological evolution (Goldberg, 1989; Holland, 1975). GA is a parallel 

search technique that emulates the laws of evolution and genetics to yield optimal 

solutions to complex optimization problems. Initially, GA has been most widely and 

successfully applied to off-line design applications. In the field of control systems 

engineering, these applications include controller design and optimization, model 

identification, robust stability analysis, and fault diagnosis (Kristinsson & Dumont, 

1992; Luh & Wu, 1999). In some instances, GA has been used as the sole means of 

design. In others, it has been combined with existing methods. For example, GA has 

been combined with other intelligent techniques and has incorporated a process of 

learning that can make appropriate, autonomous decisions. 

In the early 1990s, GA was first investigated as an alternative means of tuning 

PID (Proportional-Integral-Derivative) controllers. Oliveira et al. (1991) used a 

standard GA to determine initial estimates for the values of PID parameters. They 

applied their methodology to a variety of classes of linear time-invariant (LTI) 

systems, encompassing minimum-phase, non-minimum phase, and unstable 

systems. Moreover, Onnen et al. (1995) applied GA to the determination of an 

optimal control sequence in model-based predictive control (MBPC). Particular 

attention was paid to MBPC for nonlinear systems with input constraints. 

Specialised genetic coding and operators were developed, with the aim of 

preventing the generation of infeasible solutions. The resulting scheme was applied 

to a simulated batch-fed fermenter, with favourable results reported (compared to 

the traditional branch-and-bound method) for long control horizons. A further 

approach to controller design using GA is to apply the methodology indirectly. In 

such a scheme, the GA manipulates input parameters to an established controller 

design process, which in turn produces the final controller. The linear quadratic 

Gaussian (LQG) method and the H-infinity control scheme have both been utilised 

in this manner (Chen & Cheng, 1998; Dakev et al., 1997; Itoh et al., 2004; Mei & 

Goodall, 2000; Whidborne et al., 1994). In this investigation, randomly selected 

parameters are optimized in different cases by applying the working mechanism of 

GA. 

The limitations of conventional controllers for application to complicated, 

dynamic systems have motivated research into the so-called intelligent control 
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systems. GA has been used in attempts to optimize various aspects of intelligent 

controllers (Linkens & Nyongesa, 1996). In fuzzy control, GA has been used to 

generate the fuzzy rule base, and to tune the associated membership function 

parameters (Linkens & Nyongesa, 1995; Varsek et al., 1993). In neural control, GA 

can function as an alternative choice to learning the weight values (Ichikawa and 

Sawa, 1992). GA has also been shown to be capable of optimising the topology of a 

neural network (Leung et al., 2003).  

GA has also been used in robotics for both path planning and design of 

behavioral controllers. Rana and Zalzala (1997) applied GA to the collision-free 

path planning of robot arms. Each chromosome consisted of a floating-point vector 

representation of via points (between each end of the path). The actual path was 

then computed by fitting cubic splines to the points. The cost function was a 

weighted sum of the path length, the number of collisions, and the distribution of via 

points. 

This paper aims to demonstrate the potential of GA in both control design and 

optimization for tracking control and vibration suppressions in flexible maneuvering 

systems. Flexible maneuvering systems exhibit many advantages over their rigid 

counterparts. For instance, they have higher manipulation speed, are more 

maneuverable and transportable, and are safer to operate because of their lighter 

weight, lower power consumption, smaller actuators requirement, and reduced inertia. 

However, the control task of such systems is a challenging problem, due to 

nonlinearities and flexible dynamics that lead to vibration during operation (Mohamed 

& Tokhi, 2002). Moreover, obtaining accurate model of such systems is a nontrivial 

task due to the non-minimum phase characteristics of the system. The control 

strategies employed for such complex systems are classified as feedforward, feedback, 

and combined feedback feedforward control schemes. Three control schemes are 

designed and implemented on three different flexible rigs in this study. In the first case 

study, GA is used to develop and optimize a hybrid learning control scheme for 

vibration control of a flexible manipulator. In the second case study, an active control 

mechanism for vibration suppression of flexible beam structures using GA 

optimization is proposed. In the third case study, GA is employed to optimize the 

amplitudes and time locations of an adaptive command shaping control scheme for 

vibration control of a twin rotor system. The effectiveness of the proposed control 

schemes is verified in experimental and simulation environments. The performances of 

the control schemes are assessed in both the time and frequency domains.  
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From an operational perspective, a GA comprises two basic elements of 

individuals, i.e., potential solutions (the population) and a set of biologically 

inspired 

Fig. 1: Flowchart of basic GA 

operators active over the population. A new set of approximations/ solutions is 

created at each generation, by the process of selecting individuals according to their 

level of fitness in the problem domain and breeding them together using the 

operators. This process leads to the evolution of populations of individuals that are 

better suited to their environment than the individuals that they were created from, 

just as in natural adaptation (Goldberg, 1989; Holland, 1975). The search process of 

a GA is carried out according to the flowchart depicted in Figure 1: 

To begin the search cycle, a fitness or performance measure must be defined as 

a function of members of the population. Secondly, several parameters must be set. 

These include as a minimum: the population size, and frequency of mutation and 

crossover. An initial population is then generated (randomly, possibly with 

constraint), and the fitness of each individual is computed. If the fitness of any 
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individual satisfies the stopping criteria, the search is terminated and the solution 

returned. Otherwise, a new generation is created through reproduction, crossover, 

mutation, and possibly other operations.  

2. HYBRID LEARNING CONTROL OF FLEXIBLE MANIPULATOR SYSTEMS

Many industrial applications of robot manipulators involve iterative repeated 

cycles of events. Thus, it is important to minimize errors in trajectory tracking of 

such manipulators, and this can be achieved with suitable learning strategies. The 

basic idea behind iterative learning control (ILC) is that the controller should learn 

from previous cycles and perform better during every subsequent cycle. Such ideas 

were presented by Arimoto et al. in 1984 who proposed a learning control scheme 

called the improvement process, and since then many papers have addressed robot 

control in combination with iterative learning control, (Craig, 1988; Horowitz, 

1993; Panzieri & Ulivi, 1995).  

In this work, ILC is studied as a complement to conventional feedforward and 

feedback control scheme for tracking control and vibration reduction of a constrained 

planar single-link flexible manipulator. A simulation environment is developed within 

Simulink and Matlab for evaluation of performance of the control strategies. The 

dynamic model of the flexible manipulator is derived using the finite element (FE) 

method. Previous simulation and experimental studies have shown that the FE method 

gives an acceptable dynamic characterization of the actual system (Tokhi et al., 1997). 

Moreover, a single element is sufficient to describe the dynamic behavior of the 

manipulator reasonably well. To demonstrate the effectiveness of the proposed control 

schemes, initially a joint-based collocated (JBC) PD controller utilizing hub-angle and 

hub-velocity feedback is developed for control of rigid body motion. This is then 

extended to incorporate an ILC scheme for vibration suppression of the manipulator. 

Simulation results of the response of the manipulator with the controller are presented 

in time and frequency domains. The performance of the hybrid learning control 

scheme is assessed in terms of input tracking and level of vibration reduction in 

comparison to the response with genetic algorithm optimized parameters. 

2.1 The Flexible Manipulator System 

Figure 2 shows a laboratory-scale single-link experimental rig used in this work. 

The manipulator can be considered as a pinned-free flexible arm, which can bend 
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freely in the horizontal plane but is relatively stiff in vertical bending and torsion 

(Tokhi & Azad, 1997). The manipulator is an aluminum type with dimensions 900 

19.0083.2004 mm3, E=71109 N/m2, I=5.25310–11 m4, and Ik =5.829810–4 kgm2.  

Fig. 2: The laboratory-scale single-link flexible manipulator 

The digital processor used is an IBM compatible PC based on an Intel(r) Celeron™ 

processor. Data acquisition and control are accomplished through the utilization of 

PCL-812PG board. This board can provide a direct interface between the processor, 

actuator and sensors. A simulation algorithm characterizing the dynamic behavior of 

the manipulator has previously been developed using the finite element (FE) method 

(Tokhi et al., 1997, 1999). This is used in this work as a platform for theoretical test 

and evaluation of the proposed control approaches. 

2.2 Collocated PD Control 

A common strategy in the control of manipulator systems involves the utilization 

of PD feedback of collocated sensor signals. Such a strategy is adopted at this stage of 

the investigation here. A block diagram of the PD controller is shown in Figure 3, 

where pK  and vK  are the proportional and derivative gains respectively  ,   and

  represent hub angle, hub velocity and end-point residual respectively, fR  is the 

reference hub angle and cA  is the gain of the motor amplifier. Here the 
motor/amplifier set is considered as a linear gain, Ac , as the set is found to function 

linearly in the frequency range of interest. To design the PD controller a linear state-

space model of the flexible manipulator was obtained by linearizing the equations of 

motion of the system. The first two flexible modes of the manipulator were assumed to 

be dominantly significant. Further details of derivation of the equation of the 

flexible 
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manipulator closed-loop characteristic can be found in (Tokhi and Azad, 1996). In this 

study, the root locus approach is utilized to design the PD controller. Analyses of the 

root locus plot of the system show that dominant poles with maximum negative real

Fig. 3: The collocated PD control structure 

parts could be achieved with  2 vp KKZ  and by setting pK  between 0 and 1.2 

(Tokhi & Azad, 1996). 

2.3 Hybrid Collocated PD with Iterative Learning Control 

A hybrid collocated PD control structure for control of rigid-body motion of the 

flexible manipulator with ILC is proposed in this section. In this study, an ILC scheme 

is developed using PD-type learning algorithm. Iterative learning control has been an 

active research area for more than a decade, mainly inspired by the pioneering work of 

Arimoto et al. (1984). Learning control begun with the fundamental principle that 

repeated practice is a common mode of human learning. Given a goal (regulation, 

tracking, or optimization), learning control, or more specifically, iterative learning 

control refers to the mechanism by which necessary control can be synthesized by 

repeated trials. A typical learning algorithm is given as: 

(1) 

where  

1k   is the next control signal 

k      is the current control signal 

ke      is the current positional error input, )( kdk xxe   ,  are suitable 

positive definite constants (or learning parameters) 

Obviously, the algorithm contains a constant and derivative coefficient of the 

error. In other words, the expression can be simply called proportional-derivative or 
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PD type learning algorithm. A slightly modified learning algorithm to suit the 

application is employed here. Instead of using the absolute position tracking error ke , 

a sum-squared tracking error is used. 

Fig. 4: PD type learning algorithm 

Fig. 5: The collocated PD with iterative learning control structure 

Figure 4 shows a block diagram describing the above expression. This is used 

with PD collocated control, to realise the hybrid collocated PD with ILC. This is 

shown in Figure 5.  

2.4 GA Based Hybrid Learning Control 

The performance of a PD-type learning control depends upon the 

proportional gain Φ and derivative gain  Γ. The stability, settling time, maximum 

overshoot and many other system performance indicators depend upon the values 

of Φ and  Γ. The proposed strategy utilizes GA as an optimization and search 

tool to determine the optimum values of the gains. The performance index or the 

cost function chosen is the error in the system output to reach and stay within 

a range specified by 
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absolute percentage of the final value. Hence, the role of GA is to find optimum 

vales of gains   and  . In this case, integral of squared error is used as the 

criterion for minimising the error: 

(2) 

Error = r(t)–y(t), N = number of samples; 

where, r(t) = reference input   y(t) = measured variable 

The above error criterion is used with GA based tuning. The GA initializes a 

random set of population of the two variables. The algorithm evaluates all members 

of the population based on the specified performance index. The algorithm then 

applies GA operators such as reproduction, crossover and mutation to generate a 

new set of population based on the performance of members of the population 

(Goldberg, 1989). The best member or gene of the population is chosen and saved 

for next generation. It again applies the operators and selects the best gene among 

the new population. The best gene of the new population is compared to best gene 

of previous population. If a predefined termination criterion is not met, again a new 

population is obtained as above. The termination criterion may be formulated as the 

magnitude of difference between index value of previous generation and present 

generation becoming less than a pre-specified value. The process continues till the 

termination criterion is fulfilled.  

2.5 Results and Discussion 

In this section, the proposed control schemes are implemented and tested within 

the simulation and experimental environments of the flexible manipulator and the 

corresponding results are presented. The manipulator is required to follow a 

trajectory at 075  as shown in Figure 6. System responses, namely the hub-angle, 

hub-velocity and end-point acceleration are observed. To investigate the vibration of 

the system in the frequency domain, power spectral density (SD) of response at the 

end-point is obtained.   

In the collocated control scheme, the design of PD controller was based on root 

locus analysis, from which KpKv and Ac were deduced as 0.64, 0.32, and 0.01 

respectively. The closed-loop parameters with the PD control are then used to 
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design and evaluate the performance of iterative learning control schemes in terms 

of input tracking capability and level of vibration reduction. The (PD-ILC) scheme 

was

Fig. 6: The reference hub angle 

Fig. 7: Objective value vs number of 
generations (shimulated) 

Fig. 8: Objective value vs number of 
generations (Experimental) 

designed based on the dynamic behavior of the closed-loop system. In this paper 

the parameters of the learning algorithm Φ and Γ were tuned using the GA. With 

GA optimization, the parameters were deduced as 0.0015 and 0.0011 in 

simulation and 0.0015 and 0.0012 with the experimental system respectively. The 

GA was designed with 80 individuals for simulation and 60 for the 

experimental system in each generation. The maximum number of generations 

was set to 100 for simulation and 80 for the experimental system. Figures 7 and 

8 and Table 1 show the algorithm 
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convergence as a function of generations and the parameter values used in the GA 

algorithm respectively.  

TABLE 1 

Algorithm parameters for PD-type learning 

Parameter Setting

Generation gap 0.9 

Precision 14

Crossover rate 0.8 

Mutation rate 0.025 

Figure 9 shows the corresponding responses of the GA optimization process 

with HLC. It is noted that in this case the GA based hybrid learning scheme 

performs much better than the collocated PD control. GA based hybrid learning 

optimizes the proportional and derivative gains of the controller such that the 

settling time of the system is minimized. This is also expected to reduce the settling 

time of the response. 

3. ACTIVE VIBRATION CONTROL OF A FLEXIBLE BEAM SYSTEM

Active vibration control (AVC) consists of artificially generating cancelling 

sources to destructively interfere with the unwanted source and thus result in 

reduction in the level of the disturbance (vibration) at desired locations. This is 

realised by detecting and processing the vibration by a suitable electronic controller 

so that when superimposed on the disturbance, cancellation occurs (Tokhi, 1997; 

Tokhi & Leitch, 1992; Tokhi & Veres, 2002). In this study, an investigation is 

carried out into the development of an adaptive active control mechanism for 

vibration suppression of flexible structures using GA.  

Due to the broadband nature of the disturbances, it is required that the control 

mechanism in an AVC system realises suitable frequency-dependent characteristics 

so that cancellation over a broad range of frequencies is achieved. In practice, the 

spectral contents of the disturbance as well as the characteristics of system 

components are, in general, subject to variation, giving rise to time-varying 
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phenomena. This implies that the control mechanism is further required to be 

intelligent enough to track these variations so that the desired level of performance 

is achieved and maintained (Tokhi & Veres, 2002).  

Simulated Experimental 

(a) Hub angle

Simulated Experimental 

(b) End-point acceleration (Time domain)

Simulated Experimental 
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(c) End-point acceleration (Spectral density)

Fig. 9: Response of the simulated and experimental manipulator system without payload 

Fig. 10: Fixed-free beam

A flexible beam in fixed-free mode, a representation of aircraft wing or robot arm, 

is considered in this study. Such a system has an infinite number of modes although in 

most cases the lower modes are the dominant ones requiring attention. The unwanted 

vibrations in the structure are assumed to be due to a single point disturbance of 

broadband nature. First order central finite difference (FD) methods are used to study 

the behavior of the beam and develop a suitable test and verification platform. An 

AVC system is designed using a single-input single-output (SISO) control structure to 

yield optimum cancellation of broadband vibration at an observation point along the 

beam. Here, GA uses a direct analogy of natural evolution. Through the genetic 

evolution method, an optimal solution can be found and represented by the final 

winner of the genetic game. The development of an active control mechanism for 

vibration suppression of flexible beam structures using GA optimization technique is 

proposed and its performance is assessed and discussed. 

3.1 The Flexible Beam System 

Figure 10 shows a flexible beam in fixed-free mode where U(x,t) represents an 

applied force at a distance x from the fixed end at time t and y(x,t) is the resulting 

beam deflection from its stationary position at the point where the force has been 

applied. L is the length of the beam and dx is a differential length of the beam.  

The motion of a beam in transverse vibration in response to an applied force 

U(x,t) is governed by the well-known fourth-order partial differential equation 

(PDE) (Hossain, 1996; Kourmoulis, 1990). 

dx

 txU ,

L

 txy ,

x 
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(3) 

where  is a beam constant given by 2 = 
A

EI


 with E, I,   and A representing 

Young 

modulus, moment of inertia of the beam, mass density and cross-sectional area 

respectively, and m is the mass of the beam. The corresponding boundary conditions 

at the fixed and free ends of the beam are given as: 

(4) 

(5) 

Note that the model in Eq. (3) does not incorporate damping. The FD method is 

used as a numerical solution to the PDE in Eq. (3) (Hossain, 1996). This involves a 

discretization of the beam into a finite number of equal length sections, each of 

length x, and the beam motion (deflection) for the end of each section is 

considered at equally spaced time steps of duration t. Thus, denoting ),( txy to 

represent the beam deflection yi,j  at point i at time step j and ),( twtxvxy   

by wjviy  ,  where v and w are non-negative integer numbers, the required

relations for the simulation algorithm, characterising the behavior of the system can 

be approximated. Using first-order central FD methods based on Eqs. (3) to (5) 

give: 

(6) 
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where Yj = [y1,j],y2,j yn,j]T
  and S is a matrix dependent on system parameters, 

number of segments n and boundary conditions of the beam, and 2 = 
 
 4

2

x

t




.2 

The stability of the algorithm in Eq. (6) is satisfied by 0 < 2  0.25 

(Kourmoulis, 1990). Considering an aluminium beam of length as 0.635, μ as 

1.351108, mass as 0.0478 kg and  as 0.2948, the first five resonance modes of the 

beam, as obtained through simulation exercise and verified by theoretical analysis, 

are located at 1.875 Hz, 11.751 Hz, 32.902 Hz, 64.476 Hz and 106.583 Hz 

respectively with the first two modes being the dominant ones.  

3.2 Direct-GA Active Vibration Control 

Figure 11 shows a schematic diagram of a SISO-AVC system. An unwanted 

(primary disturbance) point source emits broadband disturbance into the structure, 

which is detected by a detector, processed by a controller of suitable transfer 

characteristics and fed to a cancelling (secondary) point actuator. The secondary 

(control) signal thus generated, interferes with the disturbances to reduce the level 

of vibration at an observation point along the structure. 

In this work, the aim of the controller design is to minimize the deflection 

OY via CU for generating anti-phase control signal to counteract the vibration

produced by DU . Optimal vibration reduction can be achieved by feeding the

observed signal OY  to the controller  zC  via GA optimization routines (Hossain

et al., 1995; Hossain and Tokhi, 1997). The fitness function in Eq. (5) is adopted in 

identifying the parameters of the controller transfer function. 

jnjnjnjn yyyy ,2,1,1,2 22  
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Fig. 11:   Active vibration control (feedforward) structure 

3.3 Implementation and Results 

To study the performance of the GA-optimized controller, an aluminium type 

fixed-free beam with specifications given in section 3.1 was simulated. The beam 

was divided into 20 sections and a sampling time of 0.2 ms that satisfies the stability 

requirements of the FD simulation algorithm and is sufficient to cover all the 

resonance modes of vibration of the beam was used. 

In order to allow nonlinear dynamics of the system be incorporated within the 

design, a uniformly random signal covering the dynamic range of interest of the 

system was used in the GA optimization process.  The primary force was applied at 

grid point 13 and the secondary (control) signal was applied at grid point 15. The 

detector and observer were placed at grid points 12 and 19 respectively.   

Investigations were carried out using the GA with one step ahead (OSA) 

prediction and different initial values and operator rates. Satisfactory results were 

achieved with the following set of parameters: 

 Generation gap: 0.9

 Crossover rate: 0.7

 Mutation rate: 0.1

The GA controller model was observed with different orders and the best result 

was achieved with an order 6. The GA was designed with 100 individuals in each 

generation. The maximum number of generations was set to 60. The algorithm 

achieved the best mean-square error level of 2.238e-10 in the 50th generation. Figure 

12 shows the algorithm convergence as a function of generations. Figure 13 shows 
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the corresponding result of system performance with the GA optimization using 

random excitation as primary signal. As noted 21.718 dB, 6.990 dB, 17.074 dB, 

2.599 dB and 6.1470 dB vibration reduction was achieved at the first, second, third, 

fourth and fifth modes, respectively. To assess the performance of the GA controller 

further, pseudo random binary sequence (PRBS) excitation was used as the primary 

signal. The corresponding results are shown in Figure 14. It is noted that the spectral 

attenuation achieved at the resonance modes were 26.339 dB, 1.500 dB, 10.340 dB 

and 3.748 dB at the first, second, third and fifth respectively and reinforcement of 

5.00 dB occurred at the fourth mode. It is therefore noted that the controller 

performs well with different input signals. 

Fig. 12: Objective value vs number of generations 

4. ADAPTIVE COMMAND SHAPING FOR VIBRATION CONTROL OF A TWIN

ROTOR SYSTEM

The control of flexible maneuvering systems is a challenging problem due to

the complex flexible dynamics and system nonlinearties. The control strategies 

employed for such complex systems are classified as feedforward, feedback and a 
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combination of these control schemes. Feedforward methods have been considered 

in vibration control for flexible systems where the control signal is developed by 

considering the physical and vibrational properties of the flexible system (Singer 

and Seering, 1990; Singhose et al., 1995). In this work, input-shaper with a 

sequence of three impulses is introduced as a feedforward technique for vibration 

control in the vertical movement of a twin rotor multi-input multi-output system 

(TRMS).  

This study looks into the development of an effective adaptive command-

shaping technique using GA for vibration control of a flexible system. An 

evolutionary method is introduced to adapt a command shaper used for vibration 

control of the vertical movement of a TRMS. 

(a) System response at observation point in

the time domain 

(b) System response at observation

point in the frequency domain

(c) Spectral attenuation (d) System response in 3D before

cancellation 
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e) System response in 3D after cancellation

Fig. 13:  Performance of GA-AVC using random excitation

(a) System response at observation point in
the time domain 

(b) System response at observation
point in the frequency domain

(c) Spectral attenuation (d) System response in 3D before
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e) System response in 3D after cancellation

Fig. 14:  Performance of GA-AVC using PRBS excitation

Command or input shaping, depicted in Figure 15, operates by taking the 

reference command and changing its shape so that it will not excite the flexible 

system modes and as a result the vibrations that would be associated with motion 

Fig. 15:  Adaptive command shaping for vibration control 

will be reduced. Since its introduction (Singer and Seering, 1990; Singhose et al., 

1995), command shaping has been applied to the control of different types of 

flexible systems (Aldebrez et al., 2003; Mohamed and Tokhi, 2004). A properly 

designed command shaper cancels the resonance poles of the system regardless of 

20

Actual 
Output 

Reference 
Command 

Shaped 
Command 

Flexible 
System 

Genetic 
Algorithm 

Input Shaper 

+ 

- 

Desired Output 

r(n) 

d(n) 

e(n) 

y(n) 



Vol. 17, Suppl GA Optimization and Control System 
 Design of Flexible Structures 

given reference input to the system. However, designing an effective command 

shaper requires a priori knowledge of the system parameters. Recently, some efforts 

have been made to make the command shaper less sensitive to the uncertainty in 

system parameters and to make the command shaper adapt to the unknown system 

parameters (Bodson, 1998; Sungsoo, 1999). This research is an effort to develop an 

effective adaptive command-shaping control scheme using GA in time domain. 

Genetic algorithm is one of the global stochastic search algorithms based on natural 

biological evolution (Goldberg, 1989; Holland, 1975). The potential of GA is 

investigated to optimize the amplitudes and time-location of the impulses in the 

proposed input shaper illustrated in Figure 15.  

4.1 The TRMS Setup   

The TRMS, shown in Figure 16, is a laboratory set-up designed for control 

experiments (Feedback Instruments Ltd., 1996). In certain aspects it behaves like a 

helicopter. The TRMS rig consists of a beam pivoted on its base in such a way that 

it  

Fig. 16: The schematic diagram of the TRMS 

can rotate freely both in the horizontal and vertical directions producing yaw and 
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pitch movements, respectively. At both ends of the beam there are two rotors driven 

by two d.c. motors. The main rotor produces a lifting force allowing the beam to rise 

vertically making a rotation around the pitch axis (vertical angle). While, the tail 

rotor (smaller than the main rotor) is used to make the beam turn left or right around 

the yaw axis (horizontal angle). In a typical helicopter, the aerodynamic force is 

controlled by changing the angle of attack of the blades. The laboratory set-up is 

constructed so that the angle of attack of the blades is fixed and the aerodynamic 

force is controlled by varying the speed of the motors. Therefore, the control inputs 

are supply voltages of the d.c. motors. A change in the voltage value results in a 

change in the rotational speed of the propeller, which results in a change in the 

corresponding position of the beam (Feedback Instruments Ltd., 1996). 

4.2 Feedforward Vibration Control  

The input shaping method involves convolving a desired command with a 

sequence of impulses (Singer & Seering, 1990). The design objectives are to determine 

the amplitude and time location of the impulses. A vibratory system can be modelled 

as a superposition of second order systems each with a transfer function:  

(7) 

where, n is the natural frequency and  is the damping ratio of the system. Thus, 

the impulse response of the system at time t is:  

(8) 

where, A and t0 are the amplitude and time-location of the impulse, respectively. 

Furthermore, the response to a sequence of impulses can be obtained using the 

superposition principle. Thus, for N impulses, with 21   nd , the impulse 

response can be expressed as:  

(9) 

where,  
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→ 

and Ai and ti are the magnitudes of the impulses and their time-location, 

respectively. The residual single-mode vibration amplitude of the impulse response 

is obtained at the time of the last impulse, tN, as:  

(10) 

where. 

To achieve zero vibration after the last impulse, it is required that both V1 and 

V2 in Eq. (10) are independently zero. Furthermore, to ensure that the shaped 

command input produces the same rigid-body motion as the unshaped command, it 

is required that the sum of amplitudes of the impulses is unity (Singer and Seering, 

1990). To avoid response delay, the first impulse is selected at time t1=0. Hence, 

setting V1 and 

V2  in Eq. (10) to zero, 
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i
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1

1  and solving for the second derivative of the vibration 

in Eq. (10), will produce a four-impulse sequence with set of parameters given by: 
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(11) 

where 

To handle higher vibration modes, an impulse sequence for each vibration 

mode can be designed independently. Then the impulse sequence can be convoluted 

together to form a sequence of impulses that attenuate vibration at higher modes. 

4.3 Adaptive Command Shaping Using GA 

In this paper, an evolutionary method is introduced to adapt a command shaper 

used for vibration control of the TRMS. In the adaptation process, GA is used as a 

direct approach that optimizes the amplitudes of the occurring impulses and their 

corresponding time-locations. The general formula that represents the adapted 

command shaper is described as follows (Sungsoo, 1999): 

(12) 

where 



m

i
iÂ

1

1 and ,,m 21   

As shown in Figure 15, the adaptation error e(n) at a time n is the difference 

between the desired response d(n) and the actual system response y(n). For zero 

vibration (ZV) with a 3-impulse command shaper, it is expected that the responses of 

the system due to the impulses would cancel each other out after the time 2Δ. As a 

result the vibration would be zero after the time 2Δ. Accordingly, the system response 

considered here after time 2Δ as the error and used to formulate the objective function 

for the GA optimization. The sum of squared error (SSE) is used as an objective 

function for adaptation of the proposed command shaper for zero vibration.    This 

is  

given as: 



N

mn

))n(e(SSE 2 . Initially, the fixed time intervals as described in Eq. 

(11) 

are used and amplitudes of the impulses of the command shaper are optimized. The 

parameters of the GA optimization process are presented in Table 2: 
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TABLE 2 

GA optimization parameters 

GA Parameters Values 

Initial population 20 

Total Generation 50 

Crossover rate 0.9 

Mutation rate 0.001 

Precision 18 bits

Objective function Sum of squared error (SSE) 

The program begins with a randomly generated initial population of 20 sets of 

values, which represent the amplitudes of impulses. Each set is assigned with the 

command shaper, convolved with the input bang-bang signal, and applied to the 

system. Then the error is calculated and the objective function is formed for this set. 

This procedure is repeated for each set and the corresponding objective functions 

recorded. Then the GA operators, namely selection, crossover, and mutation are 

employed to form the new population for the next generation. From the basic 

characteristics of GAs, it was observed that the objective function (SSE), which is 

the vibration in this work, reduces significantly after each generation. At the end of 

50 generations, a substantial reduction in vibration is obtained.  

In the next part of the work, fixed amplitudes from Eq. (11) of the impulses are 

used and the time intervals (locations of the impulses) are optimized. Here the time 

intervals are restricted to up to 20 sample instants to get reduced vibration with a 

reasonable delay in the system response. Higher sample intervals result huge delay 

in the system response. In the last part of the work both the amplitudes and time-

locations of the impulses are optimized. 

4.4 Results and Discussion 

This section presents the performance of the proposed control schemes, 

implemented for vibration control in the vertical movement of the TRMS. To 

investigate the amount of vibration reduction achieved by the employed control 
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schemes, the corresponding results are presented in both time and frequency 

domains.  

Initially, three input shapers comprising 2-impulses, 3-impulses and 4-impulses 

were designed and implemented for vibration control in the vertical movement of the 

TRMS. A comparative study was conducted for the purpose of selecting the best input 

shaper that has a faster response and less vibration. The three input shapers, shown in 

Figure 17, were designed based on the vibration frequency and damping ratio of the 

main rotor system.  

A damping ratio of 0.04146 was analytically obtained from the extracted transfer 

function of the system, given as (Aldebrez et al. 2004): 

(13) 

where u(s) represents main rotor input (volt) and y(s) represents pitch angle (radians). 

This corresponds to the main resonance frequency (0.3516Hz). This transfer 

function will be utilized in this work for simulating the system. 

It can be seen from Figure 17 that the 3-impulse input shaper has achieved a 

better performance than the other two in terms of speed of response and vibration 

reduction. Thus, the 3-impulse input shaper is used for pre-processing the input 

signal applied to the system in an open-loop configuration. A single-switch bang- 

bang input signal, referred to as unshaped input, used in this work is shown in 

Figure 18.  
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Fig. 17:    Performance with 2, 3, and 4-impulse input shapers 
––– system response without input shaper (upper curve);  
–·– system response with 2 input shapers (second curve);
–·– system response with 3 input shapers (third curve);
–·– system response with 4 input shapers (bottom curve).

Fig. 18: Shaped and unshaped bang-bang input signals.  Left line - unshaped bang 

bang input; right line - shaped bang bang input 
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TABLE 3 

Amplitudes and time-locations of the developed input shapers 

Command Shaping Techniques 
Amplitudes (volts) Time locations (sec) 

a1 a2 a3 t1 t2 ta3 

Standard 3-impulse IS 0.151 0.398 0.349 0 0.7 1.4 

Adaptive 3-impulse IS (amplitudes) 0.250 0.50 0.249 0 0.7 1.4 

Adaptive 3-impulse IS (time locations) 0.151 0.398 0.349 0 1.5 3.0 

Adaptive 3-impulse IS (ampl. & time)  0.184 0.490 0.249 0 1.4 2.8 

TABLE 4 

Rise time of the employed command shaping techniques 

Employed Techniques Rise 
time 
(sec) 

System response without IS 0.775 

Standard 3-impulse IS 1.355 

Adaptive 3-impulse IS (amplitudes) 1.42 

Adaptive 3-impulse IS (time) 2.46 

Adaptive 3-impulse IS (amp & 

time)  

2.53 

The magnitude and time location of the impulses of the 3-impulse input shaper 

were obtained by solving Eq. (12). Table 3 shows the amplitudes of the three 

impulses and their corresponding time locations. For discrete implementation of the 

input-shaper, locations of the impulses were selected at the nearest sample time-

step. 

The corresponding system responses to the applied shaped and unshaped input 

signals are shown in Figure 19. With the three-impulse sequence, the oscillations in 

the system response were found significantly reduced. These can be observed by 

comparing the system response to the unshaped input. Figure 19(a) shows the 

system response for the duration of experiment (100 sec), while Figure 19(b) 

represents the operation from 10 to 40 seconds. It can be seen from this figure that 

there is a significant amount of vibration reduction achieved with the employed 

28
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controllers in comparison to the system without command shaping. 

To investigate time domain response of the system with the employed 

techniques, rise time was recorded, see Table 4. The system response without

(a) Time domain response over the complete cycle
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(b) Time domain response from 10 to 40 secs

Fig. 19:  Performance of the employed 3-impulse input shapers 

command shaping has recorded the shortest rise time of 0.7775 sec, followed by that 

with the standard input shaper with a rise time of 1.355 sec. However, the adaptive 

input shapers have recorded slow system response with rise times of 1.42 sec, 2.46 

sec and 2.53 sec for adaptive amplitude, adaptive time-location and adaptive 

amplitude and time-location, respectively.  

Generally, the obtained results show that the introduction of command shaping 

resulted in a delay in the system response. This delay is equivalent to the convoluted 

impulses during the shaping process. This can be attributed as a main drawback of 

the command shaping algorithms in general. To obtain a faster system response, a 

feedback control method would be augmented with the command shaping 

algorithm. 

It can also be noticed from the power spectral density (PSD) plot shown in Figure 

20 and vibration reduction in Table 5 that vibration of the system was dramatically 

reduced. As shown in Figure 20(a), the system has a single dominant mode at 

0.3516Hz. Since, this work focuses on the vibration control of the system, the 

spectral attenuation at the dominant mode region is recorded in Table 5 and plotted 

in Figure 20(b).  

A comparative performance of the system with the standard 3-impulse input 
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shaper, adaptive amplitude 3-impulse input shaper, adaptive time-location 3-impulse 

input shaper and adaptive amplitude-time 3-impulse input shaper is presented in 

Table 5. It is evident from the results that the standard and the three adaptive input 

shapers have performed well in reducing the system vibrations. Among the 

employed controllers, the best result in terms of vibration reduction was achieved 

with the adaptive amplitude-time input shaper (65.41dB), followed by the adaptive 

time input 

TABLE 5 

Amount of vibration reduction with the employed 3-impulse input shapers 

Employed Command Shaping 

Techniques 

Vibration amount (dB) 

Standard 3-impulse IS 11.11 

Adaptive 3-impulse IS (amplitudes) 11.20 

Adaptive 3-impulse IS (time) 57.95 

Adaptive 3-impulse IS (amp & time)  65.41 

(a) PDS for the whole duration
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(b) PSD for the dominant region

Fig. 20:  Power spectral density 

shaper with 57.95dB, and then the adaptive amplitude input shaper with 11.20dB, 

and finally the standard 3-impulse input shaper with 11.11dB reduction. 

Figure 21 shows the GA objective function profile, sum of squared error (SSE), of 

the three adaptive input shapers. The change in the objective function for the adaptive 

amplitude input shaper is not significant in comparison to the other two adaptive input 

shapers. Table 6 shows the final values of the SSE at the end of 50 generations.  
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Fig. 21: GA objective function (SSE). 

Legend: – – – GA optimized amplitude;   - - - GA optimized time; ––– GA optimized 
amplitude and time;  

TABLE 6 

GA objective function 

Adaptive Input Shapers Values of SSE after 50 generations 

Adaptive 3-impulse IS (amplitudes) 14.4116 

Adaptive 3-impulse IS (time) 10.7588 

Adaptive 3-impulse IS (amp & time)  10.8138 

5. CONCLUSION

Genetic algorithm (GA) is inspired by the mechanism of natural selection that

emulates the laws of evolution and genetics to yield optimal solution to complex 

problems. This paper has presented an investigation into utilization of GA in the 

field of control engineering, specifically in tracking control and vibration 

suppression. The potential of GA has been assessed in three case studies. 

Case 1 presented the development of hybrid learning control schemes with GA 

for input tracking and vibration suppression of a flexible manipulator. The control 
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scheme has been implemented and tested within simulation and experimental 

environments and its performance has been evaluated in terms of input tracking 

capability and vibration suppression at the resonance modes of the manipulator. An 

acceptable input tracking control and vibration suppression have been achieved with 

the proposed control strategy.  

In Case 2, the design and implementation of an adaptive active control 

mechanism using GA have been presented and verified through simulated exercises 

in a flexible fixed-free beam system. The performance of the control system in 

vibration reduction with different types of excitation has been assessed. It has been 

demonstrated that on average, a significant amount of vibration reduction over the 

full range of frequencies of the input signal has been achieved. 

In Case 3, two types of command shaping methods, namely, standard input 

shaper and GA-based adaptive command shaper have been developed and 

investigated for vibration control in the vertical movement of a TRMS. Significant 

improvement in the reduction of system vibration has been achieved with the 

employed techniques as compared to the system with unshaped bang-bang input. 

Among the four employed command shapers, the best performance has been 

achieved with the adaptive amplitude and time 3-impulse input shaper.  

We have shown that when locations of the impulses are fixed at the theoretical 

value there is no significant reduction in vibration compared to theoretical command 

shaping even though the amplitudes are varied. Speed of response depends on the 

locations of impulses, not on the amplitudes of the impulses. When the amplitudes 

of impulses are fixed at theoretical values but the locations are varied, a significant 

amount of reduction in vibration can be achieved at the cost of long delay. It is 

noted from the obtained results that there is a delay in the system response as 

compared with that using unshaped input. This is equivalent to the length of the 

impulse. This can be tackled by augmenting command shaping with a feedback 

control method.  
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