4,764 research outputs found

    Application of Fuzzy Cognitive Mapping in Livelihood Vulnerability Analysis

    Get PDF
    Feedback mechanisms are important in the analysis of vulnerability and resilience of social-ecological systems, as well as in the analysis of livelihoods, but how to evaluate systems with direct feedbacks has been a great challenge. We applied fuzzy cognitive mapping, a tool that allows analysis of both direct and indirect feedbacks and can be used to explore the vulnerabilities of livelihoods to identified hazards. We studied characteristics and drivers of rural livelihoods in the Great Limpopo Transfrontier Conservation Area in southern Africa to assess the vulnerability of inhabitants to the different hazards they face. The process involved four steps: (1) surveys and interviews to identify the major livelihood types; (2) description of specific livelihood types in a system format using fuzzy cognitive maps (FCMs), a semi-quantitative tool that models systems based on people’s knowledge; (3) linking variables and drivers in FCMs by attaching weights; and (4) defining and applying scenarios to visualize the effects of drought and changing park boundaries on cash and household food security. FCMs successfully gave information concerning the nature (increase or decrease) and magnitude by which a livelihood system changed under different scenarios. However, they did not explain the recovery path in relation to time and pattern (e.g., how long it takes for cattle to return to desired numbers after a drought). Using FCMs revealed that issues of policy, such as changing situations at borders, can strongly aggravate effects of climate change such as drought. FCMs revealed hidden knowledge and gave insights that improved the understanding of the complexity of livelihood systems in a way that is better appreciated by stakeholders

    Fuzzy Cognitive Maps and Neutrosophic Cognitive Maps

    Get PDF
    As extension of Fuzzy Cognitive Maps are now introduced the Neutrosophic Cognitive Map

    Interactive Problem Structuring with ICZM Stakeholders

    Get PDF
    Integrated Coastal Zone Management (ICZM) is struggling with a lack of science-management integration. Many computer systems, usually known as “decision support systems”, have been developed with the intention to make scientific knowledge about complex systems more accessible for coastal managers. These tools, allowing a multi-disciplinary approach with multi-criteria analyses, are designed for well-defined, structured problems. However, in practice stakeholder consensus on the problem structure is usually lacking. Aim of this paper is to explore the practical opportunities for the new so-called Quasta approach to structure complex problems in a group setting. This approach is based on a combination of Cognitive Mapping and Qualitative Probabilistic Networks. It comprehends a new type of computer system which is quite simple and flexible as well. The tool is tested in two workshops in which various coastal management issues were discussed. Evaluations of these workshops show that (1) this system helps stakeholders to make them aware of causal relationships, (2) it is useful for a qualitative exploration of scenarios, (3) it identifies the quantitative knowledge gaps of the problem being discussed and (4) the threshold for non technicians to use this tool is quite low.Integrated Coastal Zone Management, Problem Structuring, Stakeholder Participation, Cognitive Mapping, Interactive Policy Making

    The Research Space: using the career paths of scholars to predict the evolution of the research output of individuals, institutions, and nations

    Full text link
    In recent years scholars have built maps of science by connecting the academic fields that cite each other, are cited together, or that cite a similar literature. But since scholars cannot always publish in the fields they cite, or that cite them, these science maps are only rough proxies for the potential of a scholar, organization, or country, to enter a new academic field. Here we use a large dataset of scholarly publications disambiguated at the individual level to create a map of science-or research space-where links connect pairs of fields based on the probability that an individual has published in both of them. We find that the research space is a significantly more accurate predictor of the fields that individuals and organizations will enter in the future than citation based science maps. At the country level, however, the research space and citations based science maps are equally accurate. These findings show that data on career trajectories-the set of fields that individuals have previously published in-provide more accurate predictors of future research output for more focalized units-such as individuals or organizations-than citation based science maps

    Socio-cognitive constraints and opportunities for sustainable intensification in South Asia:Insights from fuzzy cognitive mapping in coastal Bangladesh

    Get PDF
    Appreciating and dealing with the plurality of farmers’ perceptions and their contextual knowledge and perspectives of the functioning and performance of their agroecosystems—in other words, their ‘mental models’—is central for appropriate and sustainable agricultural development. In this respect, the sustainable development goals (SDGs) aim to eradicate poverty and food insecurity by 2030 by envisioning social inclusivity that incorporates the preferences and knowledge of key stakeholders, including farmers. Agricultural development interventions and policies directed at sustainable intensification (SI), however, do not sufficiently account for farmers’ perceptions, beliefs, priorities, or interests. Considering two contrasting agroecological systems in coastal Bangladesh, we used a fuzzy cognitive mapping (FCM)-based simulation and sensitivity analysis of mental models of respondents of different farm types from 240 farm households. The employed FCM mental models were able to (1) capture farmers’ perception of farming system concepts and relationships for each farm type and (2) assess the impact of external interventions (drivers) on cropping intensification and food security. We decomposed the FCM models’ variance into the first-order sensitivity index (SVI) and total sensitivity index (TSI) using a winding stairs algorithm. Both within and outside polder areas, the highest TSIs (35–68%) were observed for effects of agricultural extension on changes in other concepts in the map, particularly food security and income (SI indicators), indicating the importance of extension programs for SI. Outside polders, drainage and micro-credit were also influential; within polders, the availability of micro-credit appears to affect farmer perceptions of SI indicators more than drainage. This study demonstrated the importance of reflection on the differing perspectives of farmers both within and outside polders to identify entry points for development interventions. In addition, the study underscores the need for micro-farming systems-level research to assess the context-based feasibility of introduced interventions as perceived by farmers of different farm types.</p
    • 

    corecore