39 research outputs found

    Classification of Occluded Objects using Fast Recurrent Processing

    Full text link
    Recurrent neural networks are powerful tools for handling incomplete data problems in computer vision, thanks to their significant generative capabilities. However, the computational demand for these algorithms is too high to work in real time, without specialized hardware or software solutions. In this paper, we propose a framework for augmenting recurrent processing capabilities into a feedforward network without sacrificing much from computational efficiency. We assume a mixture model and generate samples of the last hidden layer according to the class decisions of the output layer, modify the hidden layer activity using the samples, and propagate to lower layers. For visual occlusion problem, the iterative procedure emulates feedforward-feedback loop, filling-in the missing hidden layer activity with meaningful representations. The proposed algorithm is tested on a widely used dataset, and shown to achieve 2×\times improvement in classification accuracy for occluded objects. When compared to Restricted Boltzmann Machines, our algorithm shows superior performance for occluded object classification.Comment: arXiv admin note: text overlap with arXiv:1409.8576 by other author

    An Integrated Fuzzy Inference Based Monitoring, Diagnostic, and Prognostic System

    Get PDF
    To date the majority of the research related to the development and application of monitoring, diagnostic, and prognostic systems has been exclusive in the sense that only one of the three areas is the focus of the work. While previous research progresses each of the respective fields, the end result is a variable grab bag of techniques that address each problem independently. Also, the new field of prognostics is lacking in the sense that few methods have been proposed that produce estimates of the remaining useful life (RUL) of a device or can be realistically applied to real-world systems. This work addresses both problems by developing the nonparametric fuzzy inference system (NFIS) which is adapted for monitoring, diagnosis, and prognosis and then proposing the path classification and estimation (PACE) model that can be used to predict the RUL of a device that does or does not have a well defined failure threshold. To test and evaluate the proposed methods, they were applied to detect, diagnose, and prognose faults and failures in the hydraulic steering system of a deep oil exploration drill. The monitoring system implementing an NFIS predictor and sequential probability ratio test (SPRT) detector produced comparable detection rates to a monitoring system implementing an autoassociative kernel regression (AAKR) predictor and SPRT detector, specifically 80% vs. 85% for the NFIS and AAKR monitor respectively. It was also found that the NFIS monitor produced fewer false alarms. Next, the monitoring system outputs were used to generate symptom patterns for k-nearest neighbor (kNN) and NFIS classifiers that were trained to diagnose different fault classes. The NFIS diagnoser was shown to significantly outperform the kNN diagnoser, with overall accuracies of 96% vs. 89% respectively. Finally, the PACE implementing the NFIS was used to predict the RUL for different failure modes. The errors of the RUL estimates produced by the PACE-NFIS prognosers ranged from 1.2-11.4 hours with 95% confidence intervals (CI) from 0.67-32.02 hours, which are significantly better than the population based prognoser estimates with errors of ~45 hours and 95% CIs of ~162 hours

    HIV analysis using computational intelligence

    Get PDF
    In this study, a new method to analyze HIV using a combination of autoencoder networks and genetic algorithms is proposed. The proposed method is tested on a set of demographic properties of individuals obtained from the South African antenatal survey. The autoencoder model is then compared with a conventional feedforward neural network model and yields a classification accuracy of 92% compared to 84% obtained for the conventional feedforward model. The autoencoder model is then used to propose a new method of approximating missing entries in the HIV database using ant colony optimization. This method is able to estimate missing input to an accuracy of 80%. The estimated missing input values are then used to analyze HIV. The autoencoder network classifier model yields a classification accuracy of 81% in the presence of missing input values. The feedforward neural network classifier model yields a classification accuracy of 82% in the presence of missing input values. A control mechanism is proposed to assess the effect of demographic properties on the HIV status of individuals, based on inverse neural networks, and autoencoder networks-based-on-genetic algorithms. This control mechanism is aimed at understanding whether HIV susceptibility can be controlled by modifying some of the demographic properties. The inverse neural network control model has accuracies of 77% and 82%, meanwhile the genetic algorithm model has accuracies of 77% and 92%, for the prediction of educational level of individuals, and gravidity, respectively. HIV modelling using neuro-fuzzy models is then investigated, and rules are extracted, which provide more valuable insight. The classification accuracy obtained by the neuro-fuzzy model is 86%. A rough set approximation is then investigated for rule extraction, and it is found that the rules present simplistic and understandable relationships on how the demographic properties affect HIV risk. The study concludes by investigating a model for automatic relevance determination, to determine which of the demographic properties is important for HIV modelling. A comparison is done between using the full input data set and the data set using the input parameters selected by the technique for the HIV classification. Age of the individual, gravidity, province, region, reported pregnancy and educational level were amongst the input parameters selected as relevant for classification of an individual’s HIV risk. This study thus proposes models, which can be used to understand HIV dynamics, and can be used by policy-makers to more effectively understand the demographic influences driving HIV infection

    Machine learning in solar physics

    Full text link
    The application of machine learning in solar physics has the potential to greatly enhance our understanding of the complex processes that take place in the atmosphere of the Sun. By using techniques such as deep learning, we are now in the position to analyze large amounts of data from solar observations and identify patterns and trends that may not have been apparent using traditional methods. This can help us improve our understanding of explosive events like solar flares, which can have a strong effect on the Earth environment. Predicting hazardous events on Earth becomes crucial for our technological society. Machine learning can also improve our understanding of the inner workings of the sun itself by allowing us to go deeper into the data and to propose more complex models to explain them. Additionally, the use of machine learning can help to automate the analysis of solar data, reducing the need for manual labor and increasing the efficiency of research in this field.Comment: 100 pages, 13 figures, 286 references, accepted for publication as a Living Review in Solar Physics (LRSP

    Affinity-Based Reinforcement Learning : A New Paradigm for Agent Interpretability

    Get PDF
    The steady increase in complexity of reinforcement learning (RL) algorithms is accompanied by a corresponding increase in opacity that obfuscates insights into their devised strategies. Methods in explainable artificial intelligence seek to mitigate this opacity by either creating transparent algorithms or extracting explanations post hoc. A third category exists that allows the developer to affect what agents learn: constrained RL has been used in safety-critical applications and prohibits agents from visiting certain states; preference-based RL agents have been used in robotics applications and learn state-action preferences instead of traditional reward functions. We propose a new affinity-based RL paradigm in which agents learn strategies that are partially decoupled from reward functions. Unlike entropy regularisation, we regularise the objective function with a distinct action distribution that represents a desired behaviour; we encourage the agent to act according to a prior while learning to maximise rewards. The result is an inherently interpretable agent that solves problems with an intrinsic affinity for certain actions. We demonstrate the utility of our method in a financial application: we learn continuous time-variant compositions of prototypical policies, each interpretable by its action affinities, that are globally interpretable according to customers’ financial personalities. Our method combines advantages from both constrained RL and preferencebased RL: it retains the reward function but generalises the policy to match a defined behaviour, thus avoiding problems such as reward shaping and hacking. Unlike Boolean task composition, our method is a fuzzy superposition of different prototypical strategies to arrive at a more complex, yet interpretable, strategy.publishedVersio

    Big data analytics for preventive medicine

    Get PDF
    © 2019, Springer-Verlag London Ltd., part of Springer Nature. Medical data is one of the most rewarding and yet most complicated data to analyze. How can healthcare providers use modern data analytics tools and technologies to analyze and create value from complex data? Data analytics, with its promise to efficiently discover valuable pattern by analyzing large amount of unstructured, heterogeneous, non-standard and incomplete healthcare data. It does not only forecast but also helps in decision making and is increasingly noticed as breakthrough in ongoing advancement with the goal is to improve the quality of patient care and reduces the healthcare cost. The aim of this study is to provide a comprehensive and structured overview of extensive research on the advancement of data analytics methods for disease prevention. This review first introduces disease prevention and its challenges followed by traditional prevention methodologies. We summarize state-of-the-art data analytics algorithms used for classification of disease, clustering (unusually high incidence of a particular disease), anomalies detection (detection of disease) and association as well as their respective advantages, drawbacks and guidelines for selection of specific model followed by discussion on recent development and successful application of disease prevention methods. The article concludes with open research challenges and recommendations

    Signal Based Data Mining For Feature Extraction And Fault Detection

    Get PDF
    Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2012Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2012Bu çalışmada, işaret işleme teknikleri ve veri madenciliği yöntemleri kullanılarak özellik çıkarımı ve hata tespiti için yeni bir yöntem geliştirilmiştir. Uygulama ana olarak iki aşamadan oluşmaktadır. Bunlar sırasıyla veri ön-işleme ve yapay sinir ağı aşamalarıdır. Veri ön-işleme aşamasında asenkron bir elektrik motorunun sağlam durumundaki titreşim işareti ham veri olarak kullanılmıştır. Bu aşamada işarete ilk olarak sürekli dalgacık dönüşümü ve Fourier dönüşümü (Güç spektrumu yoğunluğu - GSY) teknikleri uygulanmıştır. Frekans domeninde temsil edilen bu yeni alt-işaret, yapay sinir ağı aşamasında bir öz-ilişkili yapay sinir ağının eğitimi için kullanılmıştır. Eğitim aşamasından sonra benzer veri kümesi ağın geri çağrılmasında kullanılmış ve bu sayede bir arıza eşik değeri belirlenmiştir. Bu yapay sinir ağı, sağlam durumdaki titreşim işaretinin güç spektrumu yoğunluğu ile test edilmiş ve eşik değerini aşan değerler arıza olarak değerlendirilmiştir. Bu model, yapay sinir ağı test aşamasında elde edilen sonuçlarla karşılaştırılıp özellik çıkarımı ve potansiyel hata tespiti açısından yorumlanmıştır. Buna ek olarak yöntem titreşim işaretinin haricinde iki adet simulasyon verisinde de uygulanmıştır. Sonuçlara bakıldığında yöntemin kullanılan tüm veriler için potansiyel arızaları belirlediği gözlenmiştir. Son olarak, çalışmada verilen işlem ve tekniklerin bir kullanıcı tarafından gerçekleştirilebilmesi amacıyla bir bilgisayar uygulaması oluşturulmuştur.In this study, a new method for fault detection and feature extaction is introduced by using signal processing and data mining techniques. The application is consisted of two main phases: data pre-processing and artificial neural network. Vibration signal measurements from the healthy state of an electric motor is used as the raw data for the application. At the data pre-processing phase, continuous wavelet transform and Fourier transform techniques are applied to the vibration signal. At the artificial neural network phase, this sub-signal is given as an input to an auto-associative neural network for training. After the training, the neural network is recalled by the same type of data for identifying a threshold value. At the test phase, the network is tested by the Fourier transform of the signal. According to the comparison with the threshold values, the faulty states are identified. The results are concluded in terms of feature extraction and fault detection of potential defects. In addition to this, the method is applied on two different types of simulation data. The method is capable of identifying the potential defects and faults for all the data provided. Finally, a computer application is developed in order to perform the method.DoktoraPh

    Machine Learning Models for High-dimensional Biomedical Data

    Get PDF
    abstract: The recent technological advances enable the collection of various complex, heterogeneous and high-dimensional data in biomedical domains. The increasing availability of the high-dimensional biomedical data creates the needs of new machine learning models for effective data analysis and knowledge discovery. This dissertation introduces several unsupervised and supervised methods to help understand the data, discover the patterns and improve the decision making. All the proposed methods can generalize to other industrial fields. The first topic of this dissertation focuses on the data clustering. Data clustering is often the first step for analyzing a dataset without the label information. Clustering high-dimensional data with mixed categorical and numeric attributes remains a challenging, yet important task. A clustering algorithm based on tree ensembles, CRAFTER, is proposed to tackle this task in a scalable manner. The second part of this dissertation aims to develop data representation methods for genome sequencing data, a special type of high-dimensional data in the biomedical domain. The proposed data representation method, Bag-of-Segments, can summarize the key characteristics of the genome sequence into a small number of features with good interpretability. The third part of this dissertation introduces an end-to-end deep neural network model, GCRNN, for time series classification with emphasis on both the accuracy and the interpretation. GCRNN contains a convolutional network component to extract high-level features, and a recurrent network component to enhance the modeling of the temporal characteristics. A feed-forward fully connected network with the sparse group lasso regularization is used to generate the final classification and provide good interpretability. The last topic centers around the dimensionality reduction methods for time series data. A good dimensionality reduction method is important for the storage, decision making and pattern visualization for time series data. The CRNN autoencoder is proposed to not only achieve low reconstruction error, but also generate discriminative features. A variational version of this autoencoder has great potential for applications such as anomaly detection and process control.Dissertation/ThesisDoctoral Dissertation Industrial Engineering 201

    Neuroengineering of Clustering Algorithms

    Get PDF
    Cluster analysis can be broadly divided into multivariate data visualization, clustering algorithms, and cluster validation. This dissertation contributes neural network-based techniques to perform all three unsupervised learning tasks. Particularly, the first paper provides a comprehensive review on adaptive resonance theory (ART) models for engineering applications and provides context for the four subsequent papers. These papers are devoted to enhancements of ART-based clustering algorithms from (a) a practical perspective by exploiting the visual assessment of cluster tendency (VAT) sorting algorithm as a preprocessor for ART offline training, thus mitigating ordering effects; and (b) an engineering perspective by designing a family of multi-criteria ART models: dual vigilance fuzzy ART and distributed dual vigilance fuzzy ART (both of which are capable of detecting complex cluster structures), merge ART (aggregates partitions and lessens ordering effects in online learning), and cluster validity index vigilance in fuzzy ART (features a robust vigilance parameter selection and alleviates ordering effects in offline learning). The sixth paper consists of enhancements to data visualization using self-organizing maps (SOMs) by depicting in the reduced dimension and topology-preserving SOM grid information-theoretic similarity measures between neighboring neurons. This visualization\u27s parameters are estimated using samples selected via a single-linkage procedure, thereby generating heatmaps that portray more homogeneous within-cluster similarities and crisper between-cluster boundaries. The seventh paper presents incremental cluster validity indices (iCVIs) realized by (a) incorporating existing formulations of online computations for clusters\u27 descriptors, or (b) modifying an existing ART-based model and incrementally updating local density counts between prototypes. Moreover, this last paper provides the first comprehensive comparison of iCVIs in the computational intelligence literature --Abstract, page iv
    corecore