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ABSTRACT

Cluster analysis can be broadly divided into multivariate data visualization, cluster-

ing algorithms, and cluster validation. This dissertation contributes neural network-based

techniques to perform all three unsupervised learning tasks. Particularly, the first paper pro-

vides a comprehensive review on adaptive resonance theory (ART) models for engineering

applications and provides context for the four subsequent papers. These papers are devoted

to enhancements of ART-based clustering algorithms from (a) a practical perspective by

exploiting the visual assessment of cluster tendency (VAT) sorting algorithm as a pre-

processor for ART offline training, thus mitigating ordering effects; and (b) an engineering

perspective by designing a family of multi-criteria ART models: dual vigilance fuzzy ART

and distributed dual vigilance fuzzy ART (both of which are capable of detecting complex

cluster structures), merge ART (aggregates partitions and lessens ordering effects in online

learning), and cluster validity index vigilance in fuzzy ART (features a robust vigilance

parameter selection and alleviates ordering effects in offline learning). The sixth paper con-

sists of enhancements to data visualization using self-organizing maps (SOMs) by depicting

in the reduced dimension and topology-preserving SOM grid information-theoretic similar-

ity measures between neighboring neurons. This visualization’s parameters are estimated

using samples selected via a single-linkage procedure, thereby generating heatmaps that

portray more homogeneous within-cluster similarities and crisper between-cluster bound-

aries. The seventh paper presents incremental cluster validity indices (iCVIs) realized by (a)

incorporating existing formulations of online computations for clusters’ descriptors, or (b)

modifying an existing ART-based model and incrementally updating local density counts

between prototypes. Moreover, this last paper provides the first comprehensive comparison

of iCVIs in the computational intelligence literature.
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SECTION

1. INTRODUCTION

1.1. ADAPTIVE RESONANCE THEORY

Adaptive resonance theory (ART) (Grossberg, 1976a,b, 1980, 2013) is a learning

theory that gave rise to numerous neural network models for unsupervised, reinforcement,

and supervised learning. It addresses the stability-plasticity problem using a match-based

learning approach, thereby avoiding the catastrophic forgetting problem that afflicts error-

based models. A detailed discussion on ART models as well as their useful properties

and open problems in the field is provided in the chapter corresponding to Paper I. In

particular, elementary ART models follow similar design principles but differ with respect

to their category abstraction aspect, which limits the types of clusters that they can detect.

Moreover, ART belongs to the class of incremental learning methods, and thus the order

of input presentation represents an inherent challenge, especially in online learning mode.

Therefore, the chapters corresponding to Papers II through V address the arbitrarily-shaped

clusters and/or the order of input presentation problems in fuzzy ART-based models. To

accomplish this goal, a family of multi-criteria clustering is introduced in the form of dual

vigilance ART models, as well as frameworks that exploit visual assessment of cluster

tendency (VAT) to sort data samples prior to presentation or use a Merge ART module as a

post-processing step.
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1.2. SELF-ORGANIZING MAPS

Self-organizing maps (SOMs) (Kohonen, 1982, 2013) are neural network models

that are also extensively used across the machine learning modalities. In fact, it is a partic-

ularly useful tool for multivariate data visualization, since each SOM neuron is associated

with both a weight vector in the data space and a fixed position in a rigid lattice. Therefore,

it seeks to realize a topology-preserving dimensionality reduction mapping. The chapter

corresponding to Paper VI incorporates information-theoretic similarity measures (Araújo

et al., 2013a,b; Gokcay & Principe, 2002) and single-linkage-based k-nearest neighbors

(Gokcay & Principe, 2002) to provide an enhanced image-based visualization of a trained

SOM.

1.3. CLUSTER VALIDATION

Cluster validation (Xu & Wunsch II, 2009) is an important subtopic of cluster anal-

ysis that deals with the assessment of partitions identified by clustering algorithms, whose

hyper-parameter settings often consider insights provided by data visualization methods.

The quality of the data partitions are measured by cluster validity indices (CVIs), which

can be broadly divided into external and internal. While the former computes the degree

of agreement to a reference partition (i.e., it takes into account some external information),

the latter only uses the data partition itself in its computations. Recently, incremental

CVIs (iCVIs) have been developed to evaluate, in online mode, the partitions detected by

streaming clustering algorithms (Ibrahim et al., 2018a,b; Moshtaghi et al., 2018; Moshtaghi

et al., 2019). The chapter corresponding to Paper VII develops additional iCVIs and pro-

vides a comprehensive comparison of their behavior across several synthetic and real-world

benchmark data sets.
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1.4. RESEARCH CONTRIBUTIONS

This dissertation contributes an extensive review of ART systems and addresses the

three fundamental problems of cluster analysis (Bezdek, 2017; Xu & Wunsch II, 2009):

data visualization, clustering algorithms, and cluster validation. In particular, it contributes

novel neural-network-based clustering and visualization methods using ART and SOM,

respectively. It also presents incremental variants of popular cluster validity indices (CVIs)

and a thorough comparison study. The main contributions of this dissertation are listed in

detail in the following subsections. In observance of the advisory committee suggestions,

there are very minor differences (grammar, stylistic, and/or typographical error corrections)

between this dissertation and the papers upon which it is based.

1.4.1. Adaptive Resonance Theory Neural Network Models Review. The first

paper of this dissertation (Brito da Silva et al., 2019b) consists of a review of ART systems.

It encompasses brief descriptions of ART models used for unsupervised, supervised, and

reinforcement learning. It also discusses useful ART properties and current challenges.

Therefore, this paper serves a dual purpose in that (1) it allows the reader to become

familiar with ART and (2) it provides context to the original contributions described in the

following ART-based papers of this dissertation.

1.4.2. Clustering Algorithms.

1.4.2.1. The VAT and fuzzy ART framework (VAT + FA). The work in Paper

II (Brito da Silva & Wunsch II, 2018a) contributes a framework that uses the visual assess-

ment of cluster tendency (VAT) sorting property to pre-order the inputs presented to fuzzy

ART when training is performed in offline mode. The VAT + FA framework mitigates

ordering effects and is recommended for practical applications since experimental results

showed both superior performance andmodel compactness when compared to random input

presentation, where a statistical difference was observed.
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1.4.2.2. Dual vigilance fuzzy ART (DVFA). The work in Paper III (Brito da

Silva et al., 2019a) contributes a simple and effective fuzzy ART-based architecture for

retrieving arbitrarily-shaped clusters when these are expected in data by using dual vigilance

parameters and VAT pre-processing. The performance of DVFA was assessed through

experiments with benchmark data sets in random and VAT-ordered presentations, where

it was observed that DVFA was statistically comparable to a much more complex fuzzy

ART-based topology clustering approach.

1.4.2.3. Distributed dual vigilance fuzzy ART (DDVFA). The work in Paper

IV (Brito da Silva et al., 2020) contributes amodular fuzzyART-based architecture designed

for unsupervised learning. It consists of parallel local ART nodes nested in and controlled

by a global ART network. It employs dual vigilance parameters, builds multi-prototype

cluster representations, and can discover arbitrarily-shaped clusters. Furthermore, DDVFA

uses higher-order activation and match functions distributed according to hierarchical ag-

glomerative clustering algorithms that have the potential to generate more compact DDVFA

networks and extend the regions of successful vigilance parameter combinations. Coupled

with a compatible Merge ART module, DDVFA outperformed other current state-of-the-

art fuzzy ART-based methods in experiments carried out with a collection of 30 publicly

available benchmark data sets. Moreover, DDVFA was deemed statistically comparable to

non-ART clustering algorithms, while still retaining useful properties of the fuzzy ART

incremental learning system.

1.4.2.4. Cluster validity index vigilance test in fuzzy ART (CVIFA). The work

in Paper V (Brito da Silva & Wunsch II, 2017b) contributes a simple and robust fuzzy

ART-based architecture for offline unsupervised learning. The CVIFA is also a member of

the dual vigilance fuzzy ART family of architectures, in which the model is augmented by

a second vigilance based on cluster validity indices (CVIs) to incrementally guide the data

partitioning process: samples are accepted in a category depending on the relative CVI

improvement that would result from such action. Experiments with benchmark data sets
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and random sample presentation showed that CVIFA outperformed standard fuzzy ART,

was more robust to variations of the first (standard) vigilance parameter, and yielded more

compact models, therefore notably alleviating order dependency.

1.4.3. DataVisualization: Information-TheoreticVisualization forSOM(IT-vis).

The work in Paper VI (Brito da Silva & Wunsch II, 2018b) contributes an image-based vi-

sualization method for SOMs. The IT-vis combines Renyi’s quadratic cross-entropy (to

measure similarity between neighboring neurons) and a single-linkage-based selection of

data samples for parameter estimation, specifically for visualization purposes in a trained

SOM. This visualization is displayed using the unified distance matrix structure. By visual

assessment, the method provided a sharper delineation of cluster boundaries. Additionally,

it showed robust and efficient performance when performing clustering tasks.

1.4.4. Cluster Validation: Extensions and Comparative Study on Incremental

Cluster Validity Indices (iCVIs). The work in Paper VII (Brito da Silva et al., 2019c)

extends the family of iCVIs with seven incremental versions of well-known batch (offline)

cluster validity indices (CVIs). This was accomplished by incorporating a previously devel-

oped incremental computation of compactness to the following sum-of-squares-based CVIs:

Calinski-Harabasz, Pakhira-Bandyopadhyay-Maulik, WB, and Silhouette. Incremental ver-

sions of the information-theoretic-based CVIs of Negentropy Increment, Representative

Cross Information Potential, and Representative Cross Entropy were made viable by using

the classic incremental computation of mean, covariance matrix, and probability estimates.

Finally, the Conn_Index graph-based CVI was incrementally approximated via a frame-

work consisting of a modified fuzzy ARTMAP system for multi-prototype representation

of clusters and dynamic updates of the prototypes’ local-density-based similarity matrix.

Moreover, the behaviors of thirteen existing iCVIs (including PS and incremental versions

of Xie-Beni, Davies-Bouldin, and generalized Dunn’s indices 43 and 53) were analyzed in

correct, under- and over-partition experiments to compare their explainability power in data

stream applications with meaningful temporal information.
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ABSTRACT

This survey samples from the ever-growing family of adaptive resonance the-

ory (ART) neural network models used to perform the three primary machine learning

modalities, namely, unsupervised, supervised and reinforcement learning. It comprises a

representative list from classic to contemporary ART models, thereby painting a general

picture of the architectures developed by researchers over the past 30 years. The learning

dynamics of these ART models are briefly described, and their distinctive characteristics

such as code representation, long-termmemory, and corresponding geometric interpretation

are discussed. Useful engineering properties of ART (speed, configurability, explainability,

parallelization and hardware implementation) are examined along with current challenges.

Finally, a compilation of online software libraries is provided. It is expected that this

overview will be helpful to new and seasoned ART researchers.

Keywords: Adaptive Resonance Theory, Clustering, Classification, Regression, Reinforce-

ment Learning, Survey.



7

1. INTRODUCTION

Adaptive Resonance Theory (ART) (Grossberg, 1976a,b, 1980, 2013) is a biolog-

ically plausible theory of how a brain learns to consciously attend, learn and recognize

patterns in a constantly changing environment. The theory states that resonance regulates

learning in neural networks with feedback (recurrence). Thus, it is more than a neural net-

work architecture, or even a family of architectures. The book Introduction to Neural and

Cognitive Modeling (Levine, 2019) presents the broad scientific context of neural models,

including ART. From its foundations as a cognitive theory, ART has inspired a develop-

ing family of system architectures. Even the first ART model (Carpenter & Grossberg,

1987a) was immediately fielded as a key component of the Boeing parts design retrieval

system (Caudell et al., 1994, 1991). Network properties that are the basis for ART’s se-

lection in engineering applications include fast, stable, incremental learning with relatively

small memory requirements and straightforward algorithms (Wunsch II, 2009). In this

context, fast learning refers to the ability of the neurons’ weight vectors to converge to their

asymptotic values directly with each input sample presentation. These, and other properties,

make ART networks attractive to many researchers and practitioners, as they have been used

successfully in a variety of science and engineering applications.

ART addresses the problem of stability vs. plasticity (Carpenter & Grossberg,

1987a; Grossberg, 1980; Mermillod et al., 2013). Plasticity refers to the ability of a learning

algorithm to adapt and learn new patterns. In many learning systems plasticity can lead to

instability, a situation in which learning new knowledge leads to the loss or corruption of

previously learned knowledge, also known as catastrophic forgetting (McCloskey & Cohen,

1989; Ratcliff, 1990). Informally, stability in learning is referred to as the retention of

useful information. A more precise discussion of stability in this sense is in (Carpenter

& Grossberg, 1987a; Grossberg, 1976a,b, 1980; Moore, 1989). Note that this concept is
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distinct from the treatment of stability in the control theory literature. ART addresses this

stability-plasticity dilemma by introducing the ability to learn arbitrary input patterns in a

fast and stable self-organizing fashion without suffering from catastrophic forgetting.

Previous studies with similar objectives of surveying the ART neural network lit-

erature can be found in (Amorim et al., 2011; Du, 2010; Jain et al., 2000, 2014; Lerner

& Guterman, 2008; RamaKrishna et al., 2014). This survey expands on those works,

compiling a broad and informative sampling of ART neural network architectures from

the ever-growing machine learning literature. Over the past three decades, a myriad of

ART systems have been presented and studied, and it is impossible to be completely com-

prehensive. Thus, this survey captures a representative set of examples of various ART

architectures in the unsupervised, supervised and reinforcement learning domains, as well

as some models that cross these boundaries and/or combine multiple learning modalities.

The overarching goal of this survey is to provide researchers with an accessible coverage of

these models, focusing on their motivations, dynamics and interpretations for engineering

applications; and a discussion of open problems for consideration. It is not meant as a

comparative assessment of these models but rather as a roadmap to assess options.

The remainder of this paper is organized as follows. Section 2 presents a sampling of

unsupervised learning (UL) ARTmodels divided into elementary, topological, hierarchical,

biclustering and data fusion architectures. Section 3 discusses supervised learning (SL)

ART models for both classification and regression. Reinforcement learning (RL) ART

models are discussed in Section 4. Sections 5 and 6 discuss some of the useful properties

of ART architectures and open problems in this field, respectively. Section 7 provides links

to some repositories of ART neural network code, and Section 8 concludes the paper.
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2. ART MODELS FOR UNSUPERVISED LEARNING

2.1. ELEMENTARY ARCHITECTURES

At their core, the elementary ART models are predominantly used for unsupervised

learning applications. However, they also lay the foundation to build complex ART-based

systems capable of performing all three machine learning modalities (Secs. 2, 3, and

4). This section describes the main characteristics of ART family members in terms of

their code representation, long-term memory unit, system dynamics (which encompasses

activation, match, resonance and learning) and user-defined parameters. For clarity, Table 1

summarizes the common notation used in the following subsections.

An elementary ART neural network model (Figure 1) usually consists of two fully

connected layers as well as a system responsible for its decision-making capabilities:

• Feature representation field F1: this is the input layer. In feedforward mode, the

output y(F1) of this layer, or short-term memory (STM), simply propagates the input

samples x ∈ Rd to the F2 layer via the bottom-up long-term memory units (LTMs)

θbu. In feedback mode, the F1 layer works as a comparator, in which x and the F2’s

expectation (in the form of a top-down LTM θ td) are compared and the outcome y(F1)

is sent to the orienting subsystem. Hence, F1 is also known as the comparison layer.

• Category representation field F2: this layer yields the network output y(F2) (STM). It

is also known as the recognition or competitive layer. Neurons, prototypes, categories

and templates are used interchangeably when referring to the F2 nodes. The LTM

associated with a category j is θ j = {θ
bu
j , θ

td
j }, j = 1, ..., N . Note that not all

elementary ART models discussed in this survey have independent bottom-up and

top-downLTMparts; however, θ is always used to indicate the LTM (or set of adaptive

parameters) of a given category.
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Table 1. Unsupervised ART models notation.

Notation Description

x input sample (x ∈ X)
d original data dimensionality (x ∈ Rd)
F1 feature representation field
F2 category representation field
N number of categories
y(F1) F1 activity/output (STM)
y(F2) F2 activity/output (STM)
c a category
θ category parameters (LTM unit)
T activation function
M match function
J chosen category index (via WTA)
ρ vigilance parameter
V R vigilance region

• Orienting subsystem: this is a system that regulates both the search and learning

mechanisms by inhibiting or allowing categories to resonate.

Note that some ART models represent pre-processing procedures of the input sam-

ples by another layer preceding F1, namely the input field F0. In this survey, it is assumed

that the inputs to an ART network have already gone through the required transformations,

and thus this layer is omitted from the discussion.

ART models are competitive, self-organizing, dynamic and modular networks.

When a sample x is presented, a winner-takes-all (WTA) competition takes place over

its categories at the output layer F2. Then, the neuron J that optimizes that model’s acti-

vation (or choice) function T across the nodes is chosen, e.g., the neuron that maximizes

some similarity measure to the presented sample

J = arg max
j
(Tj). (1)
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Figure 1. Elementary ART model underlying various WTA designs. The orienting sub-
system uses the vigilance threshold to regulate whether ART can go into resonance or if it
must reset.

A category represents a hypothesis. Therefore, a hypothesis test cycle, commonly

referred to as a vigilance test, is performed by the orienting subsystem to determine the

adequacy of the selected category, i.e., the winner categorymust satisfy amatch criterion (or

several match criteria). If the confidence on such a hypothesis is larger than the minimum

threshold (namely, the vigilance parameter ρ), the neural network enters in a resonance

state, and learning (i.e., adaptation of the long-term memory (LTM) units) is allowed.

Otherwise, category J is inhibited, the next highest ranked category is selected, and the

search resumes. If no category satisfies the required resonance condition(s), then a new one

is created to encode the presented input sample. This ability to reject a hypothesis/category

via a two-way similarity measure, i.e. permissive clustering (Seiffertt & Wunsch II, 2010),

makes ART stand out from other methods, such as k-means (MacQueen, 1967).
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A vigilance region (V R) for a given network category j can be defined in the data

space as

V Rj = {x : Mj(x) satisfies the resonance constraint}, (2)

where Mj is the match function, which yields the confidence on hypothesis j. In other

words, it is the region in the input space containing the set of all points such that the

resonance criteria is met. Therefore satisfying (or not) the vigilance test for sample x can

be modeled using

1V Rj (x) =


1, if x ∈ V Rj

0, otherwise
, (3)

where 1{·}(·) is the indicator function.

The resonance constraint in Eq. (2) depends on the vigilance parameter ρ, which

regulates the granularity of the network as ART maps samples to categories. Particularly,

lower vigilance encourages generalization (Vigdor & Lerner, 2007). Selecting the vigilance

parameter is a difficult task in clustering problems. Concretely, the problem of choosing

the number of clusters is traded for the problem of choosing the vigilance value.

Distinct ART models feature specific LTM units; activation and match functions;

vigilance criteria; and learning laws. Nonetheless, Algorithm 1 summarizes the general

dynamics of an elementary ART model.

2.1.1. ART 1. The ART 1 neural network (Carpenter & Grossberg, 1987a) and

its engineering applications rely on set theoretic operators to cluster binary input samples

using a similarity measure based on Hamming distance (Serrano-Gotarredona et al., 1998).

LTM. ART 1 categories are parameterized with bottom-up and top-down adaptive

weight vectors θ = {wbu, wtd}.
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Algorithm 1: Elementary ART algorithm.

Input : x, {α, β, γ, ρ, λ} (parameters).
Output : y(F2).

/* Notation */
C: set of ART nodes.
Λ: subset of highly active nodes (Λ ⊆ C).
θ: LTM unit.
α: activation function parameter(s).
β: learning function parameter(s).
γ: match function parameter(s).
ρ: vigilance parameter(s).
λ: initialization parameter(s).
fT (·): activation function.
fM (·): match function.
fL(·): learning function.
fV (·): vigilance function (e.g., fV =

∧
k
1k
VRJ
(x)).

fN (·): initialization function.
k: number of resonance constraints.
/* Training */

1 Present input sample: x ∈ X .
2 Compute activation function(s): Tj = fT (x, θ j, α), ∀ j ∈ C.
3 Perform WTA competition:

J = arg max
j∈Λ

(Tj).

4 Compute match function(s): Mk
J = f kM (x, θJ, γ), ∀k, k ≥ 1.

5 Perform vigilance test(s): VJ = fV (11
VRJ
(x), ...,1k

VRJ
(x)).

6 if VJ is TRUE then
7 Update category J: θnewJ = fL(x, θoldJ , β).
8 else
9 Deactivate category J: Λ← Λ − {J}.
10 if Λ , {∅} then
11 Go to step 3.
12 else
13 Set J = |C| + 1.
14 Create new category: C ← C ∪ {J}.
15 Initialize new category: θnewJ = fN (x, λ).

end
end

16 Set output: y(F2)
j =

{
1, if j = J
0, otherwise

.

17 Go to step 1.



14

Activation.When a sample x is presented to ART 1, the activation function of each

category j is computed as

Tj = ‖x ∩ wbu
j ‖1 � 〈w

bu
j , x〉 =

d∑
i=1

xiw
bu
ji , (4)

where x is a binary input, ∩ is a component-wise binary logic AND, wbu is the bottom-up

weight vector, ‖ · ‖1 is the L1 norm, and 〈·, ·〉 is an inner product.

When a node J is selected via the WTA competition, the F2 activity (short-term

memory - STM) becomes

y
(F2)
j =


1, if j = J

0, otherwise
. (5)

Moreover, the F1 activity (short-term memory - STM) is defined as

y(F1) =


x, if F2 is inactive

x ∩ wtd
J , otherwise

. (6)

Note that the WTA competition always includes one uncommitted node (i.e., a node

that has not undergone adaptation, as opposed to committed nodes), which is guaranteed to

satisfy the vigilance criterion following Eq. (7).

Match and resonance. The highest activated node J is tested for resonance using

MJ =
‖y(F1)‖1
‖x‖1

=
‖x ∩ wtd

J ‖1

‖x‖1
, (7)

where V RJ = {x : MJ(x) ≥ ρ} and ρ ∈ [0, 1]. The vigilance criterion checks if 1V RJ (x) is

true, and, in the affirmative case, the category is allowed to learn.

Learning.When the system enters a resonant state, learning ensues as

wtd
J (new) = x ∩ wtd

J (old), (8)
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wbu
J (new) =

L
L − 1 + ‖wtd

J (new)‖1
wtd

J (new), (9)

where L > 1 is a user-defined parameter (larger values of L bias the selection of uncommitted

nodes over committed ones). Note that the bottom-upweight vectors are normalized versions

of their top-down counterparts. If an uncommitted node is selected to learn sample x, then

another one is created and initialized as

wtd = ®1, (10)

wbu =
L

L − 1 + d
wtd . (11)

ART 1 features the following useful properties discussed in (Serrano-Gotarredona

et al., 1998): “vigilance or variable coarseness, self-scaling, self-stabilization in a small

number of iterations, online learning, capturing rare events, direct access to familiar input

patterns, direct access to subset and superset patterns, biasing the network to form new

categories.” ART 1 properties are also discussed in (Georgiopoulos et al., 1990, 1991,

1992; Heileman et al., 1994).

2.1.2. ART 2. ART 2 (Carpenter & Grossberg, 1987b) and 2-A (Carpenter et al.,

1991b) represent the initial effort toward extending ART 1 (Sec. 2.1.1) applications to real-

valued data. ART 2, which is based on the Euclidean (L2) metric, was largely supplanted

by fuzzy ART (Sec. 2.2), which is based on the city-block (L1) metric. The L1 norm

renders fuzzy ART more computationally tractable and biologically plausible. This system

has become one of the most widely used and referenced foundational building blocks for

ART networks. This was followed by other architectures such as the ART 3 (Carpenter

& Grossberg, 1990) hierarchical architecture, exact ART (Raijmakers & Molenaar, 1997)

(which is a complete ART network based on ART 2) and correlation-based ART (Yavaş

& Alpaslan, 2009) along with its hierarchical variant (Yavaş & Alpaslan, 2012) which use
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correlation analysis methods for category matching. Particularly, the ART 2-A (Carpenter

et al., 1991b) architecture was developed following ART 2 with the same properties and a

much faster speed.

LTM.The internal category representation in ART 2-A consists of an adaptive scaled

weight vector θ = {w}.

Activation. The activation function of each category j in response to a normalized

input sample x is computed as

Tj =


α

∑
i xi, if j is uncommitted

xTw j, if j is committed
, (12)

where α ≤ 1√
d
is the choice parameter.

Match and resonance. The category with the highest activation value is chosen via

WTA selection. Its match function is computed as

MJ = TJ, (13)

and the vigilance test is performed to determine whether resonance occurs using the fol-

lowing: MJ ≥ ρ, where 0 ≤ ρ ≤ 1 is the vigilance threshold.

If the winning category passes the vigilance test, resonance occurs, and the category

is allowed to learn this input pattern. If the category fails the vigilance test, a reset signal is

triggered for this category, and the category with the next highest activation is selected for

the same process.
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Learning.When resonance occurs, the weights of the winning category are updated

as

wJ(new) =


x, if J is uncommitted

βx + (1 − β)wJ(old), if J is committed
, (14)

where 0 < β ≤ 1 is the learning rate.

2.1.3. Fuzzy ART. Fuzzy ART (Carpenter et al., 1991c) is arguably the most

widely used ART model. It extends the capabilities of ART 1 (Sec. 2.1.1) to process

real-valued data by incorporating fuzzy set theoretic operators (Zadeh, 1965). Typically,

samples are pre-processed by applying complement coding (Carpenter et al., 1992, 1991a).

This transformation doubles the original input dimension while imposing a constant norm

(x ← [x, ®1 − x]):

‖x‖1 =
2d∑
i=1

xi =

d∑
i=1

xi +

d∑
i=1
(1 − xi) = d. (15)

This process encodes the degree of presence and absence of each data feature. The

augmented input vector prevents a category proliferation type due to weight erosion (Car-

penter, 1997; Moore, 1989).

LTM. Each category LTM unit is a weight vector θ = {w}. If complement coding is

employed, then w = [u, vc], and the geometric interpretation of a category is a hyperrect-

angle (or hyperbox), in the data space, with the lower left corner u and upper right corner

vc representing feature ranges (minimum and maximum data statistics).

Activation. The activation function of a category j is defined as (Weber law)

Tj =
‖x ∧ w j ‖1

α + ‖w j ‖1
, (16)

where ∧ is a component-wise fuzzy AND/intersection (minimum operation), and α > 0

is the choice parameter. The latter is related to the system’s complexity (it can be seen as

a regularization parameter that penalizes large weights), and its role has been investigated
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in (Georgiopoulos et al., 1996). The activation function measures the fuzzy subsethood

degree (Kosko, 1986) of w j in x (Carpenter et al., 1991c) and is biased towards smaller

categories.

Note that the F1 activity is defined as

y(F1) =


x, if F2 is inactive

x ∧ wJ, otherwise
, (17)

and when the winner node J is selected, the F2 activity follows Eq. (5).

Match and resonance. The hypothesis testing cycle is conducted using the following

match function

MJ =
‖y(F1)‖1
‖x‖1

=
‖x ∧ wJ ‖1
‖x‖1

, (18)

where V RJ = {x : MJ(x) ≥ ρ} and ρ ∈ [0, 1] is the vigilance parameter. Fuzzy ART

VRs are hyperoctagons as discussed in (Anagnostopoulos & Georgiopoulos, 2002; Meng

et al., 2016; Verzi et al., 2006). The vigilance criterion checks if 1V RJ (x) is true, and, in

the affirmative case, the category is allowed to learn. An uncommitted category will always

satisfy thematch criterion. Like the activation function (Eq. (16)), the match function is also

a measure of fuzzy subsethood degree (Kosko, 1986); particularly of x in wJ (Carpenter

et al., 1991c). The hypothesis testing cycle ensures that if learning takes place, the updated

category will not exceed the maximum allowed size. Specifically, category j’s size is

measured as

Rj = ‖v j − u j ‖1 =

d∑
i=1

[
(1 − w j,d+i) − w j,i

]
= d − ‖w j ‖1, (19)

where, considering the complement coded inputs, −d ≤ Rj ≤ d (for an uncommitted cat-

egory: Rj = −d). Particularly, the match function measures the size of the category if it

is allowed to learn the presented sample. Thus, the vigilance criterion imposes an upper
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bound to the category size defined by the vigilance parameter (ρ)

RJ ⊕ x = d − ‖x ∧ w j ‖1 ≤ d(1 − ρ), (20)

where RJ ⊕ x represents the smallest hyperrectangle capable of enclosing both RJ and the

presented sample x.

Learning. If the vigilance test fails, then the winner category is inhibited, and the

search continues until another one is found or created. When the vigilance criterion is met

by category J, it adapts using

wJ(new) = (1 − β)wJ(old) + β(x ∧ wJ(old)), (21)

where β ∈ (0, 1] is the learning parameter (setting β = 1 is known as fast learning mode).

If an uncommitted node is recruited to learn sample x, then another one is created and

initialized as w = ®1. According to Eq. (21), the norm of a weight vector is monotonically

non-increasing during learning since a category’s hyperrectangle can only expand (Vigdor

& Lerner, 2007). Fuzzy ART learning properties are discussed in (Huang et al., 1994,

1995).

2.1.4. FuzzyMin-Max. The fuzzy min-max neural network (Simpson, 1993) is an

unsupervised learning network that uses fuzzy set theory to build clusters using a hyperbox

representation discovered via the fuzzy min-max learning algorithm. Each category in

fuzzy min-max is represented explicitly as a hyperbox, with the minimum and maximum

points of the hyperbox as well as a value for the membership function that measures the

degree to which each input pattern falls within this category. The category hyperboxes are

adjusted to fit each input sample using a contraction and expansion algorithm that expands

the hyperbox of the winning category to fit the input sample and then contracts any other

hyperboxes that are found to overlap with the new hyperbox boundaries.
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2.1.5. Distributed ART. The distributed ART (Carpenter, 1996a,b, 1997) features

distributed code representation for activation, match and learning processes to improve

noise robustness and memory compression in a system that features fast and stable learn-

ing. Particularly, in WTA mode, distributed ART reduces in functionality to fuzzy ART

(Sec. 2.2).

LTM. The distributed ART LTM units consist of bottom-up (τbu) and top-down

(τtd) adaptive thresholds (θ = {τbu, τtd}), which are initialized as small random values and

®0, respectively. When employing complement coding, the geometric interpretation of a

category j is a family of hyperrectangles nested by the activation levels y(F2)
j ∈ [0, 1]. The

edges of hyperrectangle Rj(y
(F2)
j ) are defined, for each input dimension i, as the bounded

interval
[
[y
(F2)
j − τbu

j,i ]
+, 1 − [y(F2)

j − τbu
j,d+i]

+
]
—where [ξ]+ = max(0, ξ) is a rectifier opera-

tor. Note that the Rj size decreases as y(F2)
j increases. Particularly, setting y

(F2)
j = 1 yields

the smallest hyperrectangle R(1), and the substitution w j = (®1 − τbu) corresponds to fuzzy

ART’s LTM.

Activation. The activation function can be defined as a choice-by-difference (Car-

penter & Gjaja, 1994) (Tj ∈ [0, d]) variant

Tj = ‖[x ∧ (®1 − τbu
j ) − ∆ j]

+‖1 + (1 − α)‖[τbu
j − δ j]

+‖1 , 0 < α < 1, (22)

or a Weber law (Carpenter & Grossberg, 1987a) (Tj ∈ [0, 1]) variant

Tj =
‖[x ∧ (®1 − τbu

j ) − ∆ j]
+‖1

α + d − ‖[τbu
j − δ j]

+‖1
, α > 0, (23)

where [ξ]+ is a component-wise rectifier operator (i.e., [ξk]
+ = max(0, ξk) for each compo-

nent k of vector ξ), and∆ and δ are themedium-termmemory (MTM) depletion parameters.

After the nodes’ activations are computed, the F2 activity can be obtained by employing the
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increased-gradient content-addressable-memory (IG CAM) rule:

y
(F2)
j =


(Tj)

p∑
λ∈Λ
(Tλ)p

, if j ∈ Λ

0, otherwise

, (24)

such that ‖y(F2)‖1 = 1 and p > 0. The subset Λ consists of the nodes such that TJ ≥ Tj

for J ∈ Λ and j < Λ. Some examples are the Q-max rule (see Sec. 3.1.10) or greater than

average activations (i.e., Λ = { j : Tj ≥ Tavg}, Tavg = 1/N
∑N

j=1 Tj). Note that the power

law f (ζ) = ζ p converges to WTA when p→ +∞.

Match and resonance. The distributed ART’s match function is defined as

M =
‖y(F1)‖1
‖x‖1

, (25)

where the F1 activity is given by

y(F1) = x ∧ σ, (26)

and

σi =

N∑
j=1
[y
(F2)
j − τtd

ji ]
+ , σi ∈ [0, 1]. (27)

Resonance occurs if 1V R(x) = 1, where V R = {x : M(x) ≥ ρ} and ρ ∈ [0, 1].

Otherwise, the MTM depletion parameters are updated as

∆ ji(new) = ∆ ji(old) ∨ (xi ∧ [y j − τ
bu
ji ]
+), (28)

δ ji(new) = δ ji(old) ∨ (y j ∧ τ
bu
ji ), (29)

and the distributed dynamics continue by recomputing Eqs. (24) through (25). Note that

the depletion parameters ∆ and δ are (re)set to ®0 at the beginning of every input sample

presentation.
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Learning. When the system enters a resonant state, distributed learning takes place

according to the nodes’ activation levels. Specifically, the top-down adaptive thresholds are

updated using the distributed outstar learning law (Carpenter, 1994):

τtd
ji (new) = τtd

ji (old) + β
[σi − xi]

+

σi

[
y
(F2)
j − τtd

ji (old)
]+
, (30)

whereas the bottom-up adaptive thresholds are updated using the distributed instar learning

law (Carpenter, 1997):

τbu
ji (new) = τbu

ji (old) + β
[
y
(F2)
j − τbu

ji (old) − xi

]+
, (31)

where β ∈ [0, 1] is the learning rate. The adaptive thresholds’ components, ∈ [0, 1], start

near zero and monotonically increase during the learning process. After learning takes

place, the depletion parameters ∆ and δ are both reset to their initial values (®0). In WTA

mode, the distributed instar and outstar learning laws become the instar (Grossberg, 1972)

and outstar (Grossberg, 1968, 1969) laws, respectively, and thus distributed ART reduces

to fuzzy ART (Sec. 2.2).

2.1.6. GaussianART. GaussianART (Williamson, 1996) was developed to reduce

category proliferation in noisy environments and to provide a more efficient category LTM

unit.

LTM. Each category j is a Gaussian distribution composed by mean µ j ∈ R
d ,

standard deviation σ j ∈ R
d and instance counting n j (i.e., the number of samples encoded

by category j used to compute its a priori probability). Therefore, a category is geometrically

interpreted as a hyperellipse in the data space.

Activation. Gaussian ART is rooted in Bayes’ decision theory, and as such its

activation function is defined as:

Tj = p̂(c j |x) =
p̂(x |c j)p̂(c j)

p̂(x)
, (32)
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where the likelihood is estimated as

p̂(x |c j) =

exp
[
−

1
2

(
µ j − x

)T
Σ−1

j
(
µ j − x

) ]
√
(2π)d det(Σ j)

, (33)

and the prior as

p̂(c j) =
n j

N∑
i=1

ni

. (34)

Note that the evidence p̂(x) is neglected in the computations (since it is equal

for all categories c j), and feature independence is assumed, i.e., Σ j is a diagonal matrix

(Σ j = diag(σ2
j,1, ..., σ

2
j,d)). Therefore, since it assumes uncorrelated features, it cannot

capture covarying data. A category J is then chosen following the maximum a posteriori

(MAP) criterion:

J = arg max
j
(Tj) = arg max

j

[
p̂(c j |x)

]
. (35)

Match and resonance. The match function is defined as a normalized version of

p̂(x |c j):

MJ = exp
[
−

1
2
(µJ − x)T Σ−1

J (µJ − x)

]
, (36)

which is then compared to the vigilance parameter threshold ρ ∈ (0, 1]. Note that in the

original Gaussian ART paper (Williamson, 1996), a log discriminant is used to reduce the

computational burden in both the activation (Eq. (32)) and match (Eq. (36)) functions.

Learning. When the vigilance criterion is met, learning ensues for the resonant

category J as

nJ(new) = nJ(old) + 1, (37)

µ̂J(new) =
(
1 −

1
nJ(new)

)
µ̂J(old) +

1
nJ(new)

x, (38)

σ2
J,i(new) =

(
1 −

1
nJ(new)

)
σ2

J,i(old) +
1

nJ(new)
(
µJ,i(new) − xi

)2
. (39)
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If a new category is created, then it is initialized with nN+1 = 1, µN+1 = x, and

ΣN+1 = σ2
init I (isotropic). The initial standard deviation σinit in Gaussian ART directly

affects the number of categories created.

2.1.7. HypersphereART. The hypersphereART (Anagnostopoulos&Georgiopou-

los, 2000) architecture was designed as a successor for fuzzy ART (Section 2.2) that inherits

its advantageous qualities while utilizing fewer categories and having a more efficient in-

ternal knowledge representation.

LTM. Each category is represented as θ = {R,m}, where m j ∈ R
d and Rj ∈ R are

the centroid and radius, respectively. Since it does not require complement coding of input

samples, it uses d + 1 memory per category, which is a smaller memory requirement than

fuzzy ART, which uses 2d memory to represent the hyperrectangular categories. Naturally,

categories are hyperspheres in the data space.

Activation. The activation function Tj for each F2 category j is calculated as:

Tj =


R̄ −max(Rj, | |x − m j | |2)

R̄ − Rj + α
, if j is committed

R̄
2R̄ + α

, if j is uncommitted
, (40)

where | | · | |2 is the L2 norm, α ∈ (0,+∞) is the choice parameter and R̄ ∈ [Rmax,+∞) is

the radial extend parameter which controls the maximum possible category size achieved

during training. The lower-bound Rmax is defined as:

Rmax =
1
2

max
p,q
| |xp − xq | |2. (41)

Match and resonance. The winning category J is selected using WTA competition,

and the match function is computed as
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MJ =


1 −

max(RJ, | |x − mJ | |2)

R̄
, if J is committed

1, if J is uncommitted
, (42)

where the vigilance criterion is MJ ≥ ρ (ρ ∈ [0, 1] is the vigilance parameter).

Learning. If the winning category satisfies the vigilance test, then resonance occurs,

and the radius RJ and centroid mJ of the winning node are updated as follows:

Rnew
J = Rold

J +
β

2

[
max

(
Rold

J , | |x − mold
J | |2

)
− Rold

J

]
, (43)

mnew
J = mold

J +
β

2

(
x − mold

J

) [
1 −

min
(
Rold

J , | |x − mold
J | |2

)
| |x − mold

J | |2

]
, (44)

where β ∈ (0, 1] is the learning rate parameter.

If the winning category fails the vigilance test, it is reset, and the process is repeated.

Eventually, either a category succeeds or a new one is created with its radius and centroid

initialized as RN+1 = 0 and mN+1 = x, respectively.

2.1.8. EllipsoidART. EllipsoidART (Anagnostopoulos&Georgiopoulos, 2001a,b)

is a generalization of hypersphere ART that uses hyperellipses instead of hyperspheres to

represent the categories. These require 2d + 1 memory and are subjected to two distinct

constraints during training: (1) maintain a constant ratio between the lengths of their major

and minor axes, and (2) maintain a fixed direction of their major axis once it is set. These

restrictions, however, can pose some limitations to the categories discovered by ellipsoid

ART depending on the order in which the input samples are presented.

LTM.A category j in ellipsoid ART is described by its parameters θ j = {m j, d j, Rj},

where m j is the centroid of the category’s hyperellipse, d j is the direction of the category’s

major axis and Rj is the category’s radius (or half the length of its major axis).
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Activation. The distance between an input sample and a category j is calculated

using Eq. (45), where | | · | |2 is the L2 norm, and µ ∈ (0, 1] is a user-specified parameter

that defines the ratio between a category’s major and minor axes. The activation function

Tj for each category j is then calculated using Eq. (46), where α ∈ (0,+∞) is the choice

parameter, R̄ ≥ 1
µ max

p,q
‖xp − xq‖2 and ω ≥ 1 are user-specified parameters.

Match and resonance. The match function of the winning category J selected via

WTA is given by Eq. (47). Resonance occurs if MJ ≥ ρ, where ρ ∈ [0, 1] is the vigilance

parameter.

dis(x,m j) =


1
µ

√
| |x − m j | |

2
2 −

(
1 − µ2) [

dT
j

(
x − m j

) ]2
if d j , ®0

| |x − m j | |2 if d j = ®0
, (45)

Tj =


R̄ − Rj −max

{
Rj, dis(x,m j)

}
R̄ − 2Rj + α

, if j is committed

R̄
2R̄ω + α

, if j is uncommitted
, (46)

MJ =


1 −

RJ +max {RJ, dis(x,mJ)}

R̄
, if J is committed

1, if J is uncommitted
. (47)

Learning. If the winning category J satisfies the vigilance test, then it is updated as

follows:

Rnew
J = Rold

J +
β

2
[
max

{
Rold

J , dis(x,mold
J )

}
− Rold

J

]
, (48)

mnew
J = mold

J +
β

2

(
x − mold

J

) [
1 −

min
{
Rold

J , dis(x,mold
J )

}
dis(x,mold

J )

]
, (49)

d j =
x(2) − mJ

| |x(2) − mJ | |2
, (50)
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where β ∈ (0, 1] is the learning rate, and x(2) represents the second input sample to be

encoded by this category. When a new category is created, its major axis direction dJ is

initially set to the zero vector ®0, and then Eq. (50) is used to update it when the second

pattern is committed to the category. The hyperellipse’s major axis direction stays fixed

after that.

If the winning category fails the vigilance check, then it is inhibited, and the

entire process is repeated until a winner category satisfies the resonance criterion. If no

existing category succeeds, then a new category is created with its LTM unit initialized with

RN+1 = 0, mN+1 = x, and dN+1 = ®0.

2.1.9. Quadratic neuron ART. The quadratic neuron ART model (Su & Liu,

2002, 2005) was developed in the context of a multi-prototype-based clustering framework

that integrates dynamic prototype generation and hierarchical agglomerative clustering to

retrieve arbitrarily shaped data structures.

LTM. A category j is a quadratic neuron (DeClaris & Su, 1991, 1992; Su et al.,

1997; Su & Liu, 2001) parameterized by θ j = {s j,Wj, b j}, where s j , Wj = [w
( j)
k,i ]d×d , and

b j are the adaptable LTMs. Particularly, these neurons are hyperellipsoid structures in the

multidimensional data space.

Activation. The activation of a quadratic neuron j is given by

Tj = exp
(
−s2

j ‖ z j − b j ‖
2
2

)
, (51)

where z j is a linear transformation of the input x

z j = Wj x. (52)
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Match and resonance.After the winning node J is selected usingWTA competition,

the system will enter a resonant state if node J’s response is larger than or equal to the

vigilance parameter ρ, i.e., if MJ ≥ ρ, where the match function is equal to the activation

function (Eq. (51)).

Learning. If the vigilance criterion is satisfied for node J, then its parameters

p ∈ {s j,Wj, b j} are adapted using gradient ascent

p(new) = p(old) + η
∂TJ

∂ p(old)
, (53)

where η is the learning rate. Specifically,

bJ,i(new) = bJ,i(old) + ηb
[
2s2

JTJ
(
zJ,i − bJ,i

) ]
, (54)

w
(J)
k,i (new) = w

(J)
k,i (old) + ηw

[
−2s2

JTJ
(
zJ,k − bJ,k

)
xi
]
, (55)

sJ(new) = sJ(old) + ηs

(
−2sJTJ ‖ zJ − bJ ‖

2
2

)
, (56)

where ηb, ηw and ηs are the learning rates. Otherwise, a new category is created and

initialized with bN+1 = x, WN+1 = Id×d , and sN+1 = sinit , where sinit ∈ R is a user-defined

parameter.

2.1.10. Bayesian ART. LTM. Bayesian ART (Vigdor & Lerner, 2007) is another

architecture using multidimensional Gaussian distributions to parameterize the categories:

θ = {N(µ,Σ), p}, where µ, Σ and p are the mean, covariance matrix and prior probability,

respectively. The latter parameter is computed using the number of samples n learned by a

category.
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Activation. Like Gaussian ART (Sec. 2.1.6), Bayesian ART also integrates Bayes

decision theory in its framework. Thus, its activation function is given by the posterior

probability of category j:

Tj = p̂(c j |x) =
p̂(x |c j)p̂(c j)

N∑
l=1

p̂(x |cl)p̂(cl)

, (57)

where p̂(x |c j) is the same as Eq. (33) but uses a full covariance matrix (instead of diagonal),

and p̂(c j) is the estimated prior probability of category j as in Eq. (34).

Match and resonance.After the WTA competition is performed and the winner cat-

egory J is selected using the maximum a posteriori probability (MAP) criterion (Eq. (35)),

the match function is computed as

MJ = det(ΣJ), (58)

such that the vigilance criterion is designed to limit category J’s hypervolume. The vigilance

test is defined as MJ ≤ ρ, where ρ represents the maximum allowed hypervolume.

Learning. If the selected category resonates (i.e., the match criterion is satisfied),

then learning occurs. The sample count and means are updated using Eq. (37) and Eq. (38),

respectively. The covariance matrix is updated as:

Σ̂J(new) =
(

nJ(old)
nJ(new)

)
Σ̂J(old)

+
1

nJ(new)
(x − µ̂J(new))(x − µ̂J(new))T � I,

(59)

which corresponds to the sequential maximum-likelihood estimation of parameters for a

multidimensional Gaussian distribution (Vigdor & Lerner, 2007). The Hadamard product

� is used when a diagonal covariance matrix is desired. Otherwise, a new category is
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created with nN+1 = 1, µN+1 = x, and ΣN+1 = Σinit . Naturally, the initial covariance matrix

should satisfy the vigilance constraint (i.e., Σinit = σ
2
init I , where σ

2
init � ρ1/d). In this ART

model, categories can grow and shrink.

Many studies further developed Bayesian ART. For instance, to reduce the original

model’s computational cost and noise sensitivity, as well as to circumvent the instability

issues associated with estimating covariance matrices with small sample sizes in high di-

mensional spaces, kernel Bayesian ART (Masuyama et al., 2018a) uses the kernel Bayes’

rule (Fukumizu et al., 2013) and the correntropy-induced metric (Liu et al., 2007; Santa-

maria et al., 2006) for the activation and match functions, respectively. Topological kernel

Bayesian ART (Masuyama et al., 2019) further extends the latter ART model by incorpo-

rating topological learning based on growing neural gas (Fritzke, 1995) to reduce input

order sensitivity (see Sec. 6.1). As another example, to realize an associative memory,

the Bayesian ART variant in (Chin et al., 2016) employs a multiple channel version of the

adaptive resonance associative map model (Tan, 1995) (see Sec. 3.1.7).

2.1.11. GrammaticalART. TheGrammaticalART (GramART) architecture (Meuth,

2009) represents a specialized version of ART designed to work with variable-length input

patterns which are used to encode grammatical structure. It builds templates while adhering

to a Backus-Naur form of grammatical structure (Knuth, 1964).

LTM. To allow for comparisons between variable-length input patterns, GramART

uses a generalized tree representation to encode its internal categories. Each node in

a category’s tree contains an array representing the distribution of the different possible

grammatical symbols at that node.

Activation. The activation function for a category j is defined as a parallel to fuzzy

ART’s activation function (Sec. 2.2), but GramART defines its own operator for calculating

the intersection between a category and an input pattern. A tree in GramART is defined as

an ordered pair (V, R) where V is a set of nodes (vertices) and R is a set of binary relations



31

that describe the structure of the tree. For nodes v1 and v2:

R(v1, v2) =


0, if v2 is not a successor of v1

> 0, if v2 is a successor of v1

, (60)

The activation of a category j in GramART is given by

Tj =
|x ∩ w j |

‖w j ‖
, (61)

where the intersection operator |x ∩ w j |, referred to in GramART as the trace of x in w j , is

defined as:

|x ∩ w j | =

r∑
i=0

w j(i, xi), (62)

and where w j(i, xi) represents the value of node i in the template w j corresponding to the

same symbol in the input pattern x. The tree norm operator ‖w j ‖ is defined as the number

of nodes in the tree.

Match and resonance.The categorywith the highest activation value is chosen using

WTA selection, and the following vigilance criterion is checked to determine whether the

input pattern resonates with this category:

MJ =
|x ∩ wJ |

‖x‖
> ρ. (63)

If this vigilance criterion is satisfied, resonance occurs and the category is allowed to learn

this input pattern. Otherwise, it is reset, and the category with the next best activation is

checked.

Learning.When resonance occurs, the weight of the winning category J is updated

using the following learning rule for each node i in the template:

wJ,i(new) =
wJ,i(old)UJ,i + δJ

UJ,i + 1
, (64)
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where

δ j =


1, if xi = j

0, otherwise
, (65)

and UJ,i is the number of prior updates to node i in this category.

The weights are updated recursively down the grammar tree, and they reflect the

probability of a tree symbol occurring in the node representing this particular category.

2.1.12. Validity Index-Based Vigilance Fuzzy ART. The validity index-based

vigilance fuzzy ART (CVIFA) (Brito da Silva &Wunsch II, 2017) endows fuzzy ART with

a second vigilance criterion based on cluster validity indices (Xu &Wunsch II, 2009). The

usage of this immediate reinforcement signal alleviates input order dependency and allows

for a more a robust hyperparameterization.

LTM. This is a fuzzy ART-based architecture. Therefore, categories are hyperrect-

angles as described in Sec. 2.2.

Activation. The CVIFA activation function is equal to fuzzy ART’s and thus, is

computed using Eq. (16) in Sec. 2.2.

Match and resonance. After a winner J is selected, the first match function (M1
J ) is

identical to fuzzy ART’s (Eq. (18) in Sec. 2.2), whereas the second (M2
J ) is defined as

M2
J = ∆ f = f (Ω̂) − f (Ω), (66)

which represents the penalty (or reward) incurred by assigning sample x to category J and

thereby changing the current clustering state of the data set fromΩ to Ω̂ (if there is no change

in assignment, then M2
J = 0). The function f (Ω) corresponds to a cluster validity index

value given a partition Ω = {ω1, ..., ωk} of disjointed clusters ωi (defined by categories i),

where
k⋃

i=1
ωi = X . The second vigilance region is then V R2

J = {x : M2
J (x) ≥ ρ2}, and

ρ2 ∈ R. The second vigilance criterion checks if 1V R2
J
(x) = 1. In the affirmative case,

the category is allowed to learn. Note that the discussion so far implies the maximization
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of a cluster validity index; naturally, when minimization is sought, the inequality in the

definition of V R2
J should be reversed. This is a greedy algorithm that selects the best

clustering assignment based on immediate feedback. Of course, performance is biased

toward the data structures favored by the selected cluster validity index.

Learning. If both vigilance tests are satisfied, then learning ensues using fuzzy

ART’s learning rule (Eq. (21) in Sec. 2.2). Otherwise, the search resumes or a new category

is created. Note that the CVIFA model learns in offline mode, given that the entire data is

used to compute Eq. (66).

2.1.13. Dual Vigilance Fuzzy ART. The dual vigilance fuzzy ART (DVFA) (Brito

da Silva et al., 2019) seeks to retrieve arbitrarily shaped clusters with low parameterization

requirements via a single fuzzy ART module. This is accomplished by augmenting fuzzy

ART with two vigilance parameters, namely, the upper bound (ρUB ∈ [0, 1]) and lower

bound (0 ≤ ρLB ≤ ρUB ≤ 1), representing quantization and cluster similarity, respectively.

LTM. The dual vigilance fuzzy ART categories are hyperrectangles (see Sec. 2.2).

Activation. The activation function of the dual vigilance fuzzy ART is the same as

fuzzy ART’s (Eq. (16) in Sec. 2.2).

Match and resonance. When a category J is chosen by the WTA competition, it

is subjected to a dual vigilance mechanism. The first match function (M1
J ) uses ρUB in

Eq. (18), whereas the second (M2
J ) employs a more relaxed constraint; i.e., it uses ρLB in

Eq. (18).

Learning. If the first vigilance criterion is satisfied, then learning proceeds as in fuzzy

ART (Eq. (21)). Otherwise, the second test is performed, and, if satisfied, a new category is

created and mapped to the same cluster as the category undergoing the dual vigilance tests

via a mapping matrix Wmap =
[
w

map
n,k

]
N×K

(where N is the number of categories and K is
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the number of clusters):

w
map
n,k (new) =



1, if n = N + 1 and k = K

0, if n = N + 1 and k , K

w
map
n,k (old), if n , N + 1 and k = K

w
map
n,k (old), if n , N + 1 and k , K

. (67)

Alternately, if both tests fail, then the search continues with the next highest ranked

category; if there are none left, then a new node is created and the matrixWmap expands:

w
map
n,k (new) =



1, if n = N + 1 and k = K + 1

0, if n = N + 1 and k , K + 1

0, if n , N + 1 and k = K + 1

w
map
n,k (old), if n , N + 1 and k , K + 1

. (68)

The associations between categories and clusters are permanent in this incremental

many-to-one mapping (multi-prototype representation of clusters), and they enable the data

structures of arbitrary geometries to be detected by dual vigilance fuzzy ART’s simple

design.

2.2. TOPOLOGICAL ARCHITECTURES

The ART models discussed in this section are designed to enable multi-category

representation of clusters, thus capturing the data topology more faithfully. Generally, they

are used to cluster data in which arbitrarily shaped structures are expected (multi-prototype

clustering methods).
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2.2.1. Fuzzy ART with Group Learning. Fuzzy ART with group learning model

(Isawa et al., 2007) augments fuzzy ART (Sec. 2.2) with topology learning (inspired by

neural-gas (Martinetz & Schulten, 1994; Martinetz & Shulten, 1991)) to retrieve clusters

with arbitrary shapes. The code representation, LTMs and dynamics of fuzzy ART remain

the same. However, when a sample is presented, a connection between the first and

second resonant categories (if both exist) is created by setting the corresponding entry of

an adjacency matrix to one. This model also possesses an age matrix, which tracks the

duration of such connections and whose dynamics are as follows: the entry related to the

first and second current resonant categories is refreshed (i.e., set to zero) following a sample

presentation, whereas all other entries related to the first resonant category are incremented

by one. Connections with an age value above a certain threshold expire, i.e., they are pruned

(note that the threshold varies deterministically over time). This procedure allows this

model to dynamically create and remove connections between categories during learning

(co-occurrence of resonant categories, thus following a Hebbian approach). Clusters are

defined by groups of connected categories.

The fuzzy ART combining overlapped category in consideration of connections

variant (Isawa et al., 2008a) was developed to mitigate category proliferation, which is

accomplished by merging the first resonant category with another connecting and over-

lapping category. Another variant introduced in (Isawa et al., 2008b, 2009) augments the

latter model with individual and adaptive vigilance parameters to further reduce category

proliferation.

2.2.2. TopoART. Fuzzy topoART (Tscherepanow, 2010) is a model that combines

fuzzy ART (Sec. 2.2) and topology learning (inspired by self-organizing incremental neural

networks (Furao & Hasegawa, 2006)). Specifically, it features the same representation,

activation/match functions, vigilance test and search/learning mechanisms as fuzzy ART,

while integrating noise robustness and topology-based learning.
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Briefly, the topoART model consists of two fuzzy ART-based modules (topoARTs

A and B) that cluster, in parallel, the data in two hierarchical levels, while sharing the same

complement coded inputs. Each category is endowed with an instance counting feature n

(i.e., sample count), such that every τ learning cycles (i.e., iterations) categories that encoded

less than a minimum number of samples φ are dynamically removed. Once this threshold

is reached, “candidate” categories become “permanent” categories which can no longer

be deleted. In this setup, module A serves as a noise filtering mechanism for module B.

The propagation of a sample to module B depends on which type of module A’s category

was activated. Specifically, a sample is fed to module B if and only if the corresponding

module A’s resonant category is “permanent”; therefore, module Bwill only focus on certain

regions of the data space. Note that no additional information is passed from module A to

B, and both can form clusters independently.

Regarding the hierarchical structure, the vigilance parameters of modules A and B

are related by

ρb =
1
2
(ρa + 1) , (69)

such that module B’s maximum category size is 50% smaller than module A’s (ρa and ρb

are module A’s and B’s vigilance parameters, respectively), which implies that module B

has a higher granularity (ρb ≥ ρa) and thus yields a finer partition of the data set.

TopoART employs competitive and cooperative learning: not only the winner cat-

egory J1 but also the second winner J2 is allowed to learn (naturally, both need to satisfy

the vigilance criteria). The learning rates are set as βJ2 < βJ1 = 1, such that the second

winner partially learns to encode the presented sample. If the first and second winner

both exist, then they are linked to establish a topological structure. These lateral connec-

tions are permanent, unless categories are removed via the noise thresholding procedure.

Clusters are formed by the connected categories, thus better reflecting the data distribution

and enabling the discovery of arbitrarily shaped data structures (topoART is a graph-based

multi-prototype clustering method).
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Finally, in prediction mode, the following activation function, which is independent

of category size, is used:

Tj = 1 −
‖
(
x ∧ w j

)
− w j ‖1

‖x‖1
, (70)

the vigilance test is neglected, and only “permanent” nodes can be activated.

A number of topoART variants have been developed in the literature, e.g., the

hypersphere topoART (Tscherepanow, 2012), which replaces fuzzy ART modules with

hypersphere ARTs (Sec. 2.1.7); the episodic topoART (Tscherepanow et al., 2012), which

incorporates temporal information (i.e., time variable and thus the order of input presen-

tation) to build a spatio-temporal mapping throughout the learning process and generate

“episode-like” clusters; and the topoART-AM (Tscherepanow et al., 2011), which builds

hierarchical hetero-associative memories via a recall mechanism.

2.3. HIERARCHICAL ARCHITECTURES

Elementary ART modules have been used as building blocks to construct both

bottom-up (agglomerative) and top-down (divisive) hierarchical architectures. Typically,

these follow one of two designs (Massey, 2009): (i) cascade (series connection) of ART

modules in which the output of a preceding ART layer is used as the input for the succeeding

one, or (ii) parallel ART modules enforcing different vigilance criteria while having a

common input layer.

2.3.1. ARTtree. The ARTtree (Wunsch II et al., 1993) is a way of building a

hierarchy of ART neural modules in which an input sample is sent simultaneously to every

module in every level of the tree. Each node in the ART tree hierarchy is connected to one

of its parent’s F2 categories, and each of the F2 categories in this node is connected to one

of its children. The nodes in each layer of the tree hierarchy share a common vigilance

value, and the vigilance typically increases further down the tree such that tiers of the tree

that have more nodes are associated with higher vigilance values.
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When an input sample is presented to the ARTtree hierarchy, all the ART nodes can

be allowed to perform their match and activation functions, but only the node connected to

its parent’s winning F2 category is allowed to resonate with and learn this pattern. Therefore,

resonance only cascades down a single path in the ARTtree, and no other nodes outside that

path are allowed to learn this sample. This can effectively allow ART to perform a type of

varying-k-means clustering (Wunsch II et al., 1993).

The highly parallel nature of ARTtree lends itself well to hardware-based imple-

mentations, such as optoelectronic implementations (Wunsch II et al., 1993) and massively

parallel implementations via general purpose Graphics Processing Unit (GPU) accelera-

tion (Kim&Wunsch II, 2011). The study presented in (Kim&Wunsch II, 2011) performed

this task using NVIDIA CUDAGPU hardware and an implementation of ARTtree that uses

fuzzy ART units in the tree nodes. The results reported in the study show a massive speed

boost for deep trees when compared to the CPU in terms of computing time, while smaller

trees performed worse on the GPU due to the high data transfer penalties between the CPU

and GPU memory.

2.3.2. Self-ConsistentModularART. The self-consistentmodularART (SMART)

(Bartfai, 1994) is amodular architecture designed to perform hierarchical divisive clustering

(i.e., to represent different levels of data granularity in a top-down approach). It builds a

self-consistent hierarchical structure via self-organization and uses ART 1 (Sec. 2.1.1) as

elementary units. In this architecture, a number of ART modules operate in parallel with

different vigilance parameter values, while receiving the same input samples and connect-

ing in a manner that makes the hierarchical cluster representation self-consistent. These

connections are such that many-to-one mapping of specific to general categories is learned

across such modules. Specifically, the hierarchy is explicitly represented via associative

links between modules.
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Concretely, a two-level SMARTarchitecture can be implemented using anARTMAP

(Sec. 3.1.1) in auto-associative mode; i.e., ARTMAP is used in an unsupervised manner

by presenting the same input sample to both modules A and B with different vigilance

parameters and forcing a hierarchical structure by making ρA > ρB, such that module B

enforces its categorization (an internal supervision) on module A.

2.3.3. ArboART. ArboART (Ishihara et al., 1995) is an agglomerative hierarchical

clustering method based on ART. More specifically, it uses ART 1.5-SSS (small sample

size) (Ishihara et al., 1993) (variant of ART 1.5 (Levine & Penz, 1990), which in turn is a

variation ofART2 (Carpenter&Grossberg, 1987b)), as a building block. Briefly, prototypes

of one ART are the inputs for another ART with looser vigilance (similarity constraint).

Therefore, prototypes obtained from a lower level (bottom part of the dendrogram) are fed

to the next ART layer. ART modules on higher layers have decreasingly lower vigilance

values, i.e., the similarity constraint is less strict. This enables the construction of a tree

(hierarchical graph structure). One of the advantages over traditional hierarchical methods

is that it does not require a full recomputation when a new sample is added, only partial

recomputations are needed in ART (inside the specific clusters). ArboART uses several

layers of ART as well as one-pass learning. Concretely, it makes super-clusters of previous

clusters in a hierarchical way, thereby making a generalization of categories in the process.

2.3.4. Joining Hierarchical ART. The joining hierarchical ART (HART-J) (Bart-

fai, 1996; Bartfai &White, 2000) is a hierarchical agglomerative clusteringmethod (bottom-

up approach) that uses ART 1 modules (Sec. 2.1.1) as building blocks and follows a cascade

design. Specifically, each layer of this multi-layer model corresponds to an ART 1 network

that clusters the prototypes generated by the preceding layer. The input of layer l is given

by:

xl = xl−1 ∩ wl−1,J, l = {2, ..., L}, (71)



40

where L is the number of layers, wl−1,J is the resonant neuron J of layer l−1 and x1 is equal

to the input sample x. Interestingly, it is not imperative to reduce the vigilance values at

higher layers to generate the hierarchy: the “effective” vigilance level of layer l is given by:

ρ̂l =

l∏
j=1

ρ j, (72)

which decreases even if the vigilance increases with l given that ρl ∈ [0, 1] ∀l. This fact

is used to derive an upper bound for the maximum number of layers Lmax . If all vigilance

values are equal to ρ, then Lmax = bn + 1e, where n is the minimum integer that satisfies

n > −
log d
log ρ

, (73)

assuming that the input samples are complement coded (see Sec. 2.2).

Naturally, succeeding networks can learn (at most) the number of prototypes from

the previous layer. Learning can occur in sequential (learning is paused until the previous

layer is stabilized) or parallel (learning occurs in each layer in each presentation of inputs)

modes. The former generates fewer categories, but the training time, measured in number

of epochs, is much smaller using the parallel approach.

HART-J is compared to SMART in (Bartfai, 1995). Contrary to SMART, HART-

J has no associative connection or feedback between hierarchical layers as a mechanism

to enforce self-consistency. The constraint that causes the lower layers to have greater

vigilance values than the higher layers guarantees consistency. In HART-J, the hierarchies

“emerge” since there are no explicit links. It is reported that SMART builds a less compact

model (larger number of categories) due to categorization forced by its internal feedback

mechanism, whereas HART-J builds a simpler and more compact network.

2.3.5. Hierarchical ART with Splitting. The hierarchical ART with splitting

(HART-S) (Bartfai & White, 1997b, 2000) consists of a cascade of ART 1 (Sec. 2.1.1)

modules that performs incremental hierarchical divisive clustering (successive splitting in
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a top-down approach). A fuzzy HART-S (Bartfai & White, 1997a) variant uses a cascade

of fuzzy ARTs, where each module clusters the difference between the input and the weight

vector of the resonant category belonging to the preceding layer. Specifically, the input to

layer l (l = {1, ..., L}, where L is the maximum number of layers) is given by:

xl = xl−1 ∧ wc
l−1,J, (74)

which recursively corresponds to

xl = x1 ∧

(
l−1∧
i=1

wc
i,J

)
, (75)

where x1 = x is the data sample and wc
i,J is the complement of the weight vector associated

with the resonant neuron J of layer i.

The hierarchy is explicitly represented by links between parent and children cate-

gories in a tree-like structure. These adaptive associative connections between consecutive

modules ensure that only children of the preceding parent module can be activated. In its

most general case, the fuzzy ART modules in each layer have their own set of parameters.

Particularly, Fuzzy HART-S uses two global parameters: a resolution parameter ε ∈ [0, 1] to

control the depth of the hierarchical tree (i.e., if ‖xl ‖1 < εS, then there is no more splitting,

where S = ‖x‖1) and a feature threshold parameter to control the propagation of features

throughout the layers.

Strategies to prune and rebuild prototypes to improve HART-S in terms of network

complexity (measured by the number of categories) are presented in (Bartfai & White,

1998). During learning, the former strategy removes small clusters (and all their children

if applicable) based on a cluster size threshold (percentage of the total number of samples),

and the latter changes the components of a prototype weight vector to better reflect the

samples associated with them.



42

2.3.6. Distributed Dual Vigilance Fuzzy ART. The distributed dual vigilance

fuzzy ART (DDVFA) (Brito da Silva et al., 2020) is a dual vigilance-based ART model

designed to improve memory compression and perform several ART-based hierarchical

agglomerative clustering (HAC) methods online. It consists of a global ARTmodule whose

F2 nodes are local fuzzy ARTs: the global module is used for decision making while the

local module builds multi-prototype representations of clusters (many-to-one mappings).

The activation of a global ART F2 node i (Tg
i ) is a function f (·) of the activations

of the k F2 nodes of its corresponding local fuzzy ART module:

Tg
i = f

(
T i

1 , ... , T i
j , ... , T i

k

)
, (76)

where T i
j is the activation function of the F2 node j of the local fuzzy ART module i, which

uses a higher order activation function defined as

T i
j =

(
‖x ∧ wi

j ‖1

α + ‖wi
j ‖1

)γ
, (77)

and γ ≥ 1 is a power parameter whose role is akin to a kernel width. Similarly, the match

function of a global ART F2 node i (Mg
i ) is defined as

Mg
i = g

(
M i

1 , ... , M i
j , ... , M i

k

)
, (78)

where M i
j is the match function of the F2 node j of the local fuzzy ART module i, which

uses the following normalized higher order match function

M i
j =

(
‖wi

j ‖1

‖x‖1

)γ∗
T i

j, (79)

where 0 ≤ γ∗ ≤ γ is the reference kernel width with respect to which the match function is

normalized. Both functions f (·) and g(·) are based on HAC methods, as listed in Table 2.
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The DDVFA features a dual vigilance mechanism: when a sample x is presented,

and the F2 node I of the global ART is the winner, then V Rg
I = {x : Mg

I (x) ≥ ρLB} and

ρLB ∈ [0, 1]. The vigilance criterion checks if 1V Rg
I
(x) is true. If not, the search continues,

or a new local fuzzy ART module is created. If so, the corresponding local fuzzy ART

module is allowed to learn. The local fuzzy ARTmodule imposes a stricter constraint for its

winner node J: V RI
J = {x : M I

J (x) ≥ ρUB} and 0 ≤ ρLB ≤ ρUB ≤ 1. Again, the vigilance

criterion checks if 1V RI
J
(x) is true, and, if so, category J is allowed to learn. Otherwise, the

search resumes or a new node is created following the standard ART dynamics.

When input order cannot be addressed via an offline pre-processing strategy (Sec. 6.1),

then DDVFA should be used in conjunction with a Merge ART module to mitigate input

order dependency in online learning applications. This module is connected to DDVFA in

series, i.e., in a cascade design. The inputs to Merge ART are fuzzy ART modules with all

their corresponding categories. Like DDVFA, Merge ART’s F2 nodes are also fuzzy ART

modules. When a DDVFA’s fuzzy ART node l is fed to Merge ART, an activation matrix

Tk,l = [ti, j]R×C (where R and C are the number of categories in Merge ART node k and

DDVFA node l, respectively) is computed as

ti, j =

(
‖wl

j ∧ wk
i ‖1

α + ‖wk
i ‖1

)γ
, (80)

where wl
j is the weight vector of category j of DDVFA local fuzzy ART module l, and

wk
i is the weight vector of category i of Merge ART module k. The actual activation of

Merge ART node k uses matrix Tk,l and follows one of the HAC forms as listed in Table 3.

Assuming Merge ART’s F2 node K is the winner, its match matrix MK,l = [mi, j]R×C is

computed as

mi, j =

(
‖wK

i ‖1

‖wl
j ‖1

)γ∗
ti, j, (81)
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Table 2. DDVFA’s activation and match functions.

HAC method Tg
i = f (·) Mg

i = g(·)

single max
j

(
T i

j

)
max

j

(
M i

j

)
complete min

j

(
T i

j

)
min

j

(
M i

j

)
median median

j

(
T i

j

)
median

j

(
M i

j

)
averagea

1
ki

ki∑
j=1

T i
j

1
ki

ki∑
j=1

M i
j

weightedb
ki∑

j=1
p jT i

j

ki∑
j=1

p j M i
j

centroidc
(
‖x ∧ wi

c‖1

α + ‖wi
c‖1

)γ (
‖wi

c‖1

‖x‖1

)γ∗
Tg

i

a,b ki is the number of F2 nodes in local fuzzy ART module i.

b p j =
ni

j

ngi
, where ni

j is the number of samples encoded by category j of local fuzzy ART

module i, and ngi =
∑
j

ni
j .

c wi
c is the “centroid” representing all categories of local fuzzy ART module i, whose l

component is computed as wi
c,l = min

j

(
wi

j,l

)
for l = {1, ..., 2d}.

where the actual match of Merge ART node K uses matrix MK,l and one of the HAC

formulations listed in Table 3. If the vigilance constraint is satisfied (i.e., MK ≥ ρLB),

then ARTK(new) ← ARTK(old) ∪ ARTl , i.e., ARTK and ARTl become a single module. To

further reduce model complexity, the final step of Merge ART consists of feeding the weight

vectors of each ART module to an independent fuzzy ART parameterized with ρ = ρUB, γ

and γ∗. Note that the Merge ART module can be run once or until convergence, where the

latter is defined as no change in the Merge ART nodes between two consecutive iterations.
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Table 3. Merge ART’s activation and match functions.

HAC method Tk = f (·) Mk = g(·)

single max
i, j

(
[ti j]

)
max

i, j

(
[mi j]

)
complete min

i, j

(
[ti j]

)
min

i, j

(
[mi j]

)
median median

i, j

(
[ti j]

)
median

i, j

(
[mi j]

)
average

1
RC

R∑
i=1

C∑
j=1

ti j
1

RC

R∑
i=1

C∑
j=1

mi j

weighteda
R∑

i=1

C∑
j=1

pi p j ti j
R∑

i=1

C∑
j=1

pi p jmi j

centroidb
(
‖wk

c ∧ wl
c‖1

α + ‖wk
c ‖1

)γ (
‖wk

c ‖1

‖wl
c‖1

)γ∗
Tk

a pi =
nk

i

nk
and p j =

nl
j

nl
, where nk

i is the number of samples encoded by category i of Merge

ART node k, and nk =
∑
i

nk
i . The variables nl

j and nl refer to DDVFA node l and are defined

similarly.
b wk

c and wl
c are the “centroids” representing all categories of ART (2)k and ART (1)l , respec-

tively. Their components are given by wk
c,n = min

j

(
wk

j,n

)
and wl

c,n = min
j

(
wl

j,n

)
, where

n = {1, ..., 2d}.

2.4. BICLUSTERING AND DATA FUSION ARCHITECTURES

2.4.1. Fusion ART. Fusion ART (Tan et al., 2007) extends ART capabilities by

augmenting it with multiple and independent F1 layers (input channels or fields), all of

which are connected to a shared F2 layer. This model is then capable of learning mappings

across multiple channels simultaneously.

Activation.The activation function of a category j is a weighted sum of the activation

functions of each input field

Tj =

K∑
k=1

γk
‖xk ∧ wk

j ‖1

αk + ‖wk
j ‖1

, (82)
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where xk is the complement-coded input to the k th F1 layer (Fk
1 or channel k), and γk ∈ [0, 1]

and αk ∈ (0,∞) are the contribution and choice parameters of Fk
1 , respectively. The variable

K is the total number of input channels such that x = [x1, ..., xk, ..., xK] and category j’s

LTM is w j = [w
1
j , ..., w

k
j , ..., w

K
j ].

Match and resonance. When category J is selected by the WTA competition, one

match function is computed for each channel

M k
J =
‖y(F

k
1 )‖1

‖xk ‖1
=
‖xk ∧ wk

J ‖1

‖xk ‖1
, (83)

where V Rk
J = {x

k : M k
J (x

k) ≥ ρk}, and ρk ∈ [0, 1] is Fk
1 ’s vigilance parameter. The

global vigilance test is satisfied if all channels meet their individual vigilance criteria

simultaneously, i.e., if
K∧

k=1
1V Rk

J
(xk) = 1. A mismatch (i.e., the latter condition is not

satisfied) triggers a category reset and the match tracking mechanism, which simultaneously

raises all input fields’ vigilance parameters. The search then continues until a resonant

category is found or created. Then, learning takes place as

wk
J (new) = (1 − βk)wk

J (old) + βk(xk ∧ wk
J (old)), ∀k, (84)

where βk ∈ (0, 1] is the learning parameter of layer Fk
1 . When a new input is presented,

ρk = ρ̄k , where ρ̄k is the baseline vigilance of layer Fk
1 . Additionally, if an input to a

channel is not present, then it is set to ®1 to enable the prediction/recovery of missing values.

Fusion ART generalizes some other ART models, i.e., by appropriately designing

fusion ART, it can reduce to different ART models and perform distinct machine learning

modalities: (i) 1 channel (samples) fusion ART reduces to ART (Carpenter et al., 1991c)

(Sec. 2.2) and performs match-based unsupervised learning, (ii) 2 channels (samples and

class labels) fusionART reduces to adaptive resonance associativemap -ARAM(Tan, 1995)

(Sec. 3.1.7) and performs association-based supervised learning and (iii) 3 channels (states,

actions and rewards) fusion ART reduces to fusion architecture for learning, cognition, and
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navigation - FALCON (Tan, 2004) (Secs. 4.1 and 4.2) and performs reinforcement learning.

Additionally, fusion ART can perform instruction-based learning by rule-based knowledge

integration (generation of IF-THEN rules mapping antecedents and consequents from one

channel to another and rule insertion capability).

Fusion ART has been used in the realization of a hierarchical planner (Subagdja &

Tan, 2012), as well as of different types of long term memory models: episodic (Leconte

et al., 2014, 2016; Nasir et al., 2019; Nasir et al., 2018; Park & Kim, 2016; Park et al.,

2018; Park et al., 2015; Subagdja & Tan, 2015; Subagdja et al., 2012; Wang et al., 2010,

2012a,b, 2017), semantic (Nasir et al., 2019; Nasir et al., 2018; Subagdja et al., 2012; Wang

et al., 2012b, 2017) and procedural (Wang et al., 2012b, 2017) among a number of other

applications. See also (Tan et al., 2019) in this issue.

2.4.2. BiclusteringARTMAP. BiclusteringARTMAP (BARTMAP) (Xu&Wun-

sch II, 2011; Xu et al., 2012) is based on fuzzyARTMAP (Carpenter et al., 1992) (Sec. 3.1.2)

and was designed to find correlation-based subspace clustering. It uses two fuzzy ART

modules (ARTa and ARTb) connected through a regulatory inter-ART module to achieve

a biclustering of the data matrix on both the input space (rows) and the feature space

(columns). The ARTb module is used to cluster the feature vectors and create a set of

feature clusters. Then, the samples are presented to the ARTa module while using the

inter-ART module to integrate the clustering results on both the feature and input spaces

and create biclusters that capture the local relations between the inputs and features. Note

that BARTMAP learns in offline mode. This architecture was shown to perform fast and

stable biclustering of gene expression data (Xu & Wunsch II, 2011) and later modified to

build a collaborative filtering recommendation system (Elnabarawy et al., 2016).

The BARTMAP algorithm begins by presenting all the feature vectors to ARTb

(which is a standard fuzzy ART module), using it to build clusters of the feature vectors.

Next, it begins presenting the input vectors to ARTa and allows it to build clusters in the input

space. If ARTa places an input in a previously committed category, the inter-ART module
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then computes the similarity between the new sample and the samples in the existing cluster,

but only within each feature cluster from ARTb, thereby testing the correlation between the

new sample and each of the existing biclusters. If any of the biclusters passes a user-defined

correlation threshold η, the cluster is updated with the new sample. However, if none of

the current biclusters passes, the ARTa vigilance threshold is temporarily increased (match

tracking mechanism, see Sec. 3.1.1), and the sample is presented again to find a new cluster.

If no suitable cluster is found that also satisfies the correlation threshold, the ARTa vigilance

will eventually be increased enough to force the creation of a new cluster.

Consider the datamatrix X = [xi, j]N×d , encompassing N samples in a d-dimensional

feature space. After ARTb detects Nb clusters of features, the k th input to ARTa becomes

xk = [x
cb1
k , ..., x

cbi
k , ..., x

cbNb

k ] ∈ R
d , where x

cbi
k comprises the subset of components of xk

associated with the ith feature cluster identified by ARTb (cb
i ). The similarity between the

input sample xk and an ARTa cluster ca
j with na

j samples, across an ARTb feature cluster

cb
i with nb

i features, is defined using the average Pearson correlation coefficient (Bain &

Engelhardt, 1992) as follows:

r̄caj ,c
b
i
(xk) =

1
na

j

naj∑
l=1,xl∈caj

rcaj ,c
b
i
(x

cbi
k , x

cbi
l ), (85)

where

rcaj ,c
b
i
(x

cbi
k , x

cbi
l ) =

nbi∑
t=1
(x

cbi
k,t − x̄

cbi
k )(x

cbi
l,t − x̄

cbi
l )√

nbi∑
t=1
(x

cbi
k,t − x̄

cbi
k )

2

√
nbi∑
t=1
(x

cbi
l,t − x̄

cbi
l )

2

. (86)

Here, x
cbi
m,t refers to the value for sample xm at feature t within the ARTb cluster cb

i

(m = k, l). Similarly, x̄
cbi
m denotes the average value of xm across all the features in ARTb’s

cluster cb
i :

x̄
cbi
m =

1
nb

i

nbi∑
t=1

x
cbi
m,t . (87)
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2.4.3. Generalized Heterogeneous Fusion ART. The generalized heterogeneous

fusion ART (Meng et al., 2014) is a model designed to perform co-clustering of hetero-

geneous data (i.e., mixed data types). It extends the heterogeneous fusion ART (Meng

& Tan, 2012), which is a two-channels fusion ART-based model, to a multiple channel

architecture. The distinctive characteristic of the generalized heterogeneous fusion ART

is that its learning functions vary according to each data type, i.e., when a winner node J

satisfies the vigilance criterion, different channels are adapted following different learning

functions f k
L (·). For instance, if the input xk corresponds to a visual feature from image

data or a text feature from a document, then the corresponding weight vector is updated

following Eq. (84). Alternately, if xk is a feature from data meta-information, then the

weight vector of the corresponding channel k is adapted using the recursive mean formula

wk
J (new) =

(
1 −

1
nJ(new)

)
wk

J (old) +
1

nJ(new)
xk, (88)

nJ(new) = nJ(old) + 1, (89)

where nJ corresponds to the number of samples encoded by node J.

Another key characteristic of the generalized heterogeneous fusion ART is the

adaptive channel weighting: the contribution parameters are initially uniformly initialized,

and then, during learning, undergo self-adaptation using

γk(new) =
Rk

K∑
k=1

Rk

, ∀k, (90)



50

where

Rk = exp ©«− 1
N

N∑
j=1

Dk
j
ª®¬ , (91)

Dk
j =

1
nj

nj∑
l=1
‖wk

j − xk
l ‖1

‖wk
j ‖1

. (92)

The variable R is a robustness measure used to estimate the discriminative power of

each channel given the intra-cluster scatter. In practice, performing the offline computations

in Eq. (92) can be expensive. Therefore, since only Dk
J needs to be updated after the

presentation of each sample, then γk(new) can be estimated incrementally. Particularly,

when there is a resonant committed node J, if xk is a meta-information feature, then

Dk
J (new) =

nJ(old)
nJ(new)‖wk

J (new)‖1

(
‖wk

J (old)‖1Dk
J (old) − ‖wk

J (new) −
nJ(old)
nJ(new)

wk
J (old)‖1

+
1

nJ(old)
‖wk

J (new) − xk ‖1

)
,

(93)

otherwise,

Dk
J (new) =

nJ(old)
nJ(new)‖wk

J (new)‖1

(
‖wk

J (old)‖1Dk
J (old) − ‖wk

J (old) − wk
J (new)‖1

+
1

nJ(old)
‖wk

J (new) − xk ‖1

)
.

(94)

If a new category is created, regardless of xk type, the contribution parameters are

updated via a proportionality change

γk(new) =

(
Rk ) N

N+1

K∑
k=1

(
Rk

) N
N+1

, ∀k, (95)

where N is the number of categories.

Note that the generalized heterogeneous fusion ART can also include prior knowl-

edge by appropriate initialization of the network.
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2.4.4. Hierarchical Biclustering ARTMAP. Hierarchical biclustering ARTMAP

(Kim, 2016) uses BARTMAP (2.4.2) iteratively to obtain a hierarchy of biclusters. The

algorithm begins by running BARTMAP on the complement-coded data with low vigilance

values, which produces a relatively small number of larger-sized biclusters. In the following

step, hierarchical BARTMAP uses a bicluster matching threshold and a correlation fitness

function to build and evaluate the biclusters at the current level. After that, the BARTMAP

algorithm is used again on each of the resulting clusters with increased vigilance and

correlation thresholds. These are adjusted by small values that are a function of the number

of samples as well as the number of features and average correlation in each bicluster.

The hierarchical BARTMAP algorithm repeats those two steps recursively for a specified

number of times. Then, the best layer in the recursive tree that optimizes the desired cluster

validity index (Xu & Wunsch II, 2009), or any other user-specified criteria, is chosen.

2.5. SUMMARY

Table 4 summarizes the nature of the category representations of theARTelementary

models described in the previous subsections during activation, match and learning stages.

Particularly, it lists if winner-takes-all (WTA) or distributed (D) coding is employed by

these networks.

3. ART MODELS FOR SUPERVISED LEARNING

3.1. ARCHITECTURES FOR CLASSIFICATION

ARTmodels used for supervised learning applications typically follow anARTMAP

architecture (Figure 2), which consists of two elementary ART units (ARTa and ARTb)

interconnected by an associative learning network, namely the map field, that performs

multidimensional mappings between categories of both such units, as well as allowing for
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Table 4. Summary of the code representations used by the unsupervised learning ART
models.

ART model Activation Match Learning Reference(s)

ART 1 WTA WTA WTA (Carpenter & Grossberg, 1987a)
ART 2-A WTA WTA WTA (Carpenter et al., 1991b)
Fuzzy ART WTA WTA WTA (Carpenter et al., 1991c)
Fuzzy Min-Max WTA WTA WTA (Simpson, 1993)
ARTtree WTA WTA WTA (Wunsch II et al., 1993)
SMART WTA WTA WTA (Bartfai, 1994)
ArboART WTA WTA WTA (Ishihara et al., 1995)
Distributed ART D D D (Carpenter, 1996a,b, 1997)
Gaussian ART WTA WTA WTA (Williamson, 1996)
HART-J/S WTA WTA WTA (Bartfai, 1996; Bartfai & White, 1997b)
Hypersphere ART WTA WTA WTA (Anagnostopoulos & Georgiopoulos, 2000)
Ellipsoid ART WTA WTA WTA (Anagnostopoulos & Georgiopoulos, 2001a,b)
Quadratic Neuron ART WTA WTA WTA (Su & Liu, 2002, 2005)
Bayesian ART WTA WTA WTA (Vigdor & Lerner, 2007)
Fusion ART WTA WTA WTA (Tan et al., 2007)
Fuzzy ART with Group Learning WTA WTA WTA (Isawa et al., 2007)
Grammatical ART WTA WTA WTA (Meuth, 2009)
TopoART WTA WTA D (Tscherepanow, 2010)
BARTMAP WTA WTA WTA (Xu & Wunsch II, 2011)
Generalized Heterogeneous Fusion ART WTA WTA WTA (Meng et al., 2014)
Hierarchical BARTMAP WTA WTA WTA (Kim, 2016)
CVIFA WTA WTA WTA (Brito da Silva & Wunsch II, 2017)
DVFA WTA WTA WTA (Brito da Silva et al., 2019)
DDVFA D D WTA (Brito da Silva et al., 2020)

WTA: winner-takes-all code.
D: distributed code.

associative recalls when the input to one of theARTmodules is missing. Notably, ARTMAP

models usually inherit the properties of their elementary ART building blocks. This section

describes the main characteristics of members of the supervised ART family in terms of

their map field LTM units, dynamics (which encompasses activation, match, resonance

criterion and learning) and user-defined parameters. For clarity, Table 5 summarizes the

notation used in the following subsections.

When an ARTMAP architecture is used for pattern recognition or classification

tasks, typically ARTa clusters data samples while ARTb clusters class labels in parallel.

Therefore, while ART maps samples to categories, an ARTMAP architecture goes one step

further and maps categories to classes. During training, ARTa is subjected to a certain

level of agreement with ARTb’s activity, given that the latter encodes the target labels.
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Figure 2. Elementary ARTMAP model.

Table 5. Supervised ART models notation.

Notation Description

xl input sample to ARTl (xl ∈ X l)
dl input data dimensionality (xl ∈ Rdl )
F l

1 feature representation field of ARTl
F l

2 category representation field of ARTl
Fab map field
cl a category in ARTl
Nl number of categories in ARTl

y(F
l
1) F l

1 activity (STM)
y(F

l
2) F l

2 activity (STM)
y(F

ab) Fab activity (STM)
θab map field parameters (LTM unit)
Mab map field match function
J ARTa chosen category index (via WTA)
K ARTb chosen category index (via WTA)
ρl vigilance parameter of ARTl
ρ̄ ARTa baseline vigilance parameter

Variable l indexes the elementary ART modules: l = a, b.
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This is performed by a second vigilance test that uses ARTb’s supervisory signal (i.e.,

response) to trigger a mismatch or allow learning given an incorrect or correct prediction,

respectively. Specifically, when ARTa’s prediction is disproven by ARTb’s, the map field

triggers a match tracking mechanism in which ARTa’s resonant category is inhibited, the

baseline vigilance is temporarily changed and the search process restarts, causing ARTa to

select another category. Therefore, the map field is a critic, i.e., its purpose is to assess

the quality of the mapping between both ART modules and the necessity of adding a new

node based on a supervised signal. By engaging the match tracking mechanism, ARTMAP

trades generalization for specificity to decrease training error.

Often, ARTb is omitted and an Nb-dimensional vector of labels is used in its place

(since ARTb’s vigilance parameter would typically be set to 1, which would correspond to

the number of categories being equal to the number of classes). Moreover, ARTa’s baseline

vigilance parameter, which controls the granularity of the input space, is usually set to a

small value since this correlates with improved generalization capabilities and a higher level

of compression, i.e., network complexity. During inference (or testing), supervised ART

models usually operate in feedforward mode, in which resonance and learning are disabled.

Algorithm 2 summarizes the general dynamics of an elementary ARTMAP model.

3.1.1. ARTMAP. The first adaptive resonance theory supervised predictive map-

ping (predictive ART or ARTMAP) model (Carpenter et al., 1991a) consists of two binary

ART 1 modules (Sec. 2.1.1), ARTa and ARTb, connected via an inter-ART associative

memory, namely the map field Fab. The latter performs multidimensional mappings be-

tween the binary input samples clustered by modules A and B. Moreover, when the input of

a module is missing, it can be recalled by such associative memory. The map field LTM θab

is represented by a matrix W ab = [wab
i j ]Na×Nb

such that wab
i j = 1 if there is an association

between category i of ARTa and category j of ARTb and zero otherwise. Na and Nb are the
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Algorithm 2: Elementary ARTMAP algorithm.

Input : {xa, xb}, {ARTa and ARTb parameters}, {βab, γab, ρab, λab} (map field
parameters).

Output : y(Fab ) (map field activity).

/* Notation */
Cl: set of ARTl nodes (l = a, b).
θab: map field LTM unit.
βab: map field learning function parameter(s).
γab: map field match function parameter(s).
ρab: map field vigilance parameter(s).
λab: map field initialization parameter(s).
ρ̄a: ARTa’s baseline vigilance parameter(s).
f abM (·): map field match function.
f abL (·): map field learning function.
f abV (·): map field vigilance function.
f abN (·): map field initialization function.
f abI (·): map field inference function.
fMT (·): match tracking function.
/* Training */

1 Present input xb ∈ Xb to ARTb.
2 Perform the dynamics of ARTb (Alg. 1).
3 Present input xa ∈ Xa to ARTa.
4 Perform the dynamics of ARTa (Alg. 1).
5 Compute the map field’s match function:

Mab
J = f abM (y

(Fb
2 ), θabJ , γab).

6 Perform the map field vigilance test: VJ = f abV = 1VRab
J
(xa).

7 if VJ is TRUE then
8 Update ARTa’s and ARTb’s resonant categories J and K , respectively (Alg. 1).
9 if ARTa OR ARTb created a new node then
10 θab·, · = f abN (J,K, λab).
11 else
12 Update the map field: θabJ (new) = f abL (y

(Fb
2 ), θabJ (old), βab).

13 else
14 Inhibit ARTa’s resonant category J.
15 Trigger ARTa’s match tracking mechanism: ρa(new) = fMT (ρa(old))
16 Go to step 4.
17 Reset ARTa’s vigilance parameter(s) to baseline value(s):

ρa(new) = ρ̄a.
18 Go to step 1.
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Algorithm 2 (cont.): Elementary ARTMAP algorithm.
/* Inference */

1 Present input xa ∈ Xa to ARTa. ;
2 Perform the dynamics of ARTa (Alg. 1). ;
3 Compute the degree of association to each ARTb node k according to ARTa’s

activity(s): ;
σk = f abI (y

Fa
2 , θab). ;

4 Set output: ;

y
(Fab )

j =


1, if j = arg max

k

(σk)

0, otherwise
.;

5 Go to step 1.;

number of nodes in ARTa and ARTb, respectively. The matrix W ab is initialized as ®1 (i.e.,

the row vector wab
1 =

®1). The bottom-up and top-down weight vectors of both ART 1’s are

initialized as described in Sec. 2.1.1.

Training. The map field Fab activity is defined as

y(F
ab) =



y(F
b
2 ) ∩ wab

J , if both ARTs are active (training)

wab
J , if only ARTa is active (prediction)

y(F
b
2 ), if only ARTb is active

®0, otherwise

, (96)

where wab
J = (wJ1, ...,wJNb

) is the J th row ofW ab, which is associatedwithARTa’s resonant

category J.

After resonant nodes for both ART modules have been selected following the pre-

sentation of a sample pair (xa, xb), the map field match function is computed as

Mab
J =

‖y(F
ab)‖1

‖y(F
b
2 )‖1

=
‖y(F

b
2 ) ∩ wab

J ‖1

‖y(F
b
2 )‖1

, (97)
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where the vigilance test is satisfied if Mab
J ≥ ρab. During training, if ARTa’s prediction

is correct (i.e., confirmed by ARTb’s supervised signal feedback), all three modules learn.

Otherwise, a match tracking mechanism (MT+) is engaged, such that ARTa’s vigilance

parameter is temporarily raised by an amount small enough to inhibit the resonant category

ρa = Ma
J + ε, 0 < ε � 1, (98)

and the search process restarts. Either another resonant category is found or a new one is

created, and the vigilance returns to its baseline value (ρa = ρ̄a) upon the presentation of

a new input pair. Complement coding is usually employed to avoid cases in which ARTa’s

vigilance is raised to a value greater than one.

Now consider that the resonant categories of ARTa and ARTb are J and K , respec-

tively. When the map field vigilance test is satisfied (Mab
J ≥ ρab), then ARTa and ARTb are

updated as described in Sec. 2.1.1, and the map field weight vector associated with category

J is updated as

wab
Jk(new) = y(F

b
2 ) ∩ wab

J (old) =


1, if k = K

0, otherwise
, (99)

such that it becomes permanently associated with ARTb’s category K . The Fa1, F
a
2 and Fab

layers may be viewed as input, hidden and output layers, respectively.

Inference. In prediction mode, it is sufficient to track the map field’s weight vector

wab
J and set it as the systems’ output, i.e., when an ARTa’s resonant category J is found, the

predicted class K is obtained as

K = arg max
k
(σk) , (100)
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where

σk =

Na∑
j=1

wab
jk y
(Fa

2 )

j , (101)

such that σ = [σ1, ..., σNb
]T = W ab T y(F

a
2 ).

Properties pertaining to ARTMAP learning are investigated in (Georgiopoulos et al.,

1994). A simplifiedARTMAP version, namely the simple ARTMAP (Serrano-Gotarredona

et al., 1998), replaces ARTb (and thus its Fb2 activity y(F
b
2 )) with a binary vector yb indicating

the class membership of the input sample xa (i.e., yb
k = 1 if xa belongs to class k, and

yb
i = 0 ∀i , k).

3.1.2. Fuzzy ARTMAP. Fuzzy ARTMAP (Carpenter et al., 1992) is to ARTMAP

what fuzzy ART is to ART 1: it extends the capabilities of ARTMAP to enable the

processing of real-valued data by replacing logical with fuzzy AND intersection. Thus,

fuzzy ARTMAP also consists of two fuzzy ART modules, ARTa and ARTb, connected by

a map field Fab that maps the categories of one ART to another via a matrix of weights

θab = {W ab}, as described in Sec. 3.1.1.

Training. The map field Fab activity is defined as

y(F
ab) =



y(F
b
2 ) ∧ wab

J , if both ARTs are active (training)

wab
J , if only ARTa is active (prediction)

y(F
b
2 ), if only ARTb is active

®0, otherwise

. (102)

During training, ARTa and ARTb perform their dynamics (Sec. 2.2) simultaneously

and independently, with their respective inputs, until both establish resonant nodes J and

K , respectively. Then, the map field computes its activity vector using these two pieces of

information, as defined in Eq. (102). Next, a second (map field) vigilance test is performed
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to assess the mapping correctness using

Mab
J =

‖y(F
ab)‖1

‖y(F
b
2 )‖1

=
‖y(F

b
2 ) ∧ wab

J ‖1

‖y(F
b
2 )‖1

, (103)

and, if it satisfies Mab
J ≥ ρab (ρab ∈ [0, 1]), then learning takes place. Otherwise, in

response to a mismatch, the match tracking mechanism (M+) is triggered: the current

resonant category J is inhibited (lateral reset), ARTa’s vigilance parameter is raised by

a small constant (Eq. (98)), and the search continues with the remaining nodes until a

resonant category that satisfies both ρa and ρab is either found or created. Finally, ρa is

reset to its baseline value ρa = ρ̄a for the presentation of the following sample. The study

in (Anagnostopoulos & Georgiopoulos, 2003), however, indicates that not using match

tracking (MT+) reduces the computational burden and model complexity while improving

generalization capabilities (Andonie & Sasu, 2006).

In both fuzzy ART modules learning ensues as described in Sec. 2.2, whereas the

map field’s parameters are updated such that a permanent association is made between the

active nodes of ARTa and ARTb

wab
Jk(new) = y(F

b
2 ) ∧ wab

J (old) =


1, if k = K

0, otherwise
. (104)

Note that uncommitted nodes participate in the WTA competition. They are initial-

ized as ®1, and the ones belonging to ARTa are mapped to all ARTb nodes. A slow-learning

mode was introduced in (Carpenter et al., 1995):

wab
J (new) = (1 − βab)w

ab
J (old) + βab

[
y(F

b
2 ) ∧ wab

J (old)
]
, (105)
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where βab is the map field’s learning rate, and the conditional probability p(cb
K |c

a
J ) can be

estimated nonparametrically as

p̂(cb
K |c

a
J ) =

wab
JK

Nb∑
i=1

wab
Ji

. (106)

Inference. In testingmode onlyARTa is active. Its output is used tomake a prediction

and concretely retrieve the labels from ARTb via the Fab’s weight matrix (Eqs. (100)

and (101)). Note that training, prediction/inference and learning are all WTA (based on a

single category).

The simplified fuzzy ARTMAP (Kasuba, 1993) is a simplification of the original

fuzzyARTMAP specifically devised for classification tasks, in which, like simpleARTMAP

(Sec. 3.1.1), ARTb is replaced by vectors indicating the class labels. Another simplified

design is discussed in (Vakil-Baghmisheh & Pavešić, 2003).

3.1.3. FuzzyMin-Max. FuzzyMin-Max (Simpson, 1992) is a supervised learning

neural network classifier that uses fuzzy sets for its internal categories, like its clustering

counterpart (Sec. 2.1.4). It is composed of three layers of neurons: an input layer FA, a layer

of hyperbox nodes FB and a layer of class nodes FC. The hyperbox fuzzy sets are adjusted

using an expansion-and-contraction-based fuzzy min-max classification learning algorithm

that adjusts the fuzzy associations between the inputs and classes. It accomplishes that by

identifying which hyperbox to expand for each input and expanding it accordingly. Then,

it identifies any resulting overlap between hyperboxes of different classes and minimally

adjusts these hyperboxes to eliminate the overlap.

3.1.4. Fusion ARTMAP. Fusion ARTMAP (Asfour et al., 1993) is a modular

neural network model designed to classify data originating from multiple sources (i.e.,

to perform sensor fusion). It generalizes fuzzy ARTMAP (Sec. 3.1.2) by incorporating

multiple ART modules, one for each sensor. The outputs of these local ART modules are

fed to a fuzzy ARTMAP, specifically, to the latter’s ARTa module, since ARTb receives
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the class labels. Another key feature of fusion ARTMAP is the parallel match tracking.

Following an incorrect prediction, the vigilance parameter of each ART module is raised

(individual ARTs and fuzzy ARTMAP’s ARTa)

ρk = ρ̄k + ∆ρ, ∀k, (107)

∆ρ =
(
Mn

J − ρ̄n
)
+ ε, (108)

n = arg min
k

(
M k

J

)
, (109)

where ρk and ρ̄k are the vigilance and baseline vigilance of ART module k, respectively.

Each ART module can have its own baseline vigilance parameter, or the entire fusion

ARTMAP system can have a single common baseline vigilance. The variable M k
J is the

match function value of ART module k’s category J. Note that ART module n yielded the

smallest match value and is therefore deemed the least predictive.

The vigilance values of the local ART modules and fuzzy ARTMAP’s ARTa are

increased by the same value, which is enough to promote a mismatch in ART module n.

Therefore, the latter is forced to promote a new search, while the other modules maintain

their output. This procedure enables credit assignment to specific modules instead of

uniformly blaming all modules regardless of their predictive power. Fusion ARTMAP

improves memory compression (compared to single-ART module systems that concatenate

all sensor data into a single large vector) given the sharing of the local ART’s weight vectors

across fuzzy ARTMAP.

The generalized symmetric fusion ARTMAP (Asfour et al., 1993) replaces fuzzy

ARTMAP with a global ART module that receives the outputs of all local ART modules

and is responsible for the decision-making process. This model can handle multiple input

sensors and multiple supervised inputs. In cases consisting of only one supervised input,

the functionality is reduced to fusion ARTMAP.
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3.1.5. LAPART. The LAPART 1 (Healy et al., 1993) and LAPART 2 (Healy &

Caudell, 1998) neural networks are two ART-based logic inference and supervised learning

architectures. The LAPART 1 architecture uses two ART 1 networks, A and B, to learn

logic inference and association, wherein if network A assigns its input sample to a category,

that results in network B assigning its input to the corresponding category. It then uses the

learned inference associations between the two networks to test hypotheses and classification

decisions. The LAPART 2 algorithm uses the same architecture but introduces a lateral

reset procedure and builds a rule extraction network that was shown to converge in two

passes through the training data.

3.1.6. ART-EMAP. Adaptive resonance theory with spatial and temporal evidence

integration (ART-EMAP) (Carpenter & Ross, 1995) augments fuzzy ARTMAP with a

number of features to manage noisy or ambiguous data: distributed representation during

inference, integration of spatial-time information, extension of the map field into a multiple

field EMAP module and a fine-tuning unsupervised learning stage.

Training. ART-EMAP training is identical to fuzzy ARTMAP’s (Sec. 3.1.2).

Inference. ART-EMAP introduces two contrast enhancement procedures for dis-

tributed activation: the normalized power rule defined as

y
(Fa

2 )

j =
(Ta

j )
p

Na∑
i=1
(Ta

i )
p

, p > 1, (110)

and the threshold rule

y
(Fa

2 )

j =
[Ta

j − T]+

Na∑
i=1
[Ta

i − T]+
, (111)

where T is a threshold parameter, and [ξ]+ = max{0, ξ} is a rectifier operation. The activity

of the first map field Fab
1 is then defined as
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y(F
ab
1 ) = Sab, (112)

where

Sab
k =

Na∑
j=1

wab
jk y
(Fa

2 )

j . (113)

A class is predicted using such distributed representation via the second map field

activity Fab
2

y
(Fab

2 )

k =


1, if k = K

0, otherwise
, (114)

where

K = arg max
k

[
y
(Fab

1 )

k

]
. (115)

To address ambiguity (i.e., categorieswith similar activation values), the Fab
2 activity

can be redefined as:

y
(Fab

2 )

k =


1, if y(F

ab
1 )

k > (DC)y
(Fab

1 )

j ∀ j , k

0, otherwise
(116)

where DC ≥ 1 is a decision criterion. While y
(Fab

2 )

k = ®0, the system waits for another input

(i.e., data samples from the same, yet unknown, class) until the inequality in Eq. (116) is

satisfied. Moreover, the power rule can also be applied to the Fab
1 activity

y
(Fab

1 )

k =
(Sab

k )
q

Nb∑
i=1
(Sab

i )
q

, q > 1, (117)

where the q is the power parameter.
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To handle noisy environments, ART-EMAP uses a map evidence accumulation field

Fab
E that combines information from multiple Fab

1 activities over time:

Tab
k (new) = Tab

k (old) + y
(Fab

1 )

k , (118)

where Tab
k is the evidence accumulating MTM. It is initialized as zero (T ab = ®0) and reset

once the DC is satisfied. The Fab
2 activity can then be redefined as

y
(Fab

2 )

k =


1, if Tk > (DC)Tj ∀ j , k

0, otherwise
, (119)

where improved accuracy correlates with larger DC values and a greater number of sam-

ples (Carpenter & Ross, 1995).

Finally, to learn from the samples used to disambiguate prediction, an unsupervised

learning stage (“rehearsal”) takes place. In this fine-tuning stage, the LTMs of ARTa, ARTb

and the map field maintain their values, whereas another set of weights from Fa2 to FabE is

adapted when such samples are re-presented to the system.

3.1.7. Adaptive Resonance Associative Map. The fuzzy adaptive resonance as-

sociative map (ARAM) (Tan, 1995) extends ART autoassociative to heteroassociative map-

pings by connecting two ARTs (A and B) via a common category representation field

F2.

LTM. Fuzzy ARAM has two F1 layers connected to a single F2 layer whose LTM

unit is θ = {w = [wa, wb]}.

Activation. When normalized and complement coded inputs (x = [xa, xb]) are pre-

sented, the activation function is computed as

Tj = γ
|xa ∧ wa

j |

αa + |w
a
j |
+ (1 − γ)

|xb ∧ wb
j |

αb + |w
b
j |
, (120)
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where γ ∈ [0, 1] is the contribution parameter. Note that there is an independent set of

parameters for each module: choice parameters αm > 0, learning parameters βm ∈ [0, 1]

and vigilance parameters ρm ∈ [0, 1], where m ∈ {a, b}.

Match and resonance. Consider that node J has been selected via a WTA competi-

tion. F1 and F2 activities are defined as:

y
(Fm

1 )

j =


xm, if Fm

2 is inactive

xm ∧ wm
J , otherwise

, (121)

where m ∈ {a, b}, and

y
(F2)
j =


1, if j = J

0, otherwise
. (122)

The match functions are computed for node J as

Mm
J =
‖y(F

m
1 )‖1

‖xm‖1
=
‖xm ∧ wm

J ‖1

‖xm‖1
, (123)

and resonance occurs if Mm
J ≥ ρm for both m ∈ {a, b} simultaneously. Thus, V RJ =

{[xa, xb] : Ma
J (x

a) ≥ ρa and Mb
J (x

b) ≥ ρb}. In this case, learning ensues such that the

weights wm
J are updated using fuzzy ART’s learning rule (Eq. (21) in Sec. 2.2). Otherwise,

a match tracking mechanism temporarily raises the baseline ρ̄a (which is reset at the start

of each sample presentation) as in fuzzy ARTMAP (Sec. 3.1.2), and the search for another

resonant category continues. If an uncommitted category is recruited, then another one

is initialized as wm = ®1. Specifically, when such dynamics take place and γ = 1, fuzzy

ARAM is functionally equivalent to fuzzy ARTMAP (Tan, 1995).

3.1.8. Gaussian ARTMAP. The Gaussian ARTMAP (Williamson, 1996) is a dis-

criminative model (Vigdor & Lerner, 2007) that uses Gaussian ART elementary units

(Sec. 2.1.6) as building blocks.
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Training. Training follows the standard ARTMAP dynamics (Sec. 3.1.1), where the

match tracking mechanism is triggered following a predictive error.

Inference. During testing mode, predictions are made considering the total proba-

bility of each class, i.e., by using Eqs. (100) and (101) with y
(Fa

2 )

j = Ta
j (Eq. (32)).

3.1.9. Probabilistic Fuzzy ARTMAP. The probabilistic fuzzy ARTMAP (Lim &

Harrison, 1997a, 2000a) combines fuzzy ARTMAP’s code compression ability (Sec. 3.1.2)

with the probability density function estimation of probabilistic neural networks (PNN) (Specht,

1990) in a hybrid system: during training, a fuzzy ARTMAP variant is used to generate

prototypes in a supervised manner, whereas during inference, the PNN uses Bayes decision

theory to make predictions.

Training. Training is similar to fuzzy ARTMAP, except for the following:

1. Map field dynamics: the activity of Fab used to compute the match function (Eq. (103)

in Sec. 3.1.2) is defined as

y(F
ab) = y(F

b
2 ) ∧

wab
J

‖wab
J ‖1

, (124)

and when learning ensues,W ab is updated using

wab
J (new) = wab

J (old) + y(F
ab); (125)

2. If the match tracking mechanism is engaged, then the condition

0 ≤ ρa ≤ min
(
1, Ma

J + ε
)
, 0 < ε � 1, (126)

is enforced to enable identical categories to be associated with different classes (Lim

& Harrison, 1997b);
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3. Centroids µa
j are embedded in ARTa (i.e., the LTM unit is θa = {wa, µa}). These are

initialized as µa
j =
®0 and recursively estimated using

µa
j (new) = µa

j (old) +
1

‖wab
J ‖1

(
xa − µa

j (old)
)
, (127)

where xa is complement-coded for fuzzy ARTMAP categories w but not for the

centroids µ.

Inference. Prediction is accomplished using the maximum a posteriori (MAP) or

minimum-risk estimate:

p̂(cb
k |x

a) = p̂(xa |cb
k)p̂(c

b
k)l(c j k), (128)

where l(c j k) represents the cost of selecting cb
k when the true class is cb

j . The prior

probability estimate of a given class k is given by the ratio of the number of samples

encoded by ARTa’s prototypes that are mapped to class k to the total number of samples

presented to the probabilistic fuzzy ARTMAP:

p̂(cb
k) =

Na∑
j=1

wab
jk

Nb∑
k=1

Na∑
j=1

wab
jk

, (129)

and p(xa |cb
k) is estimated using the Parzen-windowmethod (Cacoullos, 1966; Parzen, 1962)

with isotopic Gaussians kernels (Σ j = σ
2
j I )

p̂(xa |cb
k) =

Na∑
j=1

1cb
k
(µa

j )

Na∑
i=1

1cb
k
(µa

i )

e

(
−
‖xa−µa

j
‖22

2σ2
j

)
(2π)

d
2 σd

j

, (130)
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where

1cb
k
(µa

j ) =


1, if µa

j ∈ cb
k

0, otherwise
. (131)

The kernels used for the realization of the Parzen-window density estimation have

heteroscedastic components, which are computed as

σj =
1
r

min
i
‖µa

j − µ
a
i ‖2, (132)

or determined using the k-nearest neighbors method (Duda et al., 2000)

σj =
1
k

k∑
i=1
‖µa

j − µ
a
i ‖, 1 ≤ k ≤ Na − 1, (133)

where r is a user-defined overlapping parameter, and µa
j and µ

a
i belong to different classes

in Eqs. (132) and (133).

3.1.10. ARTMAP-IC. The ARTMAP-IC model (Carpenter &Markuzon, 1998) is

a fuzzy ARTMAP variant whose key characteristics are (i) a newmatch tracking mechanism

(MT-) to reducemodel complexity and handle “inconsistent cases” (IC) and (ii) the inclusion

of instance counting (via a new counting field F3) for probabilistic distributed prediction.

“Inconsistent cases” are scenarios in which identical samples pair with different classes.

ARTMAP-IC replaces ARTb with a vector yb encoding the classes of the classifi-

cation problem, such that, for a given input xa presented to ARTa,

yb
i =


1, if xa ∈ class i

0, otherwise
. (134)
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The activity of the counting field F3 (located in-between ARTa and Fab) is defined

as

y
(F3)
j =


y
(Fa

2 )

j , training

c j y
(Fa

2 )

j

Na∑
i=1

ciy
(Fa

2 )

i

, prediction
, (135)

where the instance counting weight c j records the number of samples that are encoded by

category j, i.e., the number of times it is activated. The map field Fab activity can then be

defined as

y(F
ab) =


yb ∧ U, training

U, prediction
(136)

where the kth component of the map field’s input is

Uk =

Na∑
j=1

wab
jk y
(F3)
j , k = 1, ..., Nb, (137)

and here Nb represents the number of classes.

Training. During training, the match function is defined as

Mab
J =

‖yb ∧ U ‖1

‖yb‖1
= ‖yb ∧ wab

J ‖1, (138)

since U = wab
J (because y(F

a
2 ) = y(F3)) and ‖yb‖1 = 1. If the vigilance criterion is not

satisfied (Mab
J < ρab), then the new match tracking mechanism (MT-) is engaged such that

ARTa’s vigilance is set to

ρa(new) = Ma
J + ε, ε ≤ 0 and ‖ε ‖ small, (139)
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and the search proceeds as with fuzzy ARTMAP. Otherwise, if learning ensues, then fuzzy

ARTa and themap field weight vectors learn as described in Secs. 2.2 and 3.1.2, respectively.

The instance counting is updated as

c j(new) = c j(old) + y
(Fa

2 )

j , (140)

where c j’s are initialized as 0.

Inference. During testing, no search occurs, and ARTMAP-IC uses the Q-max rule

to distribute Fa2 activity via the following contrast enhancement procedure:

y
(Fa

2 )

j =


Tj∑

λ∈Λ
Tλ
, if j ∈ Λ

0, otherwise

, (141)

where Λ is the set formed by the Q categories with the largest activation values (Q is a

user-defined parameter). This is similar to k-nearest neighbors (Duda et al., 2000) where Q

assumes the role of k (Carpenter & Markuzon, 1998). Setting Q = 1 leads to WTA mode.

Finally, the probability of class k is then computed as

σk =
Uk

Nb∑
l=1

Ul

=

∑
j∈Λ

wab
jk c jTj

Nb∑
l=1

∑
j∈Λ

wab
jl c jTj

. (142)

3.1.11. Distributed ARTMAP. Distributed ARTMAP (dARTMAP) (Carpenter

et al., 1998) was developed to improve supervised ART models regarding model com-

pactness and noise robustness (i.e., reduce category proliferation) while performing fast

and stable learning via distributed representation. It features distributed activation, match

and learning functions. Notably, distributed ARTMAP generalizes the following super-
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vised ART models (Carpenter, 2003): “dARTMAP ⊃ ARTMAP-IC ⊃ default ARTMAP

⊃ fuzzy ARTMAP”, where ⊃ is used to indicate containment considering this ARTMAP’s

ecosystem.

In case of classification problems, distributed ARTMAP uses distributed ART

(Sec. 2.1.5) as a building block for ARTa, while replacingARTbwith a binary vector indicat-

ing the input’s class membership (Eq. (134) in Sec. 3.1.10). The distributed ARTMAP uses

an increased-gradient content-addressable memory (IG CAM) rule for contrast enhance-

ment. A CAM rule defines a function that yields the steady state values of the network’s

STM when an input sample is presented. Particularly, distributed ARTMAP’s CAM rule

defines a power function that is controlled by a parameter p. The latter has a role akin to the

variance in Gaussian kernels, and, as it tends to infinity, the network converges to WTA.

Training. During training, the distributed ARTMAP alternates between distributed

and WTA modes. Like ARTMAP-IC (Sec. 3.1.10), distributed ARTMAP features a count-

ing field Fa3 (for instance counting purposes) which is cascaded to Fa2 and employs the

MT- match tracking search algorithm. Briefly, the distributed representation undergoes the

unsupervised (Eqs. (25) to (27)) and supervised vigilance (i.e., prediction assessment) tests,

and if one of them fails the system switches to WTA mode and its corresponding dynamics

are carried out (in which nodes can be added incrementally). Otherwise, distributed mode

dynamics take place.

Particularly, the distributed ARTMAP uses the distributed choice-by-difference ac-

tivation function (Eq. (22) in Sec. 2.1.5 disregarding the depletion parameters)

Tj =

2d∑
i=1

[
xa

i ∧ (1 − τ
bu
i )

]
+ (1 − α)

2d∑
i=1

τbu
i , α ∈ (0, 1), (143)

and, after these are computed, the following subsets of highly active nodes are considered:

1. Λ = { j : Tj ≥ Tu}

2. Λ′ = { j : Tj = (2 − α)d}
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where Tu is the activation function of an uncommitted node (τbu = τtd = ®0). The IG

CAM rule specifies the following functions for the steady-state activities of distributed

ARTMAP’s modes:

• Distributed mode

– If Λ′ , {∅}, then

y
(Fa

2 )

j =


1
|Λ′|

, ∀ j ∈ Λ′

0, otherwise
, (144)

where | · | represents the cardinality of a set.

– If Λ′ = {∅} and Λ , {∅}, then

y
(Fa

2 )

j =



1

1 +
∑

λ∈Λ,λ, j

[
(2 − α)d − Tj

(2 − α)d − Tλ

] p , ∀ j ∈ Λ

0, otherwise

, (145)

where p ∈ (0,∞) is the power parameter. The ARTa’s counting field F3 activity is

then defined as

y
(Fa

3 )

j =
c j y
(Fa

2 )

j

C∑
λ=1

cλy
(Fa

2 )

λ

, (146)

where C is the number of ARTa’s committed nodes, and c j is the instance counting of

node j (if uncommitted, then c j = 0). The signal used in the ARTa’s match function

is then

σi =

C∑
j=1

[
y
(Fa

3 )

j − τtd
j,i

]+
, i = 1, ..., 2d. (147)

• WTA mode

– If Λ , {∅}, then the winner node is J = arg max
j∈Λ

(Tj).
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– If Λ = {∅}, then the uncommitted node is recruited to learn the presented input

sample.

The ARTa’s counting field F3 activity is then

y
(Fa

3 )

j = y
(Fa

2 )

j =


1, if j = J

0, otherwise
, (148)

and the signal used in the ARTa’s match function is

σi =
(
1 − τtd

J,i

)
, i = 1, ..., 2d. (149)

If the vigilance test of ARTa is not satisfied (Eqs. (25) to (27)) in Sec. 2.1.5), then

distributedARTMAP reverts toWTAmode, and the search continues until a resonant node is

either found or created. Finally, the output class is then estimated using Eqs. (100) and (101)

with y
(Fa

3 )

j in place of y(F2)
j . If the prediction is incorrect, then match tracking is engaged

using the MT- algorithm (Sec. 3.1.10). Otherwise, ARTa adapts using the distributed ART

learning laws described in Sec. 2.1.5 (the top-down thresholds’ components are updated

using y
(Fa

3 )

j in place of y
(F2)
j in Eq. (30)), and the instance countings are updated using

Eq. (140) in Sec. 3.1.10.

Note that if the distributed ARTMAP system enters a resonant state while in dis-

tributed mode, then, prior to learning, a credit assignment stage takes place in which the

nodes permanently associated with the wrong class are inhibited, the Fa2 activity is re-

normalized (i.e., ‖y(Fa
2 )‖1 = 1) and the Fa3 activity and the signal σ are recomputed using

Eqs. (146) and (147), respectively.

Inference. To make a prediction for a new sample x, distributed ARTMAP operates

similarly to the training phase but always in distributed mode and with search and learning

disabled (i.e., in feedforward mode).
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3.1.12. Hypersphere ARTMAP. Hypersphere ARTMAP (Anagnostopoulos &

Georgiopoulos, 2000) closely follows the operation of fuzzy ARTMAP (Sec. 3.1.2) but

instead uses hypersphere ART (Sec. 2.1.7) modules for ARTa and ARTb. ARTb is responsi-

ble for clustering the classes (xb), ARTa does the data samples (xa) and the inter-ARTmaps

the ARTa categories to the ARTb categories regulated by the match tracking procedure.

3.1.13. EllipsoidARTMAP. Similar to hypersphere ARTMAP (Sec.3.1.12), ellip-

soidARTMAP (Anagnostopoulos&Georgiopoulos, 2001a,b) uses ellipsoidART (Sec. 2.1.8)

for both its ARTa and ARTb modules while closely following fuzzy ARTMAP’s operation

(Sec. 3.1.2). The boosted ellipsoid ARTMAP variant was presented in (Anagnostopoulos

et al., 2002a,b) to enhance the generalization capability and reduce category proliferation in

the original model, both of which are achieved by allowing for non-zero training error. This

variant also incorporates other improvements such as allowing many-to-many mappings

and the ability to handle inconsistent cases (see Sec. 3.1.10); the latter would render the

original model unstable (Anagnostopoulos et al., 2002a,b). Comparative studies with these

and other ARTMAPmodels can be found in (Anagnostopoulos et al., 2003; Le et al., 2005).

3.1.14. µARTMAP. The µARTMAPmodel (Gomez-Sanchez et al., 2002; Sanchez

et al., 2000) is a fuzzy ARTMAP variant developed to reduce category proliferation due

to overlapping classes, consequently improving generalization capability. This is accom-

plished by regulating the conditional entropy between the input (ARTa) and output (ARTb)

spaces

H(ARTb |ARTa) =

Na∑
j=1

h j, (150)

where h j is the contribution of ARTa’s node j to the total entropy:

h j = −p̂(ca
j )

Nb∑
k=1

p̂(cb
k |c

a
j ) log2 p̂(cb

k |c
a
j ), (151)
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and the probabilities are estimated using the map field’s LTM unit, whose dynamics are

similar to PROBART’s (Marriott & Harrison, 1995) (Sec. 3.2.1). This process indirectly

controls the training error, which is relaxed to address overfitting.

Training. Training is divided into two phases, and the first one is performed online.

Assuming the resonant categories of ARTa and ARTb are J and K , respectively, the map

field vigilance test is defined using Eq. (151):

Mab
J = hJ, (152)

where

p̂(cb
k |c

a
j ) =


y
(Fab)

k

‖y(Fab)‖1
, if j = J

wab
jk

‖wab
j ‖1

, otherwise
, (153)

p̂(ca
j ) =



‖y(F
ab)‖1

‖y(Fab)‖1 +
Na∑

i=1,i,J
‖wab

i ‖1

, if j = J

‖wab
j ‖1

‖y(Fab)‖1 +
Na∑

i=1,i,J
‖wab

i ‖1

, otherwise
. (154)

Note, however, that if J is an uncommitted node, then

p̂(cb
k |c

a
J ) =


1, if k = K

0, otherwise
, (155)

which implies hJ = 0. The value of hJ measures the homogeneity of ARTb nodes (i.e.,

classes) associated with ARTa’s category J. If Mab
J ≤ hmax , where hmax is a user-defined

parameter, then the map field vigilance is satisfied, and learning ensues as in PROBART
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(Eq. (209)). Otherwise, ARTa’s node J is inhibited, and the search continues without

changing ARTa’s vigilance parameter. Note that hmax = 0 implies mapping to a single

class, whereas hmax > 0 allows mapping to different classes (i.e., non-zero training error).

Next, an offline training phase is performed to measure the overlap between cate-

gories. In this second training phase no learning is permitted within the ART modules.

Probabilities are re-estimated using

p̂(cb
k |c

a
j ) =

vab
jk

‖vab
j ‖1

, (156)

p̂(ca
j ) =

‖vab
j ‖1

Na∑
i=1
‖vab

i ‖1

, (157)

where a temporary map field co-occurrence matrix V ab is updated in an unsupervised

manner, i.e., without match tracking (initialization: V ab = 0). The total entropy H is

computed using Eq. (150), and if H > Hmax , where Hmax is a user-defined parameter, then

themapping is considered too entropic. ARTa’s category M with the largest contribution hM

is removed, and the baseline vigilance ρ̄a is increased for all new uncommitted categories

as

ρ̄a =
‖wa

M ‖1

‖xa‖1
+ ε, (158)

thus adaptively tuning individual vigilance parameters of ARTa’s categories. The samples

that were associated with node M are re-presented, and the learning process resumes.

This entire process is repeated until H ≤ Hmax . Notably, if hmax,Hmax ≥ log2 Nb then

µARTMAP behaves similarly to PROBART, whereas if hmax = 0 and Hmax ≥ log2 Nb, then

µARTMAP behaves similarly to fuzzy ARTMAP.

Inference. Predictions are made using Eqs. (100) and (101), i.e., the class output K

is estimated as the one that has the largest frequency of association with ARTa’s resonant

category J.
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Under certain conditions, µARTMAP creates large categories that lead to consid-

erable overlaps and decrease the system’s performance. The safe-µARTMAP (Gomez-

Sanchez et al., 2001) variant is a generalization of µARTMAP that adds another vigilance

criterion to mediate learning. Specifically, to avoid the formation of large hyperrectan-

gles that enclose far apart samples belonging to the same class, besides passing both the

ARTa and the map field vigilance tests, an ARTa category also needs to undergo a distance

criterion defined as

M∆wJ =
‖wa

J ‖1 − ‖w
a
J ∧ xa‖1

‖xa‖1
. (159)

Learning only occurs if this third vigilance test is also satisfied (M∆wJ ≤ δ, 0 < δ < 1 − ρ).

This test imposes a restriction on the instantaneous change of a category size, which is

upper bounded by ‖xa‖1δ. Particularly, safe-µARTMAP reduces to µARTMAP when

δ = 1 (which effectively implies the absence of a constraint).

3.1.15. Default ARTMAPs. The default ARTMAP 1 model (Carpenter, 2003) is

characterized by the usage of a distributed representation to perform continuously valued

predictions, as opposed to binary and fuzzy ARTMAPmodels (Secs. 3.1.1 and 3.1.2), which

use WTA code representation.

Training. Default ARTMAP 1’s training is akin to fuzzy ARTMAP’s, except that

(i) ARTb is absent (default ARTMAP 1 is a simplified architecture), (ii) its ARTa module

employs the choice-by-difference activation function defined as (Carpenter & Gjaja, 1994)

Tj = ‖x ∧ wa
j ‖1 + (1 − α)(d − ‖w

a
j ‖1), α ∈ (0, 1), (160)

and (iii) its match tracking algorithm is MT- search (Carpenter & Markuzon, 1998).

Inference. As opposed to fuzzy ARTMAP, default ARTMAP 1 uses a distributed

representation for inference, where two subsets of highly active neurons are selected as:
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1. Λ = {λ = 1, ..., Na : Tλ > αd}

2. Λ′ = {λ = 1, ..., Na : Tλ = d (i.e., wλ = xa)}

Next, the IG CAM rule is applied:

• If Λ′ , {∅}, then

y j =


1
|Λ′|

, ∀ j ∈ Λ′

0, otherwise
, (161)

where | · | represents the cardinality of a set.

• If Λ′ = {∅}, then

y j =



[ 1
d − Tj

] p
∑
λ∈Λ

[ 1
d − Tλ

] p , ∀ j ∈ Λ

0, otherwise

. (162)

Finally, the predictions for each class are obtained using Eqs. (100) and (101) in

Sec. 3.1.1.

In a WTA system, such as fuzzy ARTMAP, after learning a sample, an immediate

re-presentation is guaranteed to yield a correct prediction, i.e., it passes the “next-input-test”.

However, the default ARTMAP 1 WTA prediction during training might not be the same

as the distributed one. To overcome this problem, the default ARTMAP 2 model (Amis &

Carpenter, 2007) introduces the “distributed-next-input-test” during training to ensure that

a correct prediction would also be performed under a distributed representation. Briefly, in

order to anticipate an error, after learning from a sample in a WTA mode, the prediction is

verified again using a distributed representation. If the distributed prediction is correct, then

learning resumes by returning to WTA mode and presenting the next sample. Otherwise,

the match tracking mechanism is engaged, the system reverts to WTA mode, the resonant

category is inhibited and the network restarts the search to learn more from that sample.
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3.1.16. Boosted ARTMAP. Boosted ARTMAP (Verzi et al., 1998) is a variant

of fuzzy ARTMAP (Sec. 3.1.2) closely related to PROBART (Sec. 3.2.1). It is inspired

by boosting theory (Schapire, 1990) and was developed to improve the fuzzy ARTMAP’s

generalization capability (since it is prone to overfitting the training data) and to create less

complex networks (i.e., to reduce the type of category proliferation caused by overlapping

classes). These are addressed by regulating the training error, which is allowed to be non-

zero. Particularly, boosted ARTMAP’s ARTa and ARTb modules are boosted ART models

(which are identical to fuzzy ART, except that the categories are endowed with individual

vigilance parameters), and its map field dynamics are equal to PROBARTs’.

Training. Boosted ARTMAP learning is offline. After a first pass through the data,

the error of ARTa’s category j is estimated as

ε j = p je j =

‖wab
j ‖1 −max

k

(
wab

jk

)
Na∑

m=1

Nb∑
n=1

wab
mn

, (163)

where

p j = p̂
(
x selects ca

j

)
= p̂(ca

j ) =
‖wab

j ‖1

Na∑
m=1

Nb∑
n=1

wab
mn

, (164)

e j = p̂
(
c∗ not predicted by ca

j

)
= 1 −

max
k

(
wab

jk

)
‖wab

j ‖1
, (165)

and the total error is given by

εT =

Na∑
j=1

ε j =

Na∑
j=1

[
‖wab

j ‖1 −max
k

(
wab

jk

)]
Na∑

m=1

Nb∑
n=1

wab
mn

, (166)
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where c∗ is the true class. Then, the vigilance parameters of ARTa’s nodes are raised by a

user-defined parameter δ:

ρλ(new) = ρλ(old) + δ, λ ∈ Λ, (167)

where Λ = {λ : ελ > εmax}, i.e., Λ is the subset of nodes λ with contributions ελ to the

total error εT larger than the desired error εmax . If Λ = {∅} but the total error εT is above

the desired error εmax (i.e., if εT > εmax), then the vigilances of all nodes j with the largest

contribution ε j are increased following Eq. (167). Note that when new nodes are added to

the system, their initial vigilance parameter is set to a relaxed baseline value ρ̄.

Inference. In prediction mode, when a sample is presented, the corresponding class

label is obtained using the map field weight vector associated with ARTa’s resonant cate-

gory J

K = arg max
k

[
wab

Jk

]
. (168)

As discussed in (Gomez-Sanchez et al., 2002), due to the lack of a match tracking

mechanism, this version of boosted ARTMAP cannot handle “populated exceptions”, i.e.,

when samples from one class surround another and it is necessary to create a category inside

another category. The second version of boosted ARTMAP (Verzi et al., 2006) augments

its predecessor with a match tracking mechanism to regulate the training error, whose map

field dynamics are discussed next.

Training. During learning, when a sample pair is presented and ARTa’s and ARTb’s

resonant nodes are J and K , respectively, the map field match function is given by

Mab
J = (1 − e′J)

‖y(F
b
2 ) ∧ wab

′

J ‖1

‖y(F
b
2 )‖1

, (169)
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and resonance occurs if the winning category satisfies MJ > (1 − ε)ρab, where ε ∈ [0, 1]

is the error tolerance parameter that binds the training error. The map field then learns

as in PROBART (Eq. (209)). Otherwise, the match tracking mechanism is engaged. The

temporary variables e′J and wab
′

J in Eq. (169) are computed as if category J was allowed to

learn:

wab
′

Jl =


1, if l = arg max

k

(
wab

Jk

)
d0 + εe, otherwise

, (170)

e′J = 1 −
max

k

(
wab

′′

Jk

)
‖wab′′

J ‖1
, (171)

wab
′′

Jl =


wab

Jl + 1, if l = K

wab
Jl , otherwise

, (172)

where d·e is the ceiling function. If node J is uncommitted, then wab
′

J = ®1 and e′J = 0 (no

mismatch will take place).

Inference. Predictions are made using Eq. (168).

Note that boosted ART generalizes fuzzy ART, and boosted ARTMAP reduces in

functionality to fuzzy ARTMAP by setting εd = 0 and ρab > 0.5 and to PROBART by

setting εd = 1. Boosted ARTMAP performs empirical risk minimization, however, variants

of boosted ARTMAP, such as (Verzi et al., 2006; Verzi et al., 2002, 2001), perform structural

risk minimization and use Rademacher penalization (Koltchinskii, 2001).

3.1.17. Fuzzy ARTMAPwith Input Relevances. The fuzzy ARTMAPwith input

relevances (FAMR) model (Andonie & Sasu, 2003; Andonie & Sasu, 2006; Andonie et al.,

2003b) is a fuzzyARTMAP variant that modifies themap field dynamics, while maintaining

the remaining dynamics of fuzzy ARTMAP. Thus, the incremental and non-parametric
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estimation of posterior probabilities based on the map field is augmented to reflect the

degree of importance of incoming samples, especially when these are arriving frommultiple

heterogeneous sources corrupted by different noise levels.

Training. Particularly, a sample arriving at time t > 0 has a relevance factor

qt ∈ (0,∞). It is a user-defined or computed parameter, e.g., samples may be ranked

based on their source noise level or have their relevance factors made proportional to its im-

portance. Assuming the resonant categories of ARTa and ARTb are J and K , respectively,

then the map field recursive update equations are based on the stochastic approximation

procedure (Andonie, 1990):

wab
jk (new) =



wab
jk (old), j , J

(1 − At)w
ab
jk (old) + At, j = J, k = K

(1 − At)w
ab
jk (old), j = J, k , K

, (173)

where

At =
qt

QJ(new)
, (174)

QJ(new) = QJ(old) + qt, (175)

and Q = [Q1...QNa]. Thus, an entry wab
i, j of the map field matrix W ab is an estimate of

p(cb
k |c

a
k ). If a new category K is created in ARTb, then the map field weights wab

jk are

adapted as:

wab
jk (new) =


q0

Nb(new)Q j
, ∀ j, k = K

wab
jk (old) −

wab
jK(new)

Nb(new) − 1
, ∀ j, k , K

, (176)
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where Nb(new) = Nb(old) + 1 is the new number of nodes in ARTb. If a new category is

created in ARTa (J = Na + 1), then QJ is set as q0 ≥ 0 (initial relevance parameter) and

wab
Jk = 1/Nb, ∀k. Finally, the map field’s vigilance test is redefined as

Mab
J = Nbw

ab
JK, (177)

such that Mab
J ≥ ρab must be satisfied for resonance to occur.

Inference. Predictions are made similarly to fuzzy ARTMAP (Sec. 3.1.2).

3.1.18. Bayesian ARTMAP. Bayesian ARTMAP (Vigdor & Lerner, 2007) is a

generative model based on Bayes’ decision theory (Vigdor & Lerner, 2007) that uses

Bayesian ART modules (Sec. 2.1.10) as building blocks and represents class density by

Gaussian mixtures. Moreover, the posterior probabilities in Bayes’ theorem are estimated

within and between ART modules.

Training. During training, the map field LTM unit is a matrix of association fre-

quency (sample count) θab = {N = [nk j]Nb×Na} that is used to estimate the ARTa and ARTb

joint probability distribution

p̂(cb
k, c

a
j ) =

nk j

Nb∑
i=1

Na∑
l=1

nil

, (178)

such that soft and hard mappings between ART modules are possible, i.e., a deterministic

many-to-one mapping or a probabilistic many-to-many mapping based on p̂(cb
k, c

a
j ). The

match tracking mechanism is triggered by the system if the match function value for ARTa’s

resonant category J

Mab
J = p̂(cb

k |c
a
J ) =

nk,J
Nb∑
i=1

ni,J

, (179)

does not satisfy Mab
J ≥ ρab, where ρab represents the minimum class posterior probability

threshold. Note that setting ρab = 1 enforces a hard many-to-one mapping, and Bayesian

ARTMAP reduces to Gaussian ARTMAP (Sec. 3.1.8) during inference. In case of a
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mismatch, ARTa’s vigilance is temporarily changed to

ρa = Ma
J − δ, 0 ≤ δ � Ma

J , (180)

where Ma
J is computed using Eq. (58). The search continues until another resonant node

is found or a new node is created. When learning finally ensues, the matrix N entry nK J

(class K and ARTa’s resonant node J association) is updated as

nK J(new) = nK J(old) + 1. (181)

Inference. During testing, the class of an unseen sample is predicted using

K = arg max
k

(
p̂(cb

k |x
a)

)
, (182)

where

p̂(cb
k |x

a) =

Na∑
j=1

p̂(cb
k |c

a
j )p̂(x

a |ca
j )p̂(c

a
j )

Nb∑
i=1

Na∑
l=1

p̂(cb
i |c

a
l )p̂(x

a |ca
l )p̂(c

a
l )

, (183)

p̂(ca
j ) =

Nb∑
k=1

nk j

Na∑
l=1

Nb∑
k=1

nkl

, (184)

p̂(cb
k |c

a
j ) =

nk j

Nb∑
i=1

ni j

. (185)

Bayesian ARTMAP has been combined with topology learning in (Masuyama et al.,

2018b; Nooralishahi et al., 2018), kernel frameworks in (Masuyama et al., 2018a,b) and

expectation maximization in (Tang & Han, 2010).



85

3.1.19. Generalized ART. The generalized ART (Yap et al., 2008) is a hybrid

model that combines aGaussianARTMAP (Sec. 2.1.6) variant to cluster samples in the input

space and a generalized regression neural network (Specht, 1991) to perform prediction. In

this model, the mapping is one-to-one (bijective) and thus Na = Nb = N .

Training. Like Gaussian and Bayesian ARTs (Secs. 2.1.6 and 2.1.10, respectively),

the two modified Gaussian ART modules A and B use Bayes’ theorem to compute their

activation functions (posterior probability as in Eq. (32)), where the prior p̂(ca
j ) is estimated

using Eq. (34). Again, the evidence p̂(xa) is the same for all categories and thus does not

influence the WTA competition. The conditional probability estimate p̂(xa |θa
j ) is given by

p̂(xa |θa
j ) ∝ exp

[
−

1
2
λ(δa

j (x
a))

]
, (186)

where λ(δa
j ) is defined an ε-insensitive loss function to handle outliers and noisy data

λ(δa
j ) =


0, if δa

j ≤ εa

δa
j − εa, otherwise

, (187)

εa ≥ 0 is a user-defined parameter (if ε = 0, then Eq. (187) reduces to the Laplacian loss

function), and

δa
j (x

a) =

d∑
i=1

��� µa
ji − xi

σa
ji

���, (188)

the parameters µa
j , σ

a
j and na

j correspond to the centroid, standard deviation and sample

count of ARTa’s category j.

When ARTa’s BMU is selected via WTA, the following match functions are com-

puted

Ma
J = p̂(xa |ca

j ), (189)

Mb
J = p̂(xb |cb

j ), (190)
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where the system enters a resonant state if Mm
J ≥ ρm, ρm ∈ [0, 1], m ∈ {a, b}, i.e., if both

vigilance tests are simultaneously satisfied. If learning ensues, then

na
J(new) = na

J(old) + 1, (191)

µa
J(new) =

[
1 −

1
na

J(new)

]
µa

J(old) +
1

na
J(new)

xa, (192)

σa
J(new) =

[
1 −

1
na

J(new)

]
σa

J(old) +
1

na
J(new)

���µa
J(new) − xa

���. (193)

where the standard deviation update is based on the Laplacian distribution.

For a newly created category, na
N+1 = 1, µa

N+1 = xa, σa
N+1 = γa, σa

N+1 = σ2
init
®1

(user-defined initial standard deviation). Similar dynamics hold for ARTb, and for both

modules N = N + 1.

Inference. A prediction for an unseen sample x is made using

f (xa) =

N∑
j=1

p̂(ca
j |x

a)

σb
j

µb
j

N∑
j=1

p̂(ca
j |x

a)

σb
j

, f (xa) ∈ R1. (194)

The enhanced generalized ART (Yap et al., 2010) adds network pruning and rule

extraction strategies to the original model. Moreover, p̂(xa |ca
j ) is formally defined as the

Laplacian likelihood function

p̂(xa |ca
j ) =

1

2d
d∏

i=1
σa

ji

exp

[
−

d∑
i=1

1
σa

i j

���µa
i j − xa

i

���] , (195)

and, like Gaussian ART, ARTa’s match function is a normalized version of Eq. (195)

Ma
J = p̂(xa |ca

j ) = exp

[
−

d∑
i=1

1
σa

i j

���µa
i j − xa

i

���] , (196)
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where for resonance to occur in ARTa, Ma
J ≥ ρa must be satisfied. The match tracking

mechanism compares Mb
J to ρb

Mb
J = p̂(xa |ca

j ) = exp

[
−

d∑
i=1

1
σa

i j

���µa
i j − xa

i

���] , (197)

and if it is not satisfied, then thematch trackingmechanism temporarily raises ρa, inhibits the

current winner category J and resumes the search. The learning and prediction mechanisms

are the same as Generalized ART.

The improved generalized ART (Yap et al., 2011) builds upon the enhanced gener-

alized ART by (i) incorporating an ordering algorithm (Dagher et al., 1999) to determine

the order of input presentation and (ii) providing multivariate prediction f (xa) ∈ RL when

in inference mode:

fl(xa) =

N∑
j=1

p̂(ca
j |x

a)

σb
jl

µb
jl

N∑
j=1

p̂(ca
j |x

a)

σb
jl

, l ∈ {1, ..., L}. (198)

3.1.20. Self-Supervised ARTMAP. The self-supervised ARTMAP (Amis & Car-

penter, 2010; Carpenter, 2019) is amodel designed for self-supervised learning applications.

This machine learning modality consists of a supervised learning phase, in which only cer-

tain data features are specified, followed by an unsupervised phase, in which all the data

features are specified. Similar to fuzzy ARTMAP (Sec. 3.1.2), this model’s LTM is defined

by θ = {w = [u, vc]}, whose geometric interpretation is a hyperrectangle in the data space.

An artifact of this learning modality is the “undercommitted” categories, defined by the

presence of “undercommitted” features (i.e., ∃i : ui > vi).

Training. During the first phase, where supervised learning takes place for a pre-

defined number of epochs, only d̄ features are presented to the network. That is, a sample

x carries information only with respect to a subset of features. The latter are complement
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coded, whereas the unspecified features are set to 1’s:

xi =



xi, if i = 1, ..., d̄

1 − xi, if i = d + 1, ..., d + d̄

1, otherwise

, (199)

such that ‖x‖1 = 2d − d̄ and d̄ ≤ d. Then, an activation function based on choice-by-

difference (Carpenter & Gjaja, 1994) is computed for each category j:

Tj =
(2d − ‖x‖1) −

(
‖w j ‖1 − ‖x ∧ wa

j ‖1

)
1 − γφ j

− α
(
d − ‖w j ‖1

)
, (200)

where 0 < α < 1 is the choice parameter, 0 < γ < 1 − α is the undercommitment factor and

0 ≤ φ j ≤ 1 is the degree of undercommitment of category j, defined as

φ j =
1
d

d∑
i=1

[
u j,i − v j,i

]+
=

1
d

d∑
i=1

[
w j,i − (1 − w j,d+i)

]+
, (201)

where [·]+ is a rectifier operator. After the activation functions are computed, a subset

of highly active categories is formed: Λ = { j : Tj ≥ Tu = αd}, where Tu is the activation

function of a uncommitted category (initialized as w = ®1). IfΛ = {∅}, then an uncommitted

category is recruited and permanentlymapped to the class label-pairedwith the current input

sample. Otherwise, the mapping of the resonant committed category J is assessed. If it is

correct, then learning ensues as

wJ(new) = wJ(old) − β1 [wJ(old) − x]+ , (202)
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where [·]+ is a component-wise rectifier operator, and β1 ∈ (0, 1] is the learning parameter

of this first training phase. If the prediction is incorrect, then the match tracking mechanism

(user-defined MT+ or MT-, see Sec. 3.1.10) inhibits the resonant neuron, slightly changes

the baseline vigilance parameter ρ̄ and restarts the search.

During the second phase, unsupervised learning takes place for another pre-defined

number of epochs. As opposed to the previous phase, all the data features are presented

(i.e., x = [x, ®1 − x]), and distributed representation is employed. Additionally, the network

runs in slow learning mode, and no mismatches occur (the vigilance parameter is set to

zero). Particularly, if Λ = {∅}, then no learning takes place. Next, the activation functions

are computed using Eq. (200). The distributed activity y(F2) of layer F2 is established using

the IG CAM rule described in Sec. 3.1.15 (Eqs. (161) and (162)). All weight vectors are

thus updated using the distributed instar learning law

w j(new) = w j(old) − β2

[
y j®1 −

(
®1 − w j(old)

)
− x

]+
, (203)

where j ∈ Λ, and β2 ∈ [0, 1] is the learning parameter of the second training phase.

Inference. In inference mode, the self-supervised ARTMAP dynamics are identical

to the unsupervised training stage, except that no learning takes place. Predictions are made

using Eqs. (100) and (101) in Sec. 3.1.1.

3.1.21. Biased ARTMAP. Biased ARTMAP (Carpenter & Gaddam, 2010) aug-

ments fuzzy ARTMAP with a featural biasing mechanism to handle ordering effects that

arise in fast online learning mode. Said mechanism temporarily alters the network’s focus

among the input sample features following a predictive error.

Training. During training, the choice-by-difference activation function (Eq. (160))

is used to find the winner category J, whose match function is computed as

MJ =
‖ ỹ(F1)‖1
‖ x̃‖1

, (204)
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x̃ = [x − e]+ , (205)

ỹ(F1) =
[
y(F1) − e

]+
, (206)

where [·]+ is a component-wise rectifier operator, x̃ is the biased complement coded input

vector, ỹ(F1) is the biased F1 activity and e ∈ R2d is the bias vector, which is set to ®0

at the beginning of each input presentation (such that x̃ = x and ỹ(F1) = y(F1)). If the

category J successfully passes the vigilance test (i.e., if it satisfies MJ ≥ ρ) and is mapped

to the correct class, then the learning dynamics are identical to fuzzy ART’s (Eq. (21) in

Sec. 2.2). Alternately, if the prediction based on the resonant category is incorrect, then

the bias vector is updated using Eq. (207), the match tracking algorithm alters the vigilance

parameter value (MT-, Sec. 3.1.10) and the search resumes. The bias strength parameter λ

in Eq. (207) can be selected by cross-validation procedures (note that setting λ = 0 implies

an unbiased model, i.e., fuzzy ARTMAP).

Inference. In predictionmode, biasedARTMAPbehaves identically to fuzzyARTMAP

(Sec. 3.1.2).

ei(new) =



ei(old), if λ
[ [
y
(F1)
i − ei(old)

]+
−
‖y(F1)‖1

2d

]
≤ 0

ei(old), if ei(old) ≥ λ
[ [
y
(F1)
i − ei(old)

]+
−
‖y(F1)‖1

2d

]
> 0[

y
(F1)
i −

‖y(F1)‖1
2d

]
1 + λ−1 , if y(F1)

i > ei(old) and λ
[ [
y
(F1)
i − ei(old)

]
−
‖y(F1)‖1

2d

]
> ei(old)

, λ ≥ 0

(207)

3.1.22. TopoART-C. TopoART-C (Tscherepanow & Riechers, 2012) is an incre-

mental classifier based on fuzzy topoART (Sec. 2.2.2). In this architecture, each topoART

module (A and B) is augmented with a classification layer F3 that is connected to the

category layer F2. Additionally, module B is endowed with a mask layer F0 preceding its

feature layer F1 to handle incomplete data.
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Training. During training, the vigilance tests are layered: the first is unsupervised

and equal to fuzzy ART’s (Sec. 2.2), while the second is supervised and determines whether

a correct class prediction was made. These must be simultaneously satisfied for the system

to enter a resonant state and learn.

Inference. Prediction is made using topoART B, since topoART A is only used

to filter noise and is therefore disregarded. Specifically, such a prediction depends on

whether an unknown sample is completely enclosed by at least one category (which implies

alternative activation function (Eq. (70)) equal to 1). In the affirmative case, the system

predicts the class associated with the smallest node (measured using Eq. (19)). In the

negative case, the system makes a prediction based on a subset of highly active categories.

Note that if the sample has missing values, then only non-missing attributes are used in the

computations.

3.2. ARCHITECTURES FOR REGRESSION

The supervised ART models described so far have been primarily used for clas-

sification purposes. Although, in theory, all ARTMAP variants may be used to perform

regression tasks (Sasu & Andonie, 2013). For instance, fuzzy ARTMAP was shown to be

a universal function approximator in (Verzi et al., 2003). This section reviews architectures

developed specifically for incremental function approximation/interpolation. An experi-

mental comparative study on some of these ART-based regression models can be found

in (Sasu & Andonie, 2012).

3.2.1. PROBART. The PROBART model (Marriott & Harrison, 1995) is a fuzzy

ARTMAP variant designed to approximate noisy continuous mappings. It has a distinct
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map field dynamic, whose activity is given by

y(F
ab) =



wab
J + y(F

b
2 ), if both ARTs are active

wab
J , if only ARTa is active

y(F
b
2 ), if only ARTb is active

®0, otherwise

. (208)

This change turns the map field’s weight matrixW ab into a frequency counter for the

co-occurrence of resonant categories in both ART modules (i.e., it records the number of

associations between nodes of ARTa and ARTb), thereby storing probabilistic information.

Note that in this model it is initialized asW ab = ®0.

Training. PROBART does not possess a match tracking mechanism, since it is

adequate for classification tasks (Marriott & Harrison, 1995) and rule extraction (Carpenter

& Tan, 1995) but not for regression (Srinivasa, 1997). Moreover, it directly affects the

probability estimation process. Therefore, ARTa’s vigilance remains fixed. When learning

ensues, Fab weights are updated as

wab
J (new) = wab

J (old) + y(F
ab), (209)

considering that ARTa’s and ARTb’s resonant nodes are J and K , respectively.

Inference. The lth component of the prediction f̂ (xa), when ARTa’s resonant cate-

gory is J, is computed as

f̂l(xa) =
1

‖wab
J ‖1

Nb∑
k=1

wab
Jkw

b
kl =

Nb∑
k=1

pJkw
b
kl, (210)
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where pJk = p̂(cb
k |c

a
J ) =

wab
Jk

‖wab
J ‖1

, wab
J is the J th row of W ab, ‖wab

J ‖1 is the total number

of samples associated with ARTa’s node J across all ARTb nodes, wab
Jn is the number

of co-activations of ARTa’s node J and ARTb’s node n, l ∈ {1, ..., db} and db is the

original non-complement coded dimension (number of features) of ARTb’s input samples.

The prediction is thus an average weighted by the conditional probabilities. Note that to

perform accurate mappings, PROBART requires large ARTa vigilance parameter values,

consequently generating a large number of categories (Gomez-Sanchez et al., 2002).

PROBART’s generalization capability is limited by its WTA prediction, which is

addressed by the modified PROBART (Srinivasa, 1997) via distributed prediction. The

training process is identical for both models; the difference lies in the inference mode. Each

feature l of the prediction f̂ ′(xa) is computed as

f̂ ′l (x
a) =

∑
m∈S

Mmγm f̂m,l(xa)∑
m∈S

Mmγm
, (211)

where S is the set of ARTa’s resonant nodes for input xa (i.e., Mm ≥ ρa, Mm is the match

function value of ARTa’s neuron m), f̂m,l(xa) is ARTa’s neuron m prediction for feature l

computed from Eq (210) and γm is ARTa’s neuron m’s frequency of winning. Concretely,

the prediction is an average weighted by ARTa’s nodes’ match function values and instance

countings. The size of the set S considered for distributed prediction is defined for each

component l using a heuristic that minimizes the root mean squared error over the entire

training set.

3.2.2. FasArt and FasBack. FasArt (Izquierdo et al., 1996, 2001) is a neuro-fuzzy

system that reinterprets fuzzy ARTMAP (Sec. 3.1.2) as a fuzzy logic system by defining

categories as decomposable fuzzy sets in their data spaces (universes).
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Training. The training dynamics are identical to fuzzy ARTMAP’s (ARTa, ARTb,

and the map field), with the exception that the activation function, now also regarded as a

fuzzy membership function, is defined as

Tj =

d∏
i=1

Tj,i, (212)

where Tj,i is a triangular fuzzy membership function

Tj,i =


[
γ(xi − w j,i) + 1
γ(m j,i − w j,i) + 1

]+
, if xi ≤ m j,i[

γ(1 − xi − w j,d+i) + 1
γ(1 − m j,i − w j,d+i) + 1

]+
, if xi > m j,i

, (213)

the parameter γ is the fuzzification rate that controls the width of the fuzzy set support

(and consequently the generalization capabilities) and m j is the centroid associated with

category j. The fuzzy support associated with category j is thus defined by w j , m j and

γ. The weight vector wJ of a resonant category J is updated using fuzzy ART’s learning

dynamics (Eq. (21) in Sec. 2.2), whereas the centroid is updated using

mJ(new) = (1 − βc)mJ(old) + βcx, (214)

where βc ∈ (0, 1] is the centroid’s learning parameter. This learning dynamic is the same

for both ART modules. However, note that the LTMs of ARTa are also subjected to the

constraint of making a correct prediction.

Inference. The prediction of each feature l is obtained using the following defuzzi-

fication procedure (average of fuzzy set centroids):

f̂l(xa) =

Nb∑
k=1

Nb∑
j=1

mb
k,lw

ab
j,kTa

j

Nb∑
k=1

Nb∑
j=1

wab
j,kTa

j

, (215)
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where Ta
j is the activation of ARTa’s category j, mb

k,l is the lth component of ARTb’s

centroid mb
k associated with category k and wab

j,k is the { j, k} entry of the map field matrix

W ab. Note that FasArt is a universal function approximator (Izquierdo et al., 2001).

For fine-tuning purposes, particularly to improve performance and network com-

pactness (i.e., to reduce category proliferation), FasBack (Izquierdo et al., 1997; Izquierdo

et al., 2001) enhances FasArt with error-based learning by using the gradient descent opti-

mization method to adapt some of its parameters

p(new) = p(old) − η
∂E

∂ p(old)
, (216)

where p ∈ {ma
j ,m

b
k,w

ab
i, j }, η is the learning rate, E is error to be minimized

E =
1
2
‖ f̂ (xa) − y∗‖22, (217)

and f̂ (xa) and y∗ are the system’s prediction and desired response, respectively. Note that

two learning cycles are performed: a match-based one followed by an error-based one.

FasArt has spawned many variants including recurrent (Palmero et al., 2000), dis-

tributed (Parrado-Hernández et al., 2003, 1999) and dynamic (Izquierdo et al., 2009)models.

3.2.3. Fuzzy ARTMAP with Input Relevances. The FAMR (Andonie & Sasu,

2006; Andonie et al., 2003a) (Sec. 3.1.17), when used for regression applications, makes

predictions similarly to PROBART (Eq. (210) in Sec. 3.2.1). Particularly, PROBART

is said to be a special case of FAMR with its parameters set to q0 = 0, qt = q ∈ (0,∞)

(constant) and ρab = 0.

3.2.4. Generalized ART. The generalized ART and its variants (Sec. 3.1.19) can

be used for both classification and regression problems, for instance, by setting ρb = 1 for

the former and ρb = ρa for the latter (Yap et al., 2008).
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3.2.5. TopoART-R. TopoART-R (Tscherepanow, 2011) is a variant of fuzzy

topoART (Sec. 2.2.2) designed for regression purposes. In this model, topoART mod-

ule B is endowed with an input control layer F0 preceding its feature layer F1 to process

samples with missing attributes (i.e., to make predictions, since in this case dependent and

independent variables are treated as missing and non-missing, respectively).

Training. TopoART-R training is similar to topoART (Sec. 2.2.2); however, it does

not perform topological learning. Particularly, the complement coded independent and

dependent variables are concatenated as a single input vector to be presented to the network.

During the vigilance test stage, two match functions are independently computed for the

dependent and independent variables.

Inference. Similar to topoART-C (Sec. 3.1.22), during testing, module A is disre-

garded, the activation function used is given by Eq. (70) in Sec. 2.2.2 and the prediction

strategy depends on whether the input sample is fully enclosed by at least one “partial” cat-

egory (i.e., a hyperrectangle in the multidimensional subspace formed by the non-missing

attributes of the presented sample, from which a prediction is sought). In the affirmative

case, a “temporary” category is created from the intersection of these “partial” categories.

Then, the prediction for a given missing attribute is the center of the interval defined by

the corresponding upper and lower bound components of the “temporary” category. In the

negative case, the “temporary” category is created as a weighted average of a subset of

highly active nodes, and then the prediction is carried out as previously described.

3.2.6. Bayesian ARTMAP for Regression. The Bayesian ARTMAP for regres-

sion (Sasu & Andonie, 2013) uses two Bayesian ART modules to perform clustering on

both the input and the output spaces. All the dynamics of Bayesian ARTMAP discussed in

Sec. 3.1.18 hold, except for the prediction (i.e., the function approximation) which is given

by:

f̂ (xa) =

Nb∑
k=1

p̂(cb
k |x

a)µb
k, (218)
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where p̂(cb
k |x

a) is computed as described in Sec. 3.1.18. The Bayesian ARTMAP for

regression was shown to be a universal function approximator (Sasu & Andonie, 2013).

3.3. SUMMARY

Table 6 summarizes the architectures discussed in terms of their training, infer-

ence/testing and the map field’s mapping characteristics. Particularly, it lists if winner-

takes-all (WTA) or distributed (D) coding is employed by these networks and whether the

learned mapping is many-to-one (ARTa 7→ ARTb, surjective) or many-to-many (many-to-

one and one-to-many).

4. ART MODELS FOR REINFORCEMENT LEARNING

The ART models described in the following subsections are used to perform re-

inforcement learning in which agents learn online by interacting with the environment.

ART-based reinforcement learning systems have found growing applications, for instance,

in the computer games (da Silva & Goes, 2018; Wang et al., 2009; Wang & Tan, 2015) and

situational awareness (Brannon et al., 2006, 2009) domains.

4.1. REACTIVE FALCON

The reactive fusion architecture for learning, cognition and navigation (R-FALCON)

(Tan, 2004) is a fusion ART-based model (Sec. 2.4.1) that possesses three channels (or F1

layers): the sensory field (Fs1), the motor field (Fa1) and the feedback field (Fr1), which

are used to learn mappings across states (s = [s1, ..., sn], where s j ∈ [0, 1], ∀ j), actions

(a = [a1, ..., am], ai ∈ [0, 1], ∀i), and rewards (r ∈ [0, 1]), respectively. The general sense-

act-learn dynamics of R-FALCON are described next.
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Table 6. Summary of supervised ART models’ key characteristics.

ART model Training Inference Mapping Reference(s)

Classification

ARTMAP WTA WTA many-to-one (Carpenter et al., 1991a)
Fuzzy ARTMAP WTA WTA many-to-one (Carpenter et al., 1992)
Fuzzy Min-Max WTA WTA many-to-one (Simpson, 1992)
Fusion ARTMAP WTA WTA many-to-many (Asfour et al., 1993)
LAPART 1 WTA WTA many-to-one (Healy et al., 1993)
ART-EMAP WTA D many-to-one (Carpenter & Ross, 1995)
ARAM WTA WTA many-to-many (Tan, 1995)
Gaussian ARTMAP WTA D many-to-one (Williamson, 1996)
Probabilistic fuzzy ARTMAP WTA D many-to-many (Lim & Harrison, 1997a)
ARTMAP IC WTA D many-to-manya (Carpenter & Markuzon, 1998)
distributed ARTMAP WTA/D D many-to-manya (Carpenter et al., 1998)
Hypersphere ARTMAP WTA WTA many-to-one (Anagnostopoulos & Georgiopoulos, 2000)
Ellipsoid ARTMAP WTA WTA many-to-one (Anagnostopoulos & Georgiopoulos, 2001a,b)
µ-ARTMAP WTA WTA many-to-many (Gomez-Sanchez et al., 2002)
Default ARTMAP 1 WTA D many-to-manya (Carpenter, 2003)
Boosted ARTMAP WTA WTA many-to-many (Verzi et al., 2006)
FAMR WTA WTA many-to-many (Andonie & Sasu, 2006)
Default ARTMAP 2 WTA/D D many-to-manya (Amis & Carpenter, 2007)
Bayesian ARTMAP WTA D many-to-many (Vigdor & Lerner, 2007)
Generalized ART WTA D one-to-one (Yap et al., 2008)
Self-supervised ARTMAP WTA/D D many-to-manya (Amis & Carpenter, 2010)
Biased ARTMAP WTA WTA many-to-manya (Carpenter & Gaddam, 2010)
TopoART-C WTA D many-to-one (Tscherepanow & Riechers, 2012)

Regression

PROBART WTA WTA many-to-many (Marriott & Harrison, 1995)
Modified PROBART WTA D many-to-many (Srinivasa, 1997)
FasART/FasBack WTA D many-to-one (Izquierdo et al., 2001)
FAMR WTA WTA many-to-many (Andonie & Sasu, 2006)
Generalized ART WTA D one-to-one (Yap et al., 2008)
TopoART-R WTA D many-to-many (Tscherepanow, 2011)
Bayesian ARTMAP WTA D many-to-many (Sasu & Andonie, 2013)

a One-to-many mapping of inconsistent cases via match tracking MT-.

Prediction. Consider an agent currently at a state s. The inputs to R-FALCON’s

Fs1, F
a
1 and Fr1 layers are set to xs = s, xa = ®1 and xr = [1, 0], respectively. Note that

the feedback field is modeled using xr = [r, 1 − r]. A node J is then selected via a WTA

competition (node J maximizes Eq. (82) in Sec. 2.4.1). This setting of xr is used to bias

selection toward maximal rewards during prediction.

Action selection policy. The activity of layer Fa1, given by

y(F
a
1 ) = xa ∧ wa

J = wa
J, (219)
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is used to select the action I as

I = arg max
1≤i≤m

(
y
(Fa

1 )

i

)
. (220)

The agent performs the selected action I and then enters a new state s′.

Learning.Learning ensues similarly to fusionART (Sec. 2.4.1) using the appropriate

F1 layers’ inputs, which depend on the feedback received fromperforming the selected action

I:

• Positive feedback (reward): F1 layers’ inputs are set to xs = s, xa = a, and xr = r .

• Negative feedback (penalty): F1 layers’ inputs are set to xs = s, xa = ā = ®1 − a, and

xr = r̄ = ®1 − r .

R-FALCON suffers from category proliferation, so it must undergo pruning heuris-

tics to enhance interpretability and scalability. Moreover, it can only effectively handle

problems with immediate rewards.

4.2. TEMPORAL DIFFERENCE FALCON

The temporal difference fusion architecture for learning, cognition and navigation

(TD-FALCON) (Tan, 2006; Tan et al., 2008; Tan&Xiao, 2005) is a fusionART-basedmodel

developed to effectively handle problems with both immediate and delayed rewards. This

is accomplished by integrating the temporal difference methods (Sutton & Barto, 2018) of

Q-learning (Watkins & Dayan, 1992) and state-action-reward-state-action (SARSA) (Rum-

mery & Niranjan, 1994) in the learning framework. Therefore, TD-FALCON is a value

iteration method that learns action policies and value functions for state-action pairs via

temporal difference learning. Briefly, the TD-FALCON dynamics are as follows.
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Prediction. For a given state s, the value function of all actions in the set of actions

is predicted by setting the inputs to TD-FALCON’s Fs1, F
a
1, and Fr1 to xs = s, xa = a and

xr = ®1, respectively. The action vector a is such that aI = 1 and ai = 0 for i , I, when

taking action I. A node J is then selected via a WTA competition (node J maximizes

Eq. (82) in Sec. 2.4.1) for each action.

Action selection policy. The Fr1 layer activities, given by

y(F
r
1 ) = xr ∧ wr

J = wr
J, (221)

are then used to compute the Q-values

Q(s, a) =
y
(Fr

1 )

1
m∑

i=1
y
(Fr

1 )

i

. (222)

An action is then chosen using either a decay ε-greedy or softmax policy in order

to address the exploration-exploitation trade-off.

Learning. Finally, the system acts. The agent is now in a new state s′; receives

feedback from the environment; and learns using the state (xs = s), action (xa = a), and

reward (xr = [Q(s, a), 1 −Q(s, a)]) triad. The value function used in xr is estimated using

Q(s, a) = Q(s, a) + ∆Q(s, a), (223)

where

∆Q(s, a) = αeT D, (224)

eT D is the temporal difference error, and α is the learning rate. Particularly, the TD error

for Q-learning (off-policy) is

eT D = r + γmax
a′

Q(s′, a′) −Q(s, a), (225)
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while the TD error for SARSA (on-policy) is

eT D = r + γQ(s′, a′) −Q(s, a), (226)

where r is the immediate feedback, and γ ∈ [0, 1] is the discount factor. Additionally,

TD-FALCON incorporates self-scaling (Q-values ∈ [0, 1]) by using

∆Q(s, a) = αeT D (1 −Q(s, a)) . (227)

TD-FALCON trades faster learning for a less compact network (category prolifera-

tion), compared to gradient-based reinforcement learning approaches, which have a smaller

network complexity or memory footprint (i.e., less neurons) but their training process is

considerably slower. One of the limitations of this ART model is the bounded Q-values

in the range [0, 1], which restricts the classes of problems it can tackle. TD-FALCON has

been employed in a multi-agent RL system in (Xiao & Tan, 2007) as well as combined with

belief-desire-intention systems in (Tan et al., 2010, 2011).

4.3. UNIFIED ART

The unifiedART (Seiffertt &Wunsch II, 2010) is anARTmodel designed formixed-

modality learning so that it seamlessly switches among the canonical machine learning

modalities (UL, SL and RL). An important characteristic of this integration is the weight

sharing between modalities. It uses a Markov Decision Process and Q-learning framework,

and it has found application, for instance, in the field of situational awareness (Brannon

et al., 2006, 2009).

Briefly, the unified ART consists of a fuzzy ART module (Sec. 2.2) and a controller.

The latter is represented by a matrixV = [vi j]N×m whose entries vi j estimate value functions

(N and m are the number of categories and available actions, respectively).
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Prediction.Upon presentation of an input s, the fuzzy ART dynamics are performed.

If an uncommitted category is selected, then the controller’s matrix V needs to be expanded

accordingly.

Action selection policy. After the output activity y(F2) of layer F2 is established, it is

used to select an action I such that

I = arg max
1≤i≤m

(ai) , (228)

where

a = VT y(F2) = [a1...am]
T . (229)

The output activity is binary and defined by Eq. (5) in Sec. 2.1.1 when in WTA

mode. Alternately, to reduce category proliferation, the output activity can be defined in the

distributed mode by setting y
(F2)
j = Tj , where the activation functions are computed using

Eq. (16).

Learning. After undertaking the selected action, the environment transitions to the

next state s′, and the system learns according to the type of signal received from the

environment. Assuming WTA mode with resonant node J, one of the following takes

place:

• Supervised signal (I∗): this signal has the highest priority. If the correct action was

selected (i.e., I = I∗), then the controller learns as

vJ,i =


vmax, if i = I

0, otherwise
, (230)

where vmax is the maximum allowable value. Otherwise, a mismatch triggers a search

for a new resonant neuron, within the fuzzy ART module, that maps to I∗. If none is

found, then a new neuron N + 1 is created and mapped to such action (Eq. (230)).
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• Reinforcement signal (r): In case of a reward, the controller learns as

vJ,I = vJ,I + αr, (231)

where α is a learning rate. Conversely, a penalty causes a mismatch in the fuzzy ART

module, which then initiates a search for a new resonant node. The controller still

learns using Eq. (231).

• Unsupervised signal ({∅}): this scenario corresponds to the absence of a signal. No

learning takes place in the controller.

Note that, for all signal types, when a resonant neuron is found within the fuzzy

ART module, it is adapted according to the fast learning mode described in Sec. 2.2.

4.4. EXTENDED UNIFIED ART

The extended unified ART (Seiffertt & Wunsch II, 2010) is another fuzzy ART-

based model designed to perform mixed-modality learning, which is accomplished via

layered, modality-dependent, vigilance tests. These multiple vigilance criteria must be

simultaneously satisfied for the ART system to enter a resonant state and ensue learning.

Particularly, this model encodes the states in fuzzy ART’s weight matrix W = [wi, j]N×n,

and the value functions of the state-action pairs in both the critic’s matrix V = [vi, j]N×m and

the actor’s matrix U = [ui, j]N×m (whose role is akin to ARTMAP’s map field matrix W ab

(Sec. 3.1.1)), where N is the number of categories, n is the dimension of the state space and

m is the number of available actions. Uncommitted nodes are initialized by augmenting

W with a row equal to ®1, while U and V are expanded with row vectors containing small

random values.
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Prediction. Upon arriving at a state s, the highest active node J is found follow-

ing fuzzy ART’s dynamics (Sec. 2.2) using the choice-by-difference activation function

(Eq. (160) in Sec. 3.1.15).

Action selection policy. An action is selected using

I = arg max
1≤i≤m

(
uJ,i

)
, (232)

where uJ is the J th row of U .

Learning. After performing the chosen action, the environment evolves to the next

state s′ following its dynamics; vigilance tests and learning ensue in consonance with the

type of signal feedback from the environment. Particularly, in the unsupervised learning

mode, the extended unified ART learning dynamics are akin to fuzzy ART’s, where there

exists only a single match function MUL
J (Eq. (18)) and a corresponding unsupervised

vigilance test and parameter ρUL . In this learning mode, neither the actor nor the critic are

updated. In the reinforcement learning mode, a reinforcement vigilance test is performed

in addition to the unsupervised vigilance test, where the match function MRL
J is equal to the

temporal difference error (Sec. 4.2) computed using the corresponding entry of V as the

Q-values; if satisfied (MRL
J > ρRL , where ρRL ≥ 0 is the reinforcement learning vigilance

parameter), the actor is updated as

uJ,I = min
(
uJ,I + αr, umax

)
, (233)

where umax is the upper bound for any entry of U , and the critic is updated using Eq. (231).

If the RL test is not satisfied, a mismatch occurs, and a new search is triggered for the

next highest ranking category. This process is repeated until a category satisfies the UL

vigilance test while also being associated with an action (Eq. (232)) that is different from

the one taken at s (i.e., i , I), or a new category is created. Finally, the supervised learning

mode adds a second match function MSL
J on top of the unsupervised one. The former is



105

akin to default ARTMAP’s (Sec. 3.1.15) and assesses if the action taken was the correct

one (i.e., I = I∗). In the affirmative case, only the actor is updated,

uJ,i =


umax, if i = I

0, otherwise
, (234)

whereas in the negative case, a match tracking procedure (MT-) (Carpenter & Markuzon,

1998) slightly decreases fuzzy ART’s baseline vigilance parameter during this input pre-

sentation cycle, and the search restarts. Note that in all learning modes, when a category is

allowed to learn, it does so by following fuzzy ART’s learning dynamics (Sec. 2.2).

5. ADVANTAGES OF ART

5.1. SPEED

One of the main advantages of ART neural network architectures is the speed with

which they can process data and the relatively small number of epochs they typically require

to converge. This is combined with the fact that they can be operated entirely in an online

mode, which makes them very effective when working with streaming data or datasets that

are too large to fit entirely in memory.

Particularly, the ART 1 (Sec. 2.1.1) and fuzzy ART (Sec. 2.2) neural networks only

require an amount of work linear in the number N of samples in the dataset per epoch, and

the amount of work performed for each input sample presentation is similarly linear in the

number of features d in the dataset, and the number of category templates k, that this sample

is compared against. This leads to a running time complexity of O(Ndk), which means

that the running time will grow linearly with the growth of any of these variables when the

remaining variables are constant. In the absolute worst case, when each sample is put in

its own category, this running time degrades to O(N2d) since k = N in this case; although
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this situation is uncommon. The same running time complexity analysis applies to other

ART neural architectures that faithfully follow the same learning algorithm. A discussion

of fuzzy ART computational complexity analysis was presented in (Granger et al., 1998)

and summarized in other studies such as (Majeed et al., 2018; Meng et al., 2016, 2014).

5.2. CONFIGURABILITY

Another one of ART’s main advantages is its ease of configurability (Wunsch II,

2009). For many unsupervised learning ART neural architectures, the most influential

parameter is the vigilance value ρ, which controls when resonance occurs between an input

sample and a category and subsequently, whether this category would be allowed to learn

the sample or not. In this way, the ART architectures do not require the choice of the number

of clusters, unlike many other clustering algorithms. Meanwhile, the choice of which ART

architecture to use and the choice of a reasonable vigilance value can allow the discovery

of useful clusters without needing to tweak many sensitive parameter values.

5.3. EXPLAINABILITY

The way that ART builds well-behaved templates representing the categories it

learns from the data is another one of its core strengths (Wunsch II, 2009). After sufficient

learning has taken place, these templates can provide the ability to interpret the results of

the neural network learning (Carpenter & Tan, 1995; Healy & Caudell, 2006, 2019; Healy

et al., 2009; Tan, 1997) and to visualize the boundaries of each discovered category or

cluster. This transparency is a valuable property, since many other types of neural networks

can only be used as a black-box component that cannot be readily explained or interpreted.
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5.4. PARALLELIZATION AND HARDWARE IMPLEMENTATION

Another major strength of ART neural networks is their potential for massive par-

allelism and hardware implementation (Wunsch II, 2009). Notably, early contributions

include optoelectronics (Blume & Esener, 1995; Caudell, 1992; Wunsch II, 1991; Wunsch

II et al., 1993), analog (Ho et al., 1994) and VLSI (Serrano-Gotarredona & Linares-

Barranco, 1996; Serrano-Gotarredona et al., 1998; Tsay & Newcomb, 1991) systems and,

more recently, an implementation in memristive hardware (Versace et al., 2012). Although

ART networks are incremental learners, and thus suffer from ordering effects (see Sec. 6.1),

the calculation of the match and activation function for each category can easily be done

in parallel. Thus, ART models lend themselves well to GPU implementations, e.g., fuzzy

ART in (Martínez-Zarzuela et al., 2007, 2009), fuzzy ARTMAP in (Martínez-Zarzuela

et al., 2011) and ARTtree in (Kim & Wunsch II, 2011). This offers the opportunity for a

lower cost, energy consumption andmemory footprint than other neural networks’ hardware

while maintaining online learning capabilities.

6. ART CHALLENGES AND OPEN PROBLEMS

6.1. INPUT ORDER DEPENDENCY

An important problem faced by all agglomerative clustering or incremental learning

algorithms, including ART, is order-dependence of data presentation. This is especially

true in the fast online learning mode. Many approaches have been developed to mitigate

such ordering effects, and they mostly consist of suitable pre- and post-processing strategies

(cf. (Brito da Silva & Wunsch II, 2018) and the references cited within). Particularly, for

supervised ART models, these strategies include Max-Min clustering (Tou & Gonzalez,

1974) in (Dagher et al., 1998, 1999); class-by-class presentation in (Sit et al., 2009), genetic

algorithms (Eiben & Smith, 2015) in (Baek et al., 2014; Palaniappan & Eswaran, 2009);
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uncorrelated feature-based ordering in (Oong & Isa, 2014); featural biasing in (Carpenter

& Gaddam, 2010); and voting strategies in (Amis & Carpenter, 2007, 2010; Carpenter,

2003; Carpenter et al., 1992; Carpenter & Markuzon, 1998; Lim & Harrison, 2000a,b;

Williamson, 1996). In regard to unsupervised ARTmodels, examples of strategies are split,

merge and delete operations in (Lughofer, 2008); merging methods in (Brito da Silva et al.,

2020; Isawa et al., 2008a,b, 2009); cluster validity index-based vigilance tests in (Brito da

Silva & Wunsch II, 2017); learning topologies in (Masuyama et al., 2019; Tscherepanow,

2010, 2012); and exploiting the ordering properties of visual assessment of cluster tendency

(VAT) (Bezdek, 2017; Bezdek & Hathaway, 2002) in (Brito da Silva & Wunsch II, 2018).

The presentation order of inputs still remains an open problem (even if there is meaningful

temporal information embedded in the order of sample presentation (e.g., a time series), and

it is much more pronounced when presentation is done in a random order), thus requiring

further investigation.

6.2. VIGILANCE PARAMETER ADAPTATION

The vigilance is the single most important parameter in any ART model. Select-

ing suitable values is critical to the network performance and complexity, especially in

clustering applications. However, it is often set empirically in an ad hoc manner. In

the unsupervised learning mode, vigilance adaptation has been addressed in fuzzy ART

through the usage of game theory (Fudenberg & Tirole, 1991) in (Fung & Liu, 1999); the

activation maximization, confliction minimization and hybrid integration rules in (Meng

et al., 2013, 2016, 2019); the combination with particle swarm optimization (Kennedy &

Eberhart, 1995) and cluster validity indices (Xu & Wunsch II, 2009) in (Smith & Wunsch

II, 2015); defining the vigilance as a function of the category size in (Isawa et al., 2008b,

2009); or modeling it as a fuzzy membership function in (Majeed et al., 2018). Despite

these contributions, setting the vigilance parameter still remains a challenging task worthy

of further exploration, particularly in the online learning mode.
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6.3. CATEGORY PROLIFERATION

Category proliferation leads to ART systems with a large number of templates, thus

increasing the system complexity, computational burden and memory footprint (Sit et al.,

2009; Zhang et al., 2014). Moreover, it also reduces the generalization ability of supervised

ART models (Georgiopoulos et al., 2001; Koufakou et al., 2001). Category proliferation is

typically caused by:

(i) Weight vector erosion during learning (Carpenter et al., 1991c; Moore, 1989). This

phenomenonpredominantly affectsART1- and fuzzyART-basedmodels (see Secs. 2.1.1,

3.1.1, 2.2, 3.1.2).

(ii) Data with noise (Marriott & Harrison, 1995; Parrado-Hernández et al., 2003, 1999)

and/or outliers. ART models are typically sensitive to noisy data, especially in fast

learning and WTA modes (Parrado-Hernández et al., 1999). Moreover, noise can

cause classes to overlap (Blume & Van Blerkom, 2000).

(iii) Data with overlapping classes (Georgiopoulos et al., 2001; Koufakou et al., 2001; Sit

et al., 2009). Data sets of such nature are particularly challenging and usually lead to

the overfitting problem in supervised ART models (Anagnostopoulos et al., 2002a,b;

Georgiopoulos et al., 2001; Henniges et al., 2005; Koufakou et al., 2001) given the

operation of ARTMAP’s match tracking mechanism (Blume & Van Blerkom, 2000;

Marriott & Harrison, 1995; Sit et al., 2009). Such a case is a major source of category

proliferation (Sit et al., 2009).

(iv) The category geometry of the ART model chosen, which might be inadequate to

represent the data at hand (Williamson, 1996).

(v) Input order presentation, but to a lesser extent.

The previously mentioned causes have been respectively addressed by:



110

(i) Using the complement code transformation (Carpenter et al., 1992, 1991a) (see

Sec. 2.2).

(ii) Slow learning (Carpenter et al., 1992; Carpenter et al., 1995; Carpenter et al., 1991c),

distributed learning (Carpenter, 1996a,b, 1997; Carpenter et al., 1998; Parrado-

Hernández et al., 2003, 1999), alternative learning rules (Lee et al., 1995; Lee et al.,

1998) and pruning strategies (Carpenter & Tan, 1995; Tan et al., 2009; Tscherepanow,

2010).

(iii) Controlling the training error (Anagnostopoulos et al., 2002a,b; Gomez-Sanchez et al.,

2001, 2002; Sanchez et al., 2000; Verzi et al., 2006; Verzi et al., 1998), through

cross-validation techniques (Georgiopoulos et al., 2001; Koufakou et al., 2001) and

pruning strategies (Blume & Van Blerkom, 2000; Lin & Soo, 1997; Pourpanah et al.,

2016) as well as using genetic algorithms (Eiben & Smith, 2015) to evolve ARTMAP

models (Al-Daraiseh et al., 2006;Kaylani et al., 2009), detecting and removing samples

from overlapping regions (Matias &Neto, 2018;Matias et al., 2017), using a threshold

filtering procedure (Zhang et al., 2014) and augmenting existing supervised ART

models with a series of modifications (Blume & Van Blerkom, 2000; Sit et al., 2009).

(iv) Selecting ART models with category geometry suitable to represent the data man-

ifold. Examples of geometries include hyperrectangles (Carpenter et al., 1991c),

hyperspheres (Anagnostopoulos & Georgiopoulos, 2000), hyperellipsoids (Anagnos-

topoulos & Georgiopoulos, 2001a,b; Vigdor & Lerner, 2007; Williamson, 1996) and

irregular polytopes (Amorim et al., 2007).

(v) Ordering effects are discussed in detail in Sec. 6.1, see also (Brito da Silva &Wunsch

II, 2018).

Although several studies in the literature have investigated the category prolifera-

tion problem, mitigating it is still an ongoing challenge worthy of further research effort,

particularly considering causes (ii) and (iii).
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6.4. ONLINE NORMALIZATION

It is a well-known good practice among machine learning and artificial intelligence

practitioners to pre-process data through some transformation before presenting it to a

neural network. Common transformations are linear (or min-max) normalization, which

confines the data samples to the hypercube [0, 1]d and standardization, in which all data

attributes are transformed to have zero mean and unit variance. Both of the aforementioned

pre-processing techniques require prior knowledge of the data statistics, e.g., the minimum

and maximum for linear normalization, and the mean and variance for standardization.

Nonetheless, this information might not be available in some online learning scenarios,

thereby adding another challenge to ART systems. Contributions in this direction include

the online normalization approaches discussed in (Meng et al., 2015, 2019; Swope, 2012),

which address this problem for specific ART models by keeping track of the data ranges

and scaling the ART parameters (LTMs) and inputs based on the current minimum and

maximum estimates and the ART model developed in (Park et al., 2019), which also tracks

the data ranges but whose dynamics are such that learning ensues without normalization,

thus allowing its hyperrectangular categories to spawn arbitrary ranges. Despite these

contributions, online data transformation, LTM scaling procedures and the ability to process

raw data still require further development for many other ART models.

6.5. NEWMETRICS

Another challenging area in the development of ART neural networks is the use of

newmetrics and representations that would allowART tomore robustly solve some domain-

specific problems (Wunsch II, 2009), such as grammar inference and natural language

processing (Meuth, 2009). Some cases require customized neural network designs, such as

when the data structure is neither binary nor continuous-valued vectors or when the data has

many categorical attributes with large sets of possible values for each attribute (mixed-type
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data is addressed in (Lam et al., 2015) in the context of unsupervised feature extraction).

In such general cases, it would be highly desirable to have ART models that can deal with

this data in its native form without requiring transformations while still maintaining the

desirable properties that hold for many existing ART models.

Application oriented activation functions can endow ART-based systems with novel

and useful capabilities such as the ability to both discriminate and generalize in a single

network (thus performing many-to-many mappings) (Lavoie et al., 1997, 1999) or to track

moving patterns (Lavoie, 1999). To maintain ART network’s stability property when de-

signing activation functions, it is vital that the value of the custom activation increases when

the resonant category undergoes learning (Lavoie, 1999; Lavoie et al., 1997, 1999). Tai-

lored activations are discussed in (Lavoie, 1999; Lavoie et al., 1997, 1999) andmodifications

include:

(i) Making the activation a function of additional parameters (e.g., vigilance and time).

(ii) Defining functionally different activations for distinct category types.

(iii) Varying the activation function parameters without resetting the network’s LTM.

Note that all these modifications do not change the dynamics of the elementary ART

model; however, changing the activation function implies changing the search order among

the ART categories. Other alternative activation functions have been presented in (Blume&

Van Blerkom, 2000; Carpenter &Gjaja, 1994). Additionally, there have been some attempts

at combining ART with evolutionary computing approaches in (Elnabarawy et al., 2017)

and nested monte carlo search in (Illetskova et al., 2019) as well as other hyper-heuristics

(see references cited in (Elnabarawy et al., 2017)), but there are still many challenges and

opportunities that need to be addressed in this area.
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6.6. DISTRIBUTED REPRESENTATIONS

TheWTA category selection process used in most ART architectures can sometimes

lead to category proliferation (see Sec. 6.3) and is one of the limiting factors of ART’s

capacity for mapping complex relations (Parrado-Hernández et al., 2003; Wunsch II, 2009).

Extending the capabilities of many ART architectures toward distributed representations

would lead to greater representational power for these architectures and allow them to encode

more complex templates. However, the challenging aspect of this process is to maintain

the desirable speed and stability of those ART systems in the presence of this distributed

representation. There are examples of architectures that use distributed representations (see

Tables 4 and 6), especially in supervised learning, however there are still many issues to be

investigated.

6.7. DICHOTOMY OF MATCH- AND ERROR-BASED LEARNING

In (Wunsch II, 2009) the conjecture is made that the dichotomy of match-based

learning (i.e., Hebbian learning andART) and error-based learning (i.e., using backpropaga-

tion (Rumelhart et al., 1986; Werbos, 1974, 1990) in feed-forward neural networks (Haykin,

2009) such as deep learning architectures (Goodfellow et al., 2016)) is likely a false one.

This still lacks a definitive resolution. Some contributions combined the use of match-

based and error-based learning such as in (Izquierdo et al., 2001; Su & Liu, 2002, 2005) by

using gradient methods to optimize some of the ART parameters. However, the problem of

building a system that can do both match- and error-based learning like animals appear to

be capable of remains a more complex and interesting challenge that holds great promise

for much more stable and effective machine learning. In biology, there are clear examples

of learning that can happen quickly under the right circumstances, implying match-based

learning, as well as incrementally improving through supervised or reinforcement learning

in a way that implies error-based learning. The ability to master both types of learning and
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resolve this conjecture is believed to be a gateway to building machine learning systems

that are fast and stable, possessing the ability for life-long learning and being resilient in the

face of unpredictable changes in the environment.

7. CODE REPOSITORIES

A list of publicly available online source code/repositories is provided below:

• github.com/ACIL-Group

• techlab.bu.edu/main/article/software

• ntu.edu.sg/home/asahtan/downloads.htm

• http://www2.imse-cnm.csic.es/~bernabe

• ee.bgu.ac.il/~boaz/software.html

• libtopoart.eu

8. CONCLUSIONS

This survey presents an overview of ART models used to perform unsupervised

learning (a.k.a. clustering), classification, regression and reinforcement learning tasks. It

provides a description for each model focusing on the motivation behind their designs, their

dynamics and key characteristics such as their code representation and long-term memory

unit. Advantages of ART are discussed as well as open problems. Although mature, the

field has room to grow and is still full of opportunities.
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ABSTRACT

One of the distinguishing features of Adaptive Resonance Theory (ART) is that it

relies on a second similarity check, called a vigilance test, to accept or reject a sample into a

given category. Generic unsupervised versions of ART rely on a single layer vigilance test,

whereas their supervised counterparts possess a second layer test based on classification

errors that trigger a match tracking procedure regulated by an inter-ART block. This work

uses a second layer vigilance test based on validity indices. A new sample is accepted into

a category if its match function surpasses the vigilance test of both layers: the standard

first check is based on minimum similarity, and the second check analyses whether setting

that sample as belonging to the winner category results in an improvement of the current

data partition according to the chosen validity index used as a cost function. Namely, if

the new clustering state is superior to the previous one, then learning is allowed for the

winning category. Otherwise, the algorithm proceeds as usual in ART implementations.

Thus, this local greedy heuristic uses the validity index as a reinforcement signal, looking

at the immediate reward to guide the learning of the ART categories without an additional

external optimizer algorithm. A sweep analysis of the first layer vigilance parameter was

performed and experiments indicate that the presented approach outperforms the standard
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Fuzzy ART neural network when samples are randomly presented. When samples are

presented in a predefined order, Fuzzy ART obtains the best peak performance, however

the modified approach was less sensitive to parameter variations.

1. INTRODUCTION

Cluster analysis consists of finding the data’s natural structure, where within-cluster

samples are highly similar or homogeneous and between-cluster samples are highly dissim-

ilar or heterogeneous. The literature is very fruitful in terms of clustering methods, and

comprehensive reviews can be found in (Xu & Wunsch II, 2005; Xu & Wunsch II, 2009;

Xu & Wunsch II, 2010). Moreover, clustering can be used as a preprocessing stage for

classification applications (Chou et al., 2017; Liu et al., 2006). A particularly interesting

neural network-based clustering approach is the one that uses Adaptive Resonance Theory

(ART) (Carpenter & Grossberg, 1987a, 1988; Grossberg, 1976a,b). The latter is a learning

theory developed as a solution to the stability-plasticity dilemma, i.e., newly learned rules

must be stored without overwriting current memory content (catastrophic forgetting) in the

knowledge base.

ART belongs to the class of hard competitive learning clustering methods, and

is related to the leader-follower algorithm (Xu & Wunsch II, 2009). Contrary to many

clustering algorithms, the number of clusters do not need to be set a priori, as the ART

categories are created as needed according to a minimum degree of similarity defined by

the vigilance parameter. It controls the granularity of the clustering outcome: the larger the

vigilance the stricter the similarity constraint and the more clusters are formed. Conversely,

the lower the vigilance value the lower the number of clusters formed. Briefly, when an

input sample is presented, an activation function is computed for each node to answer “from

the set of current categories, which one best matches the input sample?". Next, a second

similarity calculation is performed, known as the vigilance check, to answer “is the winning
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category similar enough?". If the answer is no to the latter question, then another winner-

takes-all (WTA) competition follows without that winning category. The entire process

incrementally builds a mapping from samples to categories.

ART has spawned many neural network architecture implementations for both su-

pervised (ARTMAP) and unsupervised (ART) learning such as Fuzzy (Carpenter et al.,

1992, 1991), Gaussian (Williamson, 1996), Bayesian (Vigdor&Lerner, 2007), Hypersphere

(Anagnostopoulos&Georgiopoulos, 2000) andEllipsoid (Anagnostopoulos&Georgiopou-

los, 2001), just to name a few. Each of which, has its own particular category representation,

measures to compute similarity and ways to define the vigilance criterion. A common char-

acteristic of the ART family members is that performance is sensitive to the setting of

the global vigilance parameter. This is true, not only in a global sense/system level, but

also in a local sense/category level. Many approaches to address this challenge have been

presented. For instance, (Smith & Wunsch II, 2015) uses particle swarm optimization to

find independent (local) vigilance thresholds for each Fuzzy ART category to better suit the

clusters they represent, where validity indices are used as cost functions; whereas (Meng

et al., 2013, 2016) developed the activation maximization, the confliction minimization and

the hybrid integration rules to adapt local vigilance parameters.

Moreover, ART was used to build a system that integrates unsupervised (UL), su-

pervised (SL) and reinforcement (RL) learning: the Unified ART architecture (Seiffertt &

Wunsch II, 2010), which seamlessly switches among these three machine learning modali-

ties. It uses a Markov Decision Process framework. One of its important characteristics is

the weight sharing among modalities. An application in the field of situation awareness is

discussed in (Brannon et al., 2006, 2009). This paper uses a second layer vigilance test based

on validity indices, similar to the reinforcement learning scenario discussed in (Seiffertt &

Wunsch II, 2010): a greedy heuristic looks at the immediate reward of adding a sample to

a category and, it allows learning only if the next clustering state is superior to the previous

according to the validity index used as the cost function.
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Another ART-based system that integrates UL, SL, RL and rule-based knowledge

integration is the Fusion ART (Tan et al., 2007). It learns associative mappings through

multiple feature representation fields and a single category representation field architecture

that unifies ART, Adaptive Resonance Associative Map (ARAM) (Tan, 1995) and Fusion

Architecture for Learning, COgnition, and Navigation (FALCON) (Tan, 2004, 2006; Tan

et al., 2008). A one- (samples), two- (samples, class labels) and three- (sensory/state,

motor/actions, feedback/rewards) channel Fusion ART reduces to ART (UL paradigm),

ARAM (SL paradigm) and FALCON systems (RL paradigm), respectively. Additionally

it has accessible interpretation since category field nodes can generate IF-THEN rules that

maps antecedents and consequents from one channel to another and it possesses the ability

to insert rules.

The clusters formed throughout the learning process in competitive and online/incre-

mental learning methods is an artifact of the sample presentation order and the parameter

setting. By making the training samples equally weighted when the learning process is

done, (Wang, 1997) develped learning rate rules that make, when certain conditions are

satisfied, competitive learning networks yield the same outcome regardless of the order of

presentation. Alternatively, (Lughofer, 2008) uses split-and-merge (guided by a validity

index to select the best partition at each incremental stage) and removal of satellite clusters

strategies to improve clustering solutions. Since ART belongs to this class of algorithms,

its cluster formation is dependent on the order of sample presentation (Xu & Wunsch II,

2009; Xu & Wunsch II, 2011). Therefore, in this work, the behavior of the presented ap-

proach is investigated by performing a series of experiments using random and predefined

cluster-by-cluster presentations. Then, the performance is analyzed in terms of the quality

of the partitions compared to standard Fuzzy ART, which is used as the baseline.
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This paper is organized into six sections: Section 2 presents an overview of Fuzzy

ART and validity indices, Section 3 introduces the approach methodology, Section 4 de-

scribes the experimental set up, Section 5 displays and discusses the results obtained and

Section 6 concludes this paper.

2. BACKGROUND AND RELATEDWORK

2.1. FUZZY ART

Fuzzy ART (Carpenter et al., 1991) is a neural network implementation of ART

that can process binary and real valued data by incorporating fuzzy set theory operations

in the fitness calculations (activation and match functions). It is an adaptable (plastic),

stable, fast, self-organizing incremental learning method. It is composed by the feature

representation field F1 (input layer), category representation field F2 (output layer) and the

orienting subsystem, which is responsible for determining if the input and category are

sufficiently similar according to the pre-defined global threshold (vigilance parameter). It

operates by shutting down a category using a reset mechanism or allowing it to update

its weights. Used and unused categories are referred to as committed and uncommitted,

respectively. This type of ART produces easy to interpret hyper-rectangles as a category

representation.

Let x ∈ Rd be a data sample presented to FuzzyART.Briefly, the algorithmperforms

the following steps:

1. Compute the activation function T of each category j:

Tj =
|x ∧ w j |

α + |w j |
, (1)
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where w j is the weight vector representing category j, α > 0 is the choice parameter

whose purpose consists of breaking ties, ∧ is a component-wise fuzzy AND operation

(min(xl,w j,l), l = 1, ..., 2d) and | · | is the L1 norm. T represents the percentage of w j

covered by x (degree of overlap).

2. Sort T in descending order and perform a winner-takes-all (WTA) competition.

3. Compute the match function M of the best ranked category i:

Mi =
|x ∧ wi |

|x |
, (2)

M represents the percentage of x covered by wi.

4. Evaluate the match criterion ν1 (vigilance test):

ν1 : Mi ≥ ρ, (3)

where ρ ∈ [0, 1] is the vigilance parameter.

5. If ν1 is satisfied (resonance condition), then learning takes place:

wnew
i = (1 − β)wold

i + β(x ∧ wold
i ), (4)

where 0 < β ≤ 1 is the learning rate.

6. Otherwise, select the second ranked category and repeat the process. If no category

satisfies ν1, then a new category is created.

Layered vigilance tests produce more complex systems where several criteria νi

need to be simultaneously satisfied (Seiffertt & Wunsch II, 2010). The Unified ART

architecture (Seiffertt & Wunsch II, 2010) uses Fuzzy ART as a building block, in which

the second vigilance test ν2 changes for each learningmodality: in the unsupervised scenario
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it can be thought of as always true, in the supervised learning setting it is based on the error

between the estimated output (system output) and the true output (target output) and, finally,

to perform reinforcement learning it is equal to the temporal difference error. A second layer

test based on Euclidean distance is introduced in (Huang et al., 2014) (along with heuristics

to automate parameter tuning) to improve performance of standard ART 2 (Carpenter

& Grossberg, 1987b). Another reinforcement signal-based system is the Performance-

guided Adaptive Resonance Theory (P-ART) (Lee et al., 2004, 2003; Palmer-Brown &

Lee, 2005) which toggles between ART1 (Carpenter & Grossberg, 1987a) fast learning and

Learning Vector Quantization (Kohonen, 1990) according to external feedback received in

consecutive times, i.e., this is the snap-drift algorithm that changes learning following a

performance increase or decrease.

2.2. CLUSTER VALIDATION

A ubiquitous challenge in cluster analysis consists of assessing the quality of parti-

tions obtained by different methods, since the data structure groundtruth is not available - in

fact, modifications in parameter set-up can make the same algorithm return a different solu-

tion. Validity indices are quantitative measures developed for such a purpose. They evaluate

partitions and provide a systematic way to select an optimal solution according to the best

value of a given index. Usually, they exhibit some type of compromise between measures of

compactness (within-cluster scatter) and isolation (between-cluster separation). Numerous

criteria have been presented in the literature; for comprehensive reviews and experimental

studies refer to (Milligan & Cooper, 1985; Vendramin et al., 2010; Xu & Wunsch II, 2005;

Xu & Wunsch II, 2009). In this work, the following relative validity indices were used (in

the following, k is the number of clusters, N is the cardinality of the data set):
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2.2.1. Calinski-Harabasz (CH) Index. theCH index (variance ratio criterion) (Cal-

iński & Harabasz, 1974; Xu & Wunsch II, 2009) is defined as:

CH =
tr(SB)

tr(SW )
×

N − k
k − 1

, (5)

where tr(·) is the trace operator, SB and SW are the between and within-cluster scatter

matrices, respectively. Higher values of CH indicate better clustering solutions.

2.2.2. Pakhira-Bandyopadhyay-Maulik (PBM) Index. the PBM index (Pakhira

et al., 2004) comprises a trade-off among three components, it is given by:

PBM =
(

1
k
×

E1
Ek
× Dk

)2
, (6)

where Dk is the maximum between-cluster separation, Ek is the sum of the total within-

cluster scatter among the samples and their cluster centroids and E1 considers only one

cluster comprising all of the data samples. Higher values of PBM indicate better clustering

solutions.

2.2.3. Davies-Bouldin (DB) Index. the DB index (Davies & Bouldin, 1979; Xu &

Wunsch II, 2009) considers the average ratio of compactness to isolation among all clusters.

The DB index is given by:

DB =
1
k

k∑
i=1

max
i, j

(
ei + e j

di, j

)
, (7)

where ei and e j are the average Euclidean distances of all samples of clusters i and j to their

respective centroid, and di, j is the distance between centroids i and j. Smaller values of DB

indicate better clustering solutions.

2.2.4. Silhouette (SIL) Index. the SIL index (silhouettewidth criterion) (Rousseeuw,

1987) is defined as:

SIL =
1
N

N∑
i=1

b(xi) − a(xi)

max[a(xi), b(xi)]
, (8)
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where a(xi) is the average Euclidean distance of sample i to the remaining samples in the

same cluster, and b(xi) is the minimum average Euclidean distance between sample i and the

samples in the remaining clusters. Higher values of SIL indicate better clustering solutions.

3. METHODOLOGY

The validity index-based vigilance test in ART networks consists of using a second

match criterion, ν2, based on validity indices in a generic ART framework. This enables the

system to accept or reject a sample as part of a given category based on the improvement of

the current clustering state, which is measured by said validity index. This is fundamentally

different then running a standard ART network and choosing the best partition according to

a relative validity index; here the validity index is embedded at the ART learning level. Let

a clustering state of a data set X = {x1, ..., xN } be given by the partition Ω = {ω1, ..., ωk}

of disjointed clusters ωi, where
k⋃

i=1
ωi = X . The second match criterion ν2 is given by:

ν2 : Ji ≥ δ, (9)

Ji = f (Ω̂) − f (Ω), (10)

where Ji represents the improvement of going from the previous clustering state Ω to a

clustering state Ω̂ that includes sample x in category i. The f (·) is the fitness function used;

here it is a relative validity index (naturally, if the validity index should be minimized then

the inequality sign should be reversed). This approach relates to (Seiffertt & Wunsch II,

2010) in the reinforcement learning scenario. Here, the reinforcement signal is obtained

via the validity index. This greedy heuristic selects the next best clustering state according

to the immediate reward.

The labels of all samples are set to zero at the very beginning (one single cluster)

of the first epoch (pass through the samples). When the samples are mapped to categories,

then the validity index is computed considering the unlabeled samples as a part of the same
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cluster. From the second epoch onward, all samples have been assigned to categories, thus

the validity index is computed considering the clustering partition rendered by the ART cat-

egories. In this work, the Fuzzy ART flavor of ART is used in the experiments; nonetheless,

the application of this methodology to other ART family members is straightforward.

4. EXPERIMENTAL SETUP

In this work, the experiments were carried out using theMATLAB software environ-

ment (Statistics and Machine Learning Toolbox) and the Cluster Validity Analysis Platform

Toolbox (Wang et al., 2009). Three benchmark data sets from the UC Irvine Machine

Learning Repository (Bache & Lichman, 2013) were used for proof of concept: Iris (4 fea-

tures, 150 samples, 3 clusters with 50:50:50 ratio), Seeds (7 features, 210 samples, 3 clusters

with 70:70:70 ratio) and Wine (13 features, 178 samples, 3 clusters with 59:71:48 ratio).

Principal component analysis projection (Xu &Wunsch II, 2009) and Self-Organizing Map

(SOM) (Kohonen, 1982) rH*-vis heatmap (Brito da Silva & Wunsch II, 2017a, 2018) are

used in Figure 1 to visualize these data sets (their relative sizes, approximate shapes and

separability). Linear normalization was applied to all data sets in order to scale their features

to the range [0, 1]. Additionally, complement coding was applied to the inputs of Fuzzy

ART.

To investigate the order of the sample presentation’s dependency on the presented

method and the standard Fuzzy ART, two experiments were conducted: the first emulates a

real clustering problem. Thus, the samples of each data set were shuffled and then presented

to Fuzzy ART (henceforth regarded as a random presentation). In the second, the samples

were presented in a predefined cluster-by-cluster fashion (henceforth regarded as an ordered

presentation).

Twenty equally spaced values of ν1 vigilance parameter ρ in the range [0, 0.9]

were scanned, and 30 runs were performed for each one of such values for the random

presentation and one run for the ordered presentation; the value for ν2 vigilance parameter
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Figure 1. Data sets depicted using principal component analysis projection (a, b, c) and
rH*-vis (d, e, f). The 10 × 10 SOMs were trained using the SOM Toolbox (Vesanto et al.,
1999).

was set to δ = 0 (thus the inclusion of a sample in a category is accepted only if it yields a

clustering state with a better validity index value). The maximum number of epochs was set

to 20, and two additional stopping criteria were used: no change in the Fuzzy ART network

weights or no change in the classification of the samples, both between two consecutive

epochs. The choice parameter (α) was set to 10−3, and the learning rate (β) was set to 1

(fast learning). Moreover, in all Fuzzy ART implementations, we allow a full search among

the committed categories and do not permit the uncommitted category to participate in the

WTA competitive process; a new category is added only if none of the current committed

categories pass the vigilance check(s). In the latter case, fast commit is applied, in which

the weights of the new category become equal to the current sample.
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In order to assess the quality of the final partitions extracted by the presented

clustering approach, the external validity indices Rand (R) (Rand, 1971; Xu & Wunsch II,

2009) and adjusted Rand (AR) (Hubert & Arabie, 1985; Xu &Wunsch II, 2009) were used:

R =
tp + tn

tp + f p + f n + tn
, (11)

AR =

(N
2
)
(tp + tn) − [(tp + f p)(tp + f n) + ( f n + tn)( f p + tn)](N

2
)2
− [(tp + f p)(tp + f n) + ( f n + tn)( f p + tn)]

, (12)

where tp, tn, f p and f n stand for true positive, true negative, false positive and false

negative, respectively, according to a reference partition and the clustering outcome. Note

that the R and AR are not used as fitness functions of the presented method. The source

code of the validity index-based vigilance test in Fuzzy ART is provided at the Applied

Computational Intelligence Laboratory public GitLab repository (Brito da Silva &Wunsch

II, 2017b).

5. RESULTS AND DISCUSSION

The results obtained by using the validity index-based vigilance test in the two

different training scenarios described in Section 4 are depicted in Figs. 2 and 3; the standard

Fuzzy ART results are depicted as the baseline performance level. Specifically, Figure 2

depicts the mean R, AR and k along with their respective standard deviations for the validity

index-based vigilance check using CH, PBM, SIL and DB for ν2. Conversely, Figure 3

illustrates the same quantities for the ordered presentation experiment.

5.1. EXPERIMENT 1: RANDOM PRESENTATION

Figure 2 shows that for all three data sets, the presented approach outperforms the

standard Fuzzy ART considering both average and peak average performance; precisely,

the best results were obtained using CH, followed by PBM, SIL and DB, in that order. The
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Figure 2. Experiment 1: results for the Iris, Seeds andWine data sets: Rand, adjusted Rand
and number of clusters (first, second and third rows, respectively). The CH, PBM, SIL,
DB and standard Fuzzy ART (FA) are represented as red triangles, violet squares, black
diamonds, green stars and blue circles, respectively.
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Figure 3. Experiment 2: results for the Iris, Seeds andWine data sets: Rand, adjusted Rand
and number of clusters (first, second and third rows, respectively). The CH, PBM, SIL,
DB and standard Fuzzy ART (FA) are represented as red triangles, violet squares, black
diamonds, green stars and blue circles, respectively.
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worst results obtained by the DB are due to a considerably large number of mismatches

(the current categories fail the second vigilance test for many samples), thus a considerable

amount of categories were created, which ended up representing singletons in many cases.

This significantly increases the computational cost of training, as compared to the other

validity indices. Of course, the fastestmethod is the standard FuzzyART, since no additional

calculations are necessary; it is followed by the approach using CH, PBM, SIL and DB,

which is not surprising, since the computational complexity of these methods are O(nN),

O(n(k2 + N)), O(nN2) and O(n(k2 + N)), respectively (Vendramin et al., 2010).

For a large interval of low ν1 vigilance values, the performance of the presented

approach is virtually constant, thus it seems robust to its respective parameter selection

process; the performance degrades for large values. Therefore, we recommend using ρ = 0

as a rule of thumb. Basically, this setting neglects ν1 and only considers ν2, which is based

on the validity index performance. Regarding the dynamics of ν1 and ν2, increasing the

value of ρ makes the first vigilance check more strict regarding the similarity constraint

between the sample and the winning category, while the setting of δ used for ν2 made the

output stable up to the point where the presented approach behaved similarly to standard

Fuzzy ART. In general, for such large ρ values, the likelihood of passing ν2 after satisfying

ν1 tends to increase.

5.2. EXPERIMENT 2: ORDERED PRESENTATION

Regarding the second scenario of the predefined ordered presentation, the presented

method no longer has superior peak performance: the standard Fuzzy ART has the advan-

tage. Nonetheless, the same general behavior is observed: for small ρ vigilance values,

the presented method yields better results than standard Fuzzy ART with large plateaus

of practically constant performance (again, using ρ = 0 seems to be a reasonable typical

parameter setting). This presentations order, however, does not seem suitable for the CH,
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PBM and DB indices, since their performance has decreased. Interestingly, a significant

performance boost of the SIL can be observed, and in fact, it was the best performing index

among the ones tested: SIL, CH, PBM and DB are ranked in this order of performance.

For the above experiments, we do not claim these results are comprehensive. Var-

ious approaches such as mentioned in (Halkidi & Vazirgiannis, 2008; Lago-Fernández &

Corbacho, 2010; Taşdemir & Merényi, 2011; Xu & Wunsch II, 2005; Xu & Wunsch II,

2009) were not considered. In general, the standard Fuzzy ART creates a smaller number

of categories (clusters) in both experiments among the methods and data sets; yet, this

does not lead to superior performance in Experiment 1, since it does not necessarily imply

agreement with the groundtruth partitions.

6. CONCLUSION

This work presents a validity index-based vigilance test in the ART neural network

framework, i.e., a second stage of vigilance checking based on validity index is integrated

into the learning procedure. We show that, for the data in these experiments, the presented

method outperformed standard Fuzzy ART for random sample presentation, thus alleviating

Fuzzy ART’s dependency on the presentation order of the samples. In ordered cluster-by-

cluster presentations, standard Fuzzy ART yielded a better peak performance. Nonetheless,

this is not a considerable drawback, since in real clustering applications samples are usually

shuffled among classes.

The best results were obtained with the CH and SIL indices for both input presen-

tation scenarios. This corroborates the findings of other studies in which CH and SIL were

deemed the best performing validity indices (Milligan & Cooper, 1985; Vendramin et al.,

2010; Xu et al., 2012). On the other hand, DB yielded the worst results. Additionally, the

presented approach extends the range of effective first vigilance check thresholds of standard

Fuzzy ART, since it allows for a consistent performance at a wider vigilance interval for
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both input presentation scenarios; all things being equal and without any prior knowledge,

setting the first vigilance parameter to zero is therefore a reasonable starting point for the

clustering process.

It is straightforward to expand the presented approach to other types of ART architec-

tures. Certainly, the performance is bounded by the geometric representation’s limitations

of the category of that ART family member. It is also constrained by the ability of a given

validity index to identify good partitions in a specific data set with particular characteristics:

different validity indices exhibit biases towards different structures.
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ABSTRACT

The clustering structures formed by Adaptive Resonance Theory (ART) and many

other algorithms are dependent on input presentation/permutation order. In this work, we

exploit Visual Assessment of cluster Tendency (VAT) as a pre-processor for Fuzzy ART in

order to mitigate this problem. This approach is a global strategy that uses similarity-based

ordering before clustering. Experimental results show that this framework improved peak

and average performance, reduced the number of categories, and incurred less variability

in the clustering outcome. By enhancing performance and reducing sensitivity to input

order presentation, this approach is recommended when it is suitable to perform off-line

incremental learning.

1. INTRODUCTION

Unsupervised learning (or clustering) methods employ search control strategies that

seek optimal solutions in light of a suitable cost function. By performing this task, one is

able to organize or summarize the data. Many clustering approaches have been devised (Xu

&Wunsch II, 2005; Xu&Wunsch II, 2009; Xu&Wunsch II, 2010), and, among these, there
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are incremental learning methods. Some characteristics of such systems are (Fisher, 1993;

Giraud-Carrier, 2000; Langley, 1995): the ability to handle data streams (i.e., learn one

sample at a time), fast processing and reasonable memory demands (due to time and space

constraints), no reprocessing of previously seen samples and being capable of promptly

employing current knowledge. Additionally, learning should be performed indefinitely,

in principle, ad infinitum (life-long learning) (Wenzel & Förstner, 2009; Wenzel & Hotz,

2010).

Due to the nature of incremental learning, these systems are susceptible to order-

ing effects (Béjar et al., 1993; Cornuéjols, 1993; Fisher, 1993, 1996; Fisher et al., 1992;

Giraud-Carrier, 2000; Langley, 1995; MacGregor, 1988; Mauro et al., 2004, 2005; Roure &

Talavera, 1998; Talavera & Roure, 1998; Wang, 1997; Wenzel & Förstner, 2009; Wenzel &

Hotz, 2010), i.e., the clusters may differ according to the order of input presentation. This

order dependency can reveal itself in three levels, namely in the scope of concepts (cate-

gories), instances (samples) and attributes (features) (Langley, 1995). Since incremental

learning is an inherent part of human learning, this order dependency has been studied in

the computational intelligence, education and cognitive psychology fields (Langley, 1995).

An ideal incremental learning systemwould be order insensitive (Mauro et al., 2004,

2005; Wenzel & Förstner, 2009; Wenzel & Hotz, 2010); realistically, if it is sensitive, there

should exist an input sequence that yields the optimal performance and thus learning should

be facilitated by presenting examples in a meaningful order (Wenzel & Förstner, 2009;

Wenzel & Hotz, 2010). In this context, there are many different orderings for presenting

samples such as presenting batches of classes (same class samples presented consecutively)

or alternating them, common or uncommon examples, according to increasing/decreasing

levels of complexity as well as specific and general examples (Langley, 1995).

Therefore, finding permutations of samples that optimize performance in order de-

pendent systems is of great interest and, as mentioned previously, many strategies have been

presented in the literature to mitigate ordering effects for both supervised and unsupervised
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incremental learning. The taxonomy disussed in (Roure & Talavera, 1998) classifies these

according to their scope (global and local) and application phase while performing the

clustering task (before, during, and after). Global methods have access to the entire data

in advance. Particularly related to the approach presented in our work is the seed selection

and (dis)similarity-based ordering methods, which consists of drawing a random seed and

subsequently selecting maximally similar or dissimilar samples iteratively (Fisher, 1993).

As opposed to global methods, which are suitable to off-line learning applications, local

methods have limited foresight (myopic) and are applied on-line during clustering.

Adaptive Resonance Theory (ART) (Carpenter & Grossberg, 1987) is an example

of an incremental learning system and thus it is affected by input sequence dependency,

especially when using fast learning. It is a neural network-based clustering method that

possesses many useful properties (Wunsch II, 2009), in particular, solving the stability-

plasticity dilemma. In order to mitigate this problem in ART, input ordering algorithms

have also been presented. Some strategies presented in the literature regarding ART and

other incremental learning systems are listed in Table 1.

In this work, we investigate the use of Visual Assessment of cluster Tendency

(VAT) (Bezdek & Hathaway, 2002) as a pre-processing stage for Fuzzy ART (Carpenter

et al., 1991) in the unsupervised and off-line learning scenario, thereby improving perfor-

mance and reducing the variance of the results. The remainder of this paper is divided

as follows: Section 2 provides a review of Fuzzy ART and VAT; Sections 3, 4, 5 and

7 correspond to methodology, experimental setup, results and discussion and conclusion

sections, respectively.
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2. BACKGROUND

2.1. FUZZY ART

Fuzzy ART (Carpenter et al., 1991) can handle binary and real-valued data. When

a new sample x is presented at the input layer F1, a winner-takes-all competition takes place

over all categories w j at the output layer F2, and the best matching category is selected as

the one that maximizes the activation function Tj :

Tj =
|x ∧ w j |

α + |w j |
, (1)

where α > 0 is called the choice parameter. The category choice function defines the order

of search and is biased towards smaller categories. Next, a hypothesis testing cycle with

respect to the best matching category i is conducted using the match function Mi:

Mi =
|x ∧ wi |

|x |
. (2)

The match function tests if a category is able to enclose the sample without sur-

passing the maximum category size defined by the vigilance parameter (0 ≤ ρ ≤ 1). If the

category satisfies this constraint (if Mi ≥ ρ), then learning is allowed:

wnew
i = (1 − β)wold

i + β(x ∧ wold
i ), (3)

where 0 < β ≤ 1 is the learning rate.

Otherwise, this category is reset, the subsequent ranked category is selected, and

the process is repeated. If no category satisfies this constraint then a new one is created to

represent this input pattern. Fuzzy ART features fast, stable, plastic, incremental on-line

and off-line learning. One of the fast learning consequences is precisely the dependency on

the order of presentation of samples.
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2.2. VISUAL ASSESSMENT OF CLUSTER TENDENCY (VAT)

The Visual Assessment of cluster Tendency (VAT) (Bezdek & Hathaway, 2002) is a

visualization technique that consists of a rearranged dissimilarity matrix that displays, as a

heat map, the pairwise distance between samples, where the distinctive feature is that dark

blocks represent cluster tendency. Briefly, after computing a dissimilarity measure between

all samples (e.g., the Euclidean distance), then one of the farthest samples is selected as a

starting point (or seed) (Bezdek&Hathaway, 2002). Next, remaining samples are iteratively

added based on the minimum distance to any sample in the current growing subset in a

single linkage hierarchical clustering algorithm fashion (VAT is related to Prim’s minimum

spanning tree (Prim, 1957) and isO(n2)) (Bezdek, 2017; Bezdek&Hathaway, 2002; Havens

& Bezdek, 2012; Havens et al., 2009b). The indices of this sequential inclusion of samples

are saved and used to reorder the data’s pairwise distance matrix, which is then depicted as a

gray-level image. For convenience, Algorithm 3 reproduces theVATmethod, while Figure 1

illustrates an example of VAT of the Tetra data set (Ultsch, 2005) shown in Figure 3b.

Algorithm 3: VAT (Bezdek, 2017; Bezdek & Hathaway, 2002; Hathaway et al.,
2006; Havens & Bezdek, 2012; Havens et al., 2009b, 2013)

Input : Data (dis)similarity matrix DN×N .
Output
:

VAT reordered (dis)similarity matrix D̃N×N .

1 Initialization: I ← ∅, J ← {1, ..., N}, P← ∅.
2 Seeding: (i, j) ← arg max

r ∈J , s∈J
{Dr,s}, P(1) ← {i}, I ← I ∪ {i}, J ← J − {i}.

3 for t ∈ {2, ..., N} do
(i, j) ← arg min

r ∈I , s∈J
{Dr,s}, P(t) ← { j}, I ← I ∪ { j}, J ← J − { j}.

4 Reorder: use indices P to reorder D and generate D̃.
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(a) random order image (b) VAT image

Figure 1. Euclidean distance matrix of the Tetra data set before and after (VAT) reordering.
Dark blocks in the main diagonal indicate cluster tendency.

3. METHODOLOGY

Consider the data set Lsun (Ultsch, 2005). Assuming the clusters are known, via an

oracle, and samples are presented to Fuzzy ART in a cluster-by-cluster fashion (Figs. 2b

and 2d), the clustering task becomes fairly easy. This is in accordance with a two class

ordering study in (Clapper & Bower, 1994) as discussed in (Langley, 1995). On the other

hand, in a realistic scenario, in which samples are randomly presented, then Figs. 2a and

2c depict the best performance obtained after a vigilance parameter grid search (given this

order of presentation).

In clustering applications, prior to the clustering algorithm selection, usually a

visualization method is used to provide the data analyst an insight on the number and sizes

of clusters, thus approximating the data distribution. This aids the practitioner to select the

clustering algorithm parameters such as the number of clusters, which is required for many

of such algorithms, and also biases one’s expectation regarding the clustering outcome.

One of the visualization techniques that has been extensively used is VAT.
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Figure 2. Illustration of Fuzzy ART’s input order dependency using Lsun data set (Ultsch,
2005): the clustering solution on the right side (cluster-by-cluster presentation) is perceptibly
better than the one on the left hand side (random input presentation).

Examples of ART-like frameworks that make use of VAT for clustering are (Dak-

shayani et al., 2016; Lam et al., 2015; Sledge&Keller, 2008; Sledge et al., 2008; Srinivasulu

& Dakshayani, 2016); however, VAT ordering ability is not exploited in these settings so

as to improve the clustering algorithm performance but only for visualization and valida-

tion purposes, as originally intended. On the other hand, since VAT aligns single linkage

partitions (Havens et al., 2009b), then this ordering property may be exploited beyond data

visualization, e.g., for clustering purposes such as in (Havens et al., 2009a, 2013).
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Therefore, the framework presented here consists of pre-processing the data by using

theVATordering prior to feeding it to the FuzzyARTnetwork, thus this pre-processing stage

is completely parameter free. This is an off-line learning approach, since VAT needs access

to the entire data set. Additionally, it falls under similarity-based ordering as discussed

in (Fisher, 1993). Naturally, one could use the ordering approach introduced in (Dagher

et al., 1998, 1999), where the required number of clusters parameter could be estimated

using VAT; however, this would require performing clustering twice: once to obtain the

ordering using the Max-Min algorithm (Tou & Gonzalez, 1974) and then again with Fuzzy

ART. Additionally, similarly to VAT, this ordering method selects an outermost sample as

the initial seed.

To use this framework, we assume that it is possible to at least sample the data set,

store a subset and perform off-line learning, prior to deploying Fuzzy ART. Here we use the

standard VAT with Euclidean distance metric (with normalized data and prior to applying

complement coding (Carpenter et al., 1991)). Different orderings may be obtained given

the (dis)similarity measure chosen, such as iVAT (Havens & Bezdek, 2012; Wang et al.,

2010) that uses a path-based similarity measure, or other VAT variants.

4. EXPERIMENTAL SETUP

In this study, MATLAB and the CVAP toolbox (Wang et al., 2009) were used. Amix

of artificial and real world data sets (listed in Table 2) were used in the experiments. The

latter consisted of 50 runs with a vigilance parameter sweep analysis using a step size of 10−2

for each data set. The data sets’ samples were shuffled and directly presented to a Fuzzy

ART (network 1: the control group used to assess baseline performance) while another

Fuzzy ART (network 2: the experimental group) was fed the reordered samples generated

by the VAT pre-processing stage (the input to VAT is the same randomized samples fed to

the network 1). In other words, in each run, the data was shuffled and presented to two

systems: Fuzzy ART (System 1) and VAT + Fuzzy ART (System 2).
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Table 2. Data sets’ summary.

Data set Na Da Ka Reference(s)

Chainlink 1000 3 2 (Ultsch, 2005)
Lsun 400 2 3 (Ultsch, 2005)
Tetra 400 3 4 (Ultsch, 2005)
Dermatology 358 34 6 (Bache & Lichman, 2013)
Ecoli 336 7 8 (Bache & Lichman, 2013)
Seedsb 210 7 3 (Bache & Lichman, 2013; Charytanowicz et al., 2010)
Face 320 2 4 (Ilc, 2013; Ilc & Dobnikar, 2011)
Flame 240 2 2 (Fränti, Pasi et al., 2015; Fu & Medico, 2007)
a N: number of samples, D: dimensionality, K: number of clusters. For detailed descriptions
of these data sets refer to the reference(s) column.
b Contributors gratefully acknowledge support of their work by the Institute of Agrophysics
of the Polish Academy of Sciences in Lublin.

The data sets’ features were scaled to the range [0, 1] and, subsequently, complement

coding (Carpenter et al., 1991) was applied. Fuzzy ART was trained with fast learning

(β = 1), choice parameter (α) equal to 10−3 and a single epoch (one pass through the data).

The Adjusted Rand Index (ARI) (Hubert & Arabie, 1985) measured the agreement between

the output and reference partitions:

ARI =

(N
2
)
(tp + tn) − [(tp + f p)(tp + f n) + ( f n + tn)( f p + tn)](N

2
)2
− [(tp + f p)(tp + f n) + ( f n + tn)( f p + tn)]

, (4)

where tp, tn, f p and f n stand for true positive, true negative, false positive and false

negative, respectively. MATLAB code for Fuzzy ART and VAT is available at the Ap-

plied Computational Intelligence Laboratory public GitLab repository (Brito da Silva &

Wunsch II, 2018).
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5. RESULTS AND DISCUSSION

The performances of both systems in terms of ARI were recorded over 50 runs and

then averaged for each vigilance parameter value (average performance). In practical appli-

cations, we assume that a user is able to make, to some extent, an informed guess regarding

the value of the vigilance parameter (ρ), given the availability of expert domain knowledge,

their experience, or by optimizing a suitable cost function such as validity indices (Xu &

Wunsch II, 2009, Sec. 10). Thus, we analyze the peak average performance (best perform-

ing vigilance parameter). Alternatively, if no additional information is available, we also

evaluate the average average performance (performance averaged across all vigilance values

experimented with), so that we aim to know, on average and regardless of the vigilance

chosen, how the systems compare. Both of these performances are reported in Table 3 as

mean ± standard deviation.

Table 3 also lists the number of different effective permutations (i.e., permutations

that cause change in the performance behavior of the ARI versus ρ curve) to which both

systems were subjected to during the 50 runs of the experiments. The system with standard

Fuzzy ART was fed with 50 different permutations, whereas the system with VAT pre-

processing was presented with a considerably smaller number of input sequences: the

source for the variance relates to the fact that there may be pairs of data samples with the

same distance over the dissimilarity matrix (Bezdek&Hathaway, 2002). We did not employ

a tie breaking strategy; instead these points were picked given the initial data randomization:

both the starting points, which are the ones that are pairwise farthest apart (there are at least

two initial points), and the points to be selected throughout the VAT ordering procedure.

Figure 3 illustrates the clustering results for selected 3D data sets. It is visually

noticeable that the procedure is able to significantly improve performance. The full results

obtained after performing the experiments outlined in Section 4 are depicted in Figs. 4 and 5

regarding the ARI performance, and, in Figs. 6 and 7, regarding the number of clusters.

Order sensitivity may be measured according to the variance of a method’s performance
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Table 3. Results summary.

Data set
VAT + Fuzzy ART Fuzzy ART

Ê[di f f ]
µavg ± σavg µmax ± σmax #categories ρ #permutations µavg ± σavg µmax ± σmax #categories ρ #permutations

Chainlink 0.35 ± 0.27 0.94 ± 0.03 2.00 ± 0.00 0.40 2 0.15 ± 0.08 0.36 ± 0.24 5.34 ± 1.76 0.40 50 6.61
Dermatology 0.25 ± 0.18 0.60 ± 0.07 10.00 ± 0.00 0.48 50 0.11 ± 0.06 0.20 ± 0.07 20.00 ± 2.89 0.45 50 8.90
Ecoli 0.15 ± 0.14 0.51 ± 0.00 21.92 ± 2.02 0.73 2 0.08 ± 0.07 0.21 ± 0.05 22.38 ± 2.16 0.71 50 1.85
Face 0.18 ± 0.11 0.40 ± 0.37 4.00 ± 0.00 0.29 2 0.15 ± 0.14 0.54 ± 0.21 2.74 ± 0.78 0.23 50 1.14
Flame 0.20 ± 0.13 0.46 ± 0.02 4.48 ± 0.50 0.42 2 0.12 ± 0.06 0.20 ± 0.07 7.04 ± 1.19 0.49 50 1.13
Lsun 0.36 ± 0.29 0.94 ± 0.07 3.00 ± 0.00 0.44 2 0.23 ± 0.12 0.40 ± 0.22 5.18 ± 0.94 0.44 50 2.70
Seeds 0.25 ± 0.20 0.64 ± 0.02 6.88 ± 1.00 0.55 2 0.18 ± 0.12 0.38 ± 0.08 5.12 ± 1.04 0.41 50 2.32
Tetra 0.35 ± 0.27 0.99 ± 0.00 4.00 ± 0.00 0.52 4 0.19 ± 0.11 0.42 ± 0.07 14.70 ± 1.81 0.60 50 5.52

The subscripts ‘avg’ and ‘max’ refer to average average and peak average performances (ARI), respectively. The values of the vigilance parameters (ρ) are listed with
respect to the peak average performance. The number of effective permutations and expected difference of the number of clusters created is also reported.

given the different input sequences (Langley, 1995; Wenzel & Förstner, 2009; Wenzel &

Hotz, 2010). For most data sets, we observe that the variability of the clustering outcome is

considerably mitigated by using the VAT ordering procedure (Figs. 4 and 6). The sensitivity

analysis of the different VAT orderings are depicted in Figure 5. Most of these orderings

resulted in a similar performance behavior over the vigilance parameter space; except for

the Face and Flame data sets, despite the fact that they were only presented with 2 different

orderings. Interestingly, theDermatology data set was presented with 50 different orderings

(due to the reasons discussed above), and yet the performance behaviors with respect to the

vigilance parameter are very consistent.

Additionally, Table 3 lists the expected difference of the number of categories

between both frameworks:

Ê[di f f ] =
1

NρNruns

∑
∀ρ

∑
∀runs

(NF A − NV AT+F A) , (5)

where Nρ, Nruns, NF A, NV AT+F A are the number parameterizations (101), the number of

runs (50) and number of categories in both systems, respectively. The computations were

performed with respect to the same value of the vigilance parameter (ρ). According to

Table 3, since the expected value is positive, we may infer that ordering with VAT leads

to a smaller number of categories for the data sets experimented with. Figure 7 illustrates

Ê[di f f |ρ] along with the estimated conditional standard deviations for each data set.
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(a) Chainlink (b) Tetra

(c) Chainlink (ρ = 0.40) (d) Tetra (ρ = 0.60)

(e) Chainlink (ρ = 0.40) (f) Tetra (ρ = 0.52)

Figure 3. First row {(a), (b)}: selected data sets. Second row {(c), (d)}: best clustering
solutions of Fuzzy ART (system 1). Third row {(e), (f)}: best clustering solutions of VAT
+ Fuzzy ART (system 2). The best solutions were selected using the vigilance parameter
(ρ) associated with the peak average ARI reported in Table 3 for one of the 50 orders of
presentation.
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(a) Chainlink (b) Dermatology (c) Ecoli (d) Face

(e) Flame (f) Lsun (g) Seeds (h) Tetra

Figure 4. Parameter sweep analysis of the vigilance for the systems with (blue) and without
(red) VAT reordering as a pre-processing. The mean and standard deviations (shaded areas)
of the ARI are depicted.
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(a) Chainlink
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(b) Dermatology
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(c) Ecoli
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(d) Face
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(e) Flame
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(f) Lsun
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(g) Seeds
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(h) Tetra

Figure 5. Performance of Fuzzy ART when using the different VAT re-orderings (see
Table 3) as pre-processing. Each colored curve represent a specific permutation order
presented to the system VAT + Fuzzy ART.
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(a) Chainlink (b) Dermatology (c) Ecoli (d) Face

(e) Flame (f) Lsun (g) Seeds (h) Tetra

Figure 6. Parameter sweep analysis of the vigilance for the systems with (blue) and without
(red) VAT reordering as a pre-processing. The mean and standard deviations (shaded areas)
of the number of clusters are depicted.

(a) Chainlink (b) Dermatology (c) Ecoli (d) Face

(e) Flame (f) Lsun (g) Seeds (h) Tetra

Figure 7. Mean and standard deviations (shaded areas) of the difference between the number
of clusters of the systems Fuzzy ART and VAT + Fuzzy ART.
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Since this ordering procedure works consistently for most, but not all, data sets

(e.g., Face and Flame data sets), we employed Wilcoxon signed-ranks test (Wilcoxon,

1945) to statistically compare both frameworks, as recommended in (Demšar, 2006). We

observe that there is a statistical difference between these under a 0.1 significance level

considering (a) peak average performance (p-value: 0.0209), (b) average average perfor-

mance (p-value: 0.0143), and (c) the number of clusters created under the peak average

performance parameterization (p-value: 0.0801). Thus, for the instances of the classes

of problems this framework is applicable to, the performance seems to be significantly

enhanced.

Direct application of VAT to large data sets is not practical due to (a) the computa-

tional costs associated with the ordering method by itself and the calculations of pairwise

(dis)similarities for all samples, and (b) the storage requirements of the (dis)similarity ma-

trix (Bezdek, 2017; Hathaway et al., 2006; Havens et al., 2013). In order to overcome

this limitation, one could resort to sampling strategies such as (Vitter, 1985) and Max-

imin (Hathaway et al., 2006) (which is closely related to the ordering procedure in (Dagher

et al., 1998, 1999)), since sampling methods have been successfully employed for both

visualization (Hathaway et al., 2006) and clustering (Guha et al., 1998; Havens et al., 2013;

Wang et al., 2011) purposes. We also note that our study does not address noisy data sets.

6. CONCLUSION

This work presented a study on the VAT + Fuzzy ART framework to alleviate

input order dependency. Results show that it yields statistically significant improved peak

and average performances as well as smaller number of categories generated; besides it

incurred less variability in the clustering outcome on many data sets. Therefore, if at

all possible, reordering the samples using VAT is recommended, as this pre-processing is
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able to significantly affect the quality of the clustering structures created by Fuzzy ART.

We expect that this framework will improve performance on other incremental clustering

approaches also.
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ABSTRACT

Clusters retrieved by generic Adaptive Resonance Theory (ART) networks are

limited to their internal categorical representation. This study extends the capabilities of

ART by incorporating multiple vigilance thresholds in a single network: stricter (data

compression) and looser (cluster similarity) vigilance values are used to obtain a many-to-

one mapping of categories-to-clusters. It demonstrates this idea in the context of Fuzzy

ART, presented as Dual Vigilance Fuzzy ART (DVFA), to improve the ability to capture

clusters with arbitrary geometry. DVFA outperformed Fuzzy ART for the datasets in

our experiments while yielding a statistically-comparable performance to another more

complex, multi-prototype Fuzzy ART-based architecture.

Keywords: Clustering, Adaptive Resonance Theory, ART, Visual Assessment of Cluster

Tendency, Topology, Unsupervised.
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1. INTRODUCTION

Adaptive Resonance Theory (ART) (Carpenter & Grossberg, 1987) is a learning

theory introduced to address the stability-plasticity dilemma. It has inspired many neural

network architectures. These share mechanisms where resonance and resets are triggered by

a vigilance test under the control of an orienting subsystem. The various architectures differ

in their internal categorical representations, which restrict the shapes of the clusters they

can retrieve. This paper contributes a simple and effective method for retrieving arbitrary

clusters using dual vigilance parameters.

The literature contains many clustering approaches that harness the multi-proto-

type representation power to capture arbitrarily-shaped clusters. For ART-based systems,

hierarchical frameworks were presented in (Su & Liu, 2005) using quadratic neurons (Su &

Liu, 2001) and in (Brito da Silva & Wunsch II, 2015) using Fuzzy ART (Carpenter et al.,

1991). Notably, TopoART (Tscherepanow, 2010) and its variants (Tscherepanow et al.,

2011, 2012) have an architecture that makes use of multiple ART building blocks coupled

with topology-based learning (Furao & Hasegawa, 2006). Other approaches that augment

ART with topology learning include (Isawa et al., 2008, 2007).

Layered vigilance parameters can generate complex ART-based systems (e.g., for

mixed-modality learning) (Seiffertt & Wunsch II, 2010). This paper augments Fuzzy ART

by adding a second vigilance test to enable multi-prototype representation in a single ART

module. Since its building block is Fuzzy ART, it inherits properties such as fast stable

incremental learning and sensitivity to input order.
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2. BACKGROUND AND RELATEDWORK

2.1. FUZZY ART

Fuzzy ART (Carpenter et al., 1991) is a two-layered neural network connected by a

set of adaptable weights w: the normalized and complement-coded input (x ← [x, 1 − x],

0 ≤ xi ≤ 1 ∀i) is presented to the F1 layer, and the discovered categories are represented via

the F2 layer neurons. Fuzzy ART is controlled by the choice parameter (α > 0), learning

rate (β ∈ (0, 1]) and vigilance parameter (ρ ∈ [0, 1]). The algorithm proceeds as follows:

1. Present input x to the F1 layer and calculate the choice function Tj for each F2

category j:

Tj =
|x ∧ w j |

α + |w j |
, (1)

p ∧ q ≡ p AND q : (p ∧ q)i ≡ min(pi, qi), (2)

|p | ≡
∑

i

|pi |. (3)

Then, select the winning category using a winner-take-all competition:

J = arg max
j
{Tj}. (4)

2. Perform a vigilance check using the match criterion ν1:

ν1 : MJ =
|x ∧ wJ |

|x |
≥ ρ. (5)

If the winning category satisfies ν1, then update its weights:

wnew
J = (1 − β)wold

J + β(x ∧ wold
J ). (6)
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3. If the winning category fails ν1, then reset it and repeat 2 until a winner passes. If no

existing category succeeds, then a new category is created.

2.2. FUZZY TOPOART

The primary comparison architecture used in this paper is Fuzzy TopoART

(Tscherepanow, 2010), which combines Fuzzy ART and topology-based learning (Furao &

Hasegawa, 2006). Standard TopoART uses two identical Fuzzy ART modules (A and B)

that process data in parallel. It is controlled by module A’s vigilance parameter (ρa), the

learning rate of the second winner (βsbm), the minimum number of samples learned (φ) and

the number of cycles between noise removal procedures (τ). The algorithm is similar to

Fuzzy ART (in the following i = {a, b} represents the modules):

1. If the current iteration equals kτ (k ∈ N∗), then remove all categories j such that

ni
j < φ (ni

j represents the number of samples encoded by category j of module i).

2. Present input x and select the winning category J (Eqs. (1)-(4)).

3. Perform vigilance check ν1 using ρi in place of ρ (Eq. (5)). If satisfied, then update

the winner’s weights using βbm = 1 in (Eq. (6)) and increment ni
J .

(a) Search for a second winning category that also satisfies ν1. If such a category

exists, update its weights using βsbm < βbm in (Eq. (6)), and create an edge with

category J.

4. If category J fails ν1, then reset it and repeat 3 until a winner passes. If no existing

category passes, then create a new one.

Modules A and B’s algorithms are identical. However, a sample is propagated to

module B if it has resonated with a category of module A such that na
J ≥ φ, which serves

as a filtering mechanism. Additionally, module B has a higher vigilance parameter that
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reduces the maximum category size by 50% (Tscherepanow, 2010; Tscherepanow et al.,

2011, 2012):

ρb =
1
2
(ρa + 1) . (7)

By enforcing ρb ≥ ρa, modules A and B yield coarser and finer partitions of

the dataset, respectively. This multi-prototype approach allows both modules to learn

topological structures, thus discovering arbitrarily-shaped clusters. Finally, the following

activation function is used for prediction (Tscherepanow, 2010; Tscherepanow et al., 2011,

2012):

Tj = 1 −
|
(
x ∧ w j

)
− w j |

|x |
. (8)

3. DUAL VIGILANCE FUZZY ART

This paper introduces the idea of using two vigilance thresholds, demonstrated here

with Dual Vigilance Fuzzy ART (DVFA)1 consisting of two layered vigilance parameters

that regulate data compression/quantization and cluster similarity, i.e., a tighter and a looser

constraint, respectively. DVFA is controlled by upper bound (ρUB ∈ [0, 1]) and lower bound

(0 ≤ ρLB ≤ ρUB ≤ 1) vigilance parameters andmakes use of a binarymatrixMmap =
[
mr,c

]
tomap categories (rows) to clusters (columns), like FuzzyARTMAP (Carpenter et al., 1992).

The algorithm proceeds as follows:

1. Present input x and select the winning category J (Eq. (1)-(4)).

2. Perform vigilance check ν1 using ρUB in place of ρ (Eq. (5)). If satisfied, then update

the winner’s weights using Eq. (6).

3. If ν1 fails, then perform a second test, ν2, using ρLB in place of ρ (Eq. (5)).

1DVFA MATLAB code is available at https://github.com/ACIL-Group/DVFA.
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(a) If ν2 is satisfied, then a new category I is created and assigned to the same

cluster as category J. This is accomplished by adding a new row I to Mmap

equal to row J. This process can be viewed as “splitting” the parent category.

(b) If ν2 fails, then create a new category I and expand both the rows and columns

of Mmap to encode the new cluster K:

mr,c =



1, if r = I and c = K

0, if r = I and c , K

0, if r , I and c = K

mr,c, if r , I and c , K

(9)

This framework is a multi-prototype approach that builds a many-to-one mapping

of categories to clusters using a single ART module. This allows the data distribution to be

captured more faithfully so DVFA can retrieve clusters of arbitrary geometries.

4. EXPERIMENTAL SET-UP

The experiments were performed usingMATLAB, Orange (Demšar et al., 2013) and

LibTopoART2 (Tscherepanow, 2010). The CVAP toolbox (Wang et al., 2009) was used to

compute the Adjusted Rand Index (ARI) (Hubert & Arabie, 1985) of the partitions found by

the clustering algorithms. Linear normalization and complement coding (Carpenter et al.,

1991) were applied to all datasets, which comprise a miscellaneous set of characteristics.

Since Fuzzy ART is sensitive to the order of input presentation, the Visual Assessment

of cluster Tendency (VAT) (Bezdek & Hathaway, 2002) was used as a pre-processor in

part of this study, as it significantly improves the performance of Fuzzy ART and other

agglomerative clustering algorithms (Brito da Silva & Wunsch II, 2018).

2LibTopoART (version 0.74), available at https://www.libtopoart.eu.
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In these experiments, a grid search was used for parameter tuning of the clustering

methods. The [0, 1] interval with a step size of 10−2 was used to search for the Fuzzy

ART vigilance parameter. The lower and upper bound vigilances (ρLB, ρUB) of DVFA were

scanned in the parameter space [0, 1] × [0, 1] with a step size of 10−2, while subjected to

the constraint ρUB ≥ ρLB. Finally, TopoART parameters were searched in the following

intervals: ρa ∈ [0, 1], βsbm ∈ [0, 0.75], φ ∈ [1, 4], and τ ∈ [10%, 30%] with respect to the

data cardinality. To ensure a fair comparison, these step sizes were 10−2, 0.25, 1 and 10%,

respectively (which is roughly the same number of parameter combinations as DVFA).

Module B’s output was selected as the final clustering solution.

For each dataset, 30 runswere performed in two different scenarios inwhich random-

ized data was: (1) directly presented to the Fuzzy ART-based systems, and (2) pre-ordered

using VAT (per (Brito da Silva & Wunsch II, 2018)). The maximum number of epochs,

choice parameter (α) and learning rate (β) were set to 1, 10−3 and 1, respectively. Moreover,

in Fuzzy ART and DVFA implementations, the uncommitted category did not take part in

the winner-take-all process. Hence, if none of the current categories satisfy the vigilance

constraint, then a new category is created.

5. RESULTS AND DISCUSSION

Table 1 lists the best average performances (mean ± standard deviation) achieved

by DVFA, TopoART and Fuzzy ART. First, each parameter combination’s performances

are averaged across all their runs, and then, the maximum average is reported. As expected,

pre-ordering noticeably alters the performance of these incremental learners (Brito da Silva

& Wunsch II, 2018). The average ranks of Fuzzy ART, DVFA and TopoART observed

in the experiments are (a) 2.97, 1.72 and 1.31, in the random presentation case, and (b)

2.72, 1.41 and 1.88 when using VAT, in that order. Therefore, considering the means,

the DVFA outperformed Fuzzy ART in most of the datasets in both random and VAT-

based pre-processing scenarios. In the latter scenario, DVFA outperformed TopoARTmore
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frequently, with the additional advantage of not setting as many parameters since VAT is

parameter-free. Moreover, DVFA does not use explicit topological information or rely on

multiple networks processing samples in parallel. TopoART achieved the best performance

in more instances during random sample presentation.

For most datasets in these experiments, the best DVFA results were achieved when

both layers’ vigilance parameters were set above 0.6 and relatively close to each other.

Specifically, the parameter subspace defined by the cosine distance:

1 − cos
©«

ρLB

ρUB

 ,

1

1


ª®®¬ ≤ c (10)

subjected to the constraint 0.6 ≤ ρLB ≤ ρUB ≤ 1 roughly models the region that yields ac-

ceptable performance (particularly for random input presentation), where c reflects the size

of such a region. Thus, after performing these experiments, this guideline is recommended

for parameter setting.

Following Occam’s razor principle, Table 1 also lists the average number of cat-

egories created by each Fuzzy ART-based method and the average number of clusters

retrieved, with respect to the most compressed model, i.e., the one with the smallest number

of categories. Naturally, for Fuzzy ART the number of clusters also corresponds to the

number of categories. As expected, VAT pre-processing led to a decrease in the number

of categories created (Brito da Silva & Wunsch II, 2018). The compression levels of the

best average DVFA performances are data- and input order-dependent. For instance, no

compression was achieved (i.e, the number of categories is equal to the number of samples)

for the Moon, Wine, Spiral and Synthetic Control datasets. Conversely, the Tetra and Face

datasets had the most succinct representations. Generally, TopoART provided the most

compact clusters, which is expected since it has a more intricate architecture that uses data

topology information during the learning process.
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(a) (b)

(c) (d)

Figure 1. CD diagrams (Demšar, 2006) with respect to random (a, c) and VAT (b, d) input
presentations using Nemenyi (a, b) and Bonferroni-Dunn tests (c, d).

Following the statistical algorithm comparison procedure described in (Demšar,

2006), there is sufficient evidence to conclude that these Fuzzy ART-based systems do not

perform equally at 0.05 significance level using the Iman statistic (based on the Friedman

statistic) (Demšar, 2006). Moreover, Figure 1 depicts the critical difference (CD) dia-

grams (Demšar, 2006) using the Nemenyi and Bonferroni-Dunn tests at 0.05 significance

level. In the CD diagram of the former (Figs. 1a and 1b), DVFA and TopoART are linked,

hence not significantly different but nonetheless surpassing Fuzzy ART. The CD diagram

of the latter (Figs. 1c and 1d) uses DVFA as the control algorithm and supports the same

conclusion. Therefore, TopoART and DVFA yield comparable performances, both signif-

icantly better than Fuzzy ART. Specifically, TopoART and DVFA have superior average

ranks when data is presented randomly and VAT ordering is used, respectively.

Finally, the compactness of the multi-prototype networks were assessed in a princi-

pled manner by employing the Wilcoxon signed-ranks test (Demšar, 2006). As expected, at

a 0.05 significance level, TopoART creates more compact networks than DVFA (p-values:

0.0015 (random) and 0.0072 (VAT)). Hence, DVFA trades simple design for network com-

pactness.
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6. CONCLUSIONS

This work presented the idea of using multiple vigilance levels in one ART node,

showcased in Dual Vigilance Fuzzy ART (DVFA), which can capture arbitrarily-shaped

datasets by dynamically creating a many-to-one mapping between categories and clusters.

This is accomplished by presenting the data samples in a suitable order and making use

of two layered vigilance parameters in a single Fuzzy ART unit. This allows for a multi-

prototype representation of clusters. On average, when performance was assessed off-

line (where it is possible to pre-process the dataset using VAT), DVFA, TopoART and

Fuzzy ART ranked first, second and third, respectively. However, in on-line learning with

randomly presented samples, TopoART and DVFA swapped the relative positions of their

average rankings. Nonetheless, no statistically-significant difference was observed between

them. Considering the simplicity of DVFA, these results are encouraging for its use when

arbitrarily-shaped clusters are needed.
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ABSTRACT

This paper presents a novel adaptive resonance theory (ART)-based modular ar-

chitecture for unsupervised learning, namely the distributed dual vigilance fuzzy ART

(DDVFA). DDVFA consists of a global ART system whose nodes are local fuzzy ART

modules. It is equipped with distributed higher-order activation and match functions and

a dual vigilance mechanism. Together, these allow DDVFA to perform unsupervised

modularization, create multi-prototype cluster representations, retrieve arbitrarily-shaped

clusters, and reduce category proliferation. Another important contribution is the reduc-

tion of order-dependence, an issue that affects any agglomerative clustering method. This

paper demonstrates two approaches for mitigating order-dependence: pre-processing us-

ing visual assessment of cluster tendency (VAT) or post-processing using a novel Merge

ART module. The former is suitable for batch processing, whereas the latter also works

for online learning. Experimental results in online mode carried out on 30 benchmark

data sets show that DDVFA cascaded with Merge ART statistically outperformed the best
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other ART-based systems when samples were randomly presented. Conversely, they were

found to be statistically equivalent in offline mode when samples were pre-processed us-

ing VAT. Remarkably, performance comparisons to non-ART-based clustering algorithms

show that DDVFA (which learns incrementally) was also statistically equivalent to the non-

incremental (offline) methods of density-based spatial clustering of applications with noise

(DBSCAN), single linkage hierarchical agglomerative clustering (SL-HAC), and k-means,

while retaining the appealing properties of ART. Links to the source code and data are pro-

vided. Considering the algorithm’s simplicity, online learning capability, and performance,

it is an ideal choice for many agglomerative clustering applications.

Keywords: Fuzzy, Adaptive Resonance Theory, Clustering, Distributed Representation,

Topology, Visual Assessment of Cluster Tendency.

1. INTRODUCTION

There is a rich literature of clustering methods (Xu & Wunsch II, 2005; Xu &

Wunsch II, 2009; Xu & Wunsch II, 2010), and among the neural network-based ones,

adaptive resonance theory (ART) (Carpenter & Grossberg, 1987) is of great interest due to

its many useful properties (Brito da Silva et al., 2019b; Wunsch II, 2009), particularly the

fact that it addresses the stability-plasticity dilemma. ART networks learn, after sufficient

exposure to the environment, prototypical representations or archetypes that reflect groups

of samples (Bartfai, 1994, 1996); i.e., a succinct or compressed representation of the data.

The distributed dual vigilance fuzzy ART (DDVFA) introduced here extends the

dual vigilancemechanism of dual vigilance fuzzyART (DVFA) (Brito da Silva et al., 2019a)

to perform several ART-based online hierarchical agglomerative clustering (HAC)methods,

reduce category proliferation, and alleviate input ordering effects in online learning mode

(when used in a framework that includes another ART-based module also introduced in this

work). DDVFA belongs to the class of modular neural networks (Auda & Kamel, 1998,

1999; Auda et al., 1996). Specifically, it is designed for the unsupervised learning task
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of clustering. This class of network architectures employs a divide-and-conquer approach

and shares the following main features (Auda & Kamel, 1998, 1999; Auda et al., 1996):

task decomposition (breaking down a complex problem) andmulti-module decision making

(combining local decisions in a single global consensus). Commonly, unsupervised learning

methods are used as a pre-processing stage to partition the data to be handled by supervised

modules. ART-based systems have been used for such purposes in supervised modular

networks (Auda & Kamel, 1998, 1999; Auda et al., 1996).

A current challenge for incremental learners, such as ART-based systems, is the

order of sample presentation. Thus, suitable pre-processing, post-processing, and/or during

learning strategies are usually employed when applicable (see references in (Brito da Silva

& Wunsch II, 2018a)). For instance, merging strategies are commonly used in conjunction

with incremental learners (e.g., (Benites & Sapozhnikova, 2017; Isawa et al., 2008a,b,

2009; Lughofer, 2008; Swope, 2012; Zhang et al., 2006)); here, a novel ART-based network

provides such functionality. Additionally, visualization and assessment are valuable assets

when performing cluster analysis (Bezdek, 2017; Brito da Silva & Wunsch II, 2018b; Xu

& Wunsch II, 2009); here, the visual assessment of cluster tendency (VAT) technique

(Bezdek, 2017; Bezdek & Hathaway, 2002) is used for its sample ordering properties to

emulate scenarios in which such data pre-processing is practical, as per (Brito da Silva &

Wunsch II, 2018a).

This paper presents the following main contributions:

1. A novel modular fuzzy ART-based architecture (DDVFA). Unsupervised dynamic

modularization (creation of new local modules as needed) and multi-prototype repre-

sentation are accomplished by employing dual vigilance parameters associated with

global and local fuzzy ART modules.

2. Novel higher order distributed activation and normalized match functions based on

HAC methods embedded in the incremental learning process. Suitably setting the

HAC-based activation/match functions allows DDVFA to retrieve arbitrarily shaped



195

clusters, and higher ordermatch functions have the potential to generatemore compact

DDVFA networks (as per (Carpenter, 1997; Carpenter et al., 1998)) and extend the

regions of successful dual vigilance parameter combinations.

3. A novel Merge ART module compatible with DDVFA for post-processing purposes

in online learning applications. This procedure compensates for the errors caused by

the random order of input presentations thus enabling improved performance.

4. An analysis of the behavior of the DDVFA with and without pre-processing (VAT)

and post-processing (Merge ART) strategies, as well as a discussion on its hyper-

parameters and computational complexity.

The results show that together, these features enable DDVFA to yield an improved

performance compared to other current state-of-the-art fuzzy ART-based technologies.

The remainder of this paper is divided as follows: Section 2 provides a brief overview

of related works, focusing on ART, fuzzy ART, fuzzy topoART, and dual vigilance fuzzy

ART; Section 3 introduces the distributed dual vigilance fuzzy ART; Section 4 describes

the experimental set-up; Section 5 reports and discusses the results; and Section 7 is the

conclusion.

2. BACKGROUND AND RELATEDWORK

Adaptive resonance theory (ART) (Grossberg, 1976) is the theory that learning is

often mediated by resonant feedback in neural circuits. It inspired the development of

many neural network architectures, each with its own internal categorical representation,

while sharing the same design principles. The ARTmatching rule (Carpenter & Grossberg,

1987) is a key property of these ART systems (Amis & Carpenter, 2007; Carpenter, 2003);

it regulates the interaction between top-down expectations (represented by the internal cat-

egories or templates) and the bottom-up inputs. This process is guided by an orienting

subsystem, which performs a hypothesis test, called the vigilance check, that either shuts
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down or enables an ART category to learn. A set of ART categories discretizes the data,

thus summarizing it via clusters. The vigilance parameter (see Eq. (4)) controls category

size and thus the granularity of this discretization. ART templates have specific properties

and governing equations based on their internal representation, e.g., hyperboxes (Carpenter

et al., 1991b); Gaussians (Vigdor & Lerner, 2007; Williamson, 1996); hyperspheres (Anag-

nostopoulos & Georgiopoulos, 2000); hyperellipses (Anagnostopoulos & Georgiopoulos,

2001); and others.

Numerous ART-based architectures have been conceived, such as predictive ART

(ARTMAP) for supervisedmappings (Carpenter et al., 1992, 1991a); fusionART (Tan et al.,

2007), whose variants have been effectively used for semi-supervised (Meng et al., 2014),

supervised (Tan, 1995), and reinforcement learning applications (Tan, 2004, 2006; Tan

et al., 2008); Biclustering ARTMAP (BARTMAP) (Xu &Wunsch II, 2011) for biclustering

applications, such as gene expression analysis (Xu & Wunsch II, 2011) and collaborative

filtering (Elnabarawy et al., 2016); and ART networks endowed with multiple vigilance

tests (Brito da Silva & Wunsch II, 2017; Gomez-Sanchez et al., 2001; Huang et al., 2014;

Seiffertt &Wunsch II, 2010). A brief review of ART networks related to the contributions of

this work is provided next, where emphasis is given to the architectures used for comparison

purposes, thereby making this paper self-contained. For a detailed discussion of ART

models developed over the past three decades the reader is referred to (Brito da Silva et al.,

2019b).

2.1. ABBREVIATED REVIEW

ART has been used as the basis for several hierarchical clustering methods, which

can be classified into bottom-up (agglomerative ormergingmethods) and top-down (divisive

or splitting methods) (Xu & Wunsch II, 2009). Hierarchical ART architectures generally

follow two main designs (Massey, 2009): (a) a series/cascade of ART modules where the

output of one ART (i.e., a prototype) is the input of the next (Bartfai, 1996; Bartfai &



197

White, 1997a,b; Benites & Sapozhnikova, 2017; Carpenter & Grossberg, 1990; Chen &

Lin, 2001; Chen et al., 1999; Hung et al., 1996a,b; Ishihara et al., 1995; Yavaş & Alpaslan,

2012) or (b) parallel ART modules sharing the same inputs and using different vigilance

values (Bartfai, 1994; Kim & Wunsch II, 2011; Tscherepanow, 2010, 2012; Tscherepanow

et al., 2011, 2012; Švaco et al., 2014; Wunsch II, 1991; Wunsch II et al., 1993). Generally,

the hierarchical relationships between ART modules are defined implicitly by the input

signal flow, explicitly by enforcing constraints or connections, and/or by the setting of

multiple vigilance parameters to define hierarchies. Alternately, hierarchies within the

same ART can be created by designing custom ART activation functions (Lavoie et al.,

1997, 1999) or by analyzing its distributed activation patterns (Davenport & Titus, 2004).

ART-based hierarchical approaches have been successfully applied, for instance, in the text

mining (Bouchachia & Mittermeir, 2003; Massey, 2009) and robotics (Švaco et al., 2014;

Yavaş & Alpaslan, 2012) domains.

Another branch of clustering includes multi-prototype-based methods. These allow

multiple prototypes to represent a single cluster and more accurately capture the data topol-

ogy, thereby typically handling clusters with arbitrary shapes. Multi-prototype representa-

tions have been successfully used for clustering (Araújo et al., 2013a,b; Guha et al., 1998;

Taşdemir & Merényi, 2009; Tyree & Long, 1999), multivariate data visualization (Brito

da Silva & Wunsch II, 2018b; Taşdemir & Merényi, 2009; Ultsch & Siemon, 1990), and

cluster validation purposes (Halkidi & Vazirgiannis, 2008; Taşdemir & Merényi, 2011).

In the context of ART, examples include the combination of an ART-like system using

quadratic neurons (Su & Liu, 2001) and hierarchical clustering (Su & Liu, 2002, 2005) and

the related approach (Brito da Silva &Wunsch II, 2015) using fuzzy ART (Carpenter et al.,

1991b). Other methods have augmented ART-based systems by employing dual vigilance

parameters (Brito da Silva et al., 2019a), connecting the first and second resonating cate-
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gories (Isawa et al., 2008a,b, 2009, 2007; Tscherepanow, 2010, 2012; Tscherepanow et al.,

2011, 2012), or replacing fuzzy ART’s nodes with growing cell structures (Fritzke, 1994)

in a hybrid architecture (Kim et al., 2011).

Although based on multi-prototype representation, many of the previously men-

tioned approaches do not adopt distributed activation, match or learning, which improves a

network’s noise robustness and compactness (Carpenter, 1997; Carpenter et al., 1998). The

distributed ART model (Carpenter, 1997) is endowed with all of these distributed features,

however it does not possess a mechanism to build, in an unsupervised manner, a permanent

and binary many-to-one mapping of categories to clusters (i.e., a multi-prototype cluster

representation). Thus, it is still limited by its nested hyperbox cluster abstractions. Dis-

tributed learning is also featured in the ART variants introduced in (Kondadadi & Kozma,

2002; Yousuf & Murphey, 2010). In the ART literature, the power of distributed represen-

tation has been harnessed to perform, for instance, (a) unsupervised feature extraction (Lam

et al., 2015); (b) hierarchical clustering (Carpenter & Grossberg, 1990; Chen & Lin, 2001)

– although featuring distributed representation, the latter approaches are cascade architec-

tures not designed to model arbitrarily-shaped clusters; and (c) supervised learning systems

such as the distributed ARTMAP (Carpenter et al., 1998) (which is a generalization of a

variety of other ART models (Carpenter, 2003) such as (Amis & Carpenter, 2007; Carpen-

ter, 2003; Carpenter et al., 1992, 1991b; Carpenter & Markuzon, 1998)), some topoART

variants (Tscherepanow, 2011; Tscherepanow&Riechers, 2012), default ARTMAPs (Amis

& Carpenter, 2007; Carpenter, 2003), and the adaptive resonance associative map (Tan,

1995) variants introduced in (Benites & Sapozhnikova, 2017; Sapozhnikova, 2009).

2.2. FUZZY ART

Fuzzy ART (Carpenter et al., 1991b) is an ART architecture designed to work with

real-valued data and follows the ART design depicted in Figure 1. Concisely, when a sample

x ∈ Rd is presented at the feature representation field F1, it activates the category j at the
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Figure 1. Elementary ART architecture, underlying various ART designs.

category representation field F2 whose weight vector w j maximizes the following activation

function:

Tj =
|x ∧ w j |

α + |w j |
, (1)

where ∧ represents the fuzzy intersection, defined as the element-wise minimum operation

(x ∧ w j)i ≡ min(xi,w j,i), (2)

| · | is the L1 norm, and α > 0 is the choice parameter, which is usually set to a small value.

A comprehensive study on its behavior can be found in (Georgiopoulos et al., 1996).

Next, a match function evaluates the best matching category as:

Mj =
|x ∧ w j |

|x |
, (3)

and a vigilance check ν is performed using the computed match value:

ν : Mj ≥ ρ, (4)
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where 0 ≤ ρ ≤ 1 is the vigilance parameter. If ν is satisfied, then the winning category’s

weight vector is updated as:

wnew
j = (1 − β)wold

j + β(x ∧ wold
j ), (5)

where 0 < β ≤ 1 is the learning rate parameter. Otherwise, this category is deactivated, and

the search continues by activating the next highest ranked category. If none of them satisfies

this constraint, then a new category is created to encode sample x. Thus, the problem of

selecting the number of clusters is traded for the one of selecting the vigilance value ρ.

Fuzzy ART features many appealing properties such as scalability, speed, stability,

plasticity, online and offline incremental learning modes, as well as simple implementation,

transparency, and novelty detection (Amis & Carpenter, 2007; Carpenter, 2003; Mulder &

Wunsch II, 2003; Wunsch II, 2009; Xu & Wunsch II, 2009).

2.3. FUZZY TOPOART

Fuzzy topoART (Tscherepanow, 2010) incorporates topology-based learning (Furao

& Hasegawa, 2006) into ART. Briefly, it consists of multiple independent fuzzy ART

modules where the preceding modules filter the shared inputs to subsequent ones. Standard

topoART consists of two identical modules: A and B. During training, which is processed

in parallel for all modules, an “instance counting” feature accounts for the number of

samples N learned by a given category. Every τ learning cycles/iterations (number of

sample presentations), a noise thresholding procedure is performed to remove categories

with less than φ samples. Once the threshold is surpassed, “candidate” categories become

“permanent” categories. A sample is propagated to module B if it has resonated with a

“permanent” category of module A.
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The granularity of the solutions is defined by the modules’ different vigilance

parameter values. Module B’s vigilance parameter is (Tscherepanow, 2010; Tscherepanow

et al., 2011, 2012):

ρb =
1
2
(ρa + 1) , (6)

where ρa is module A’s vigilance parameter. Since ρb ≥ ρa, modules A and B yield

increasingly finer partitions of a given data set. Categories are laterally connected by edges

between the first and second resonating categories (i.e., the two highest ranked categories

that simultaneously satisfy the vigilance test (Eq. (4))) to mirror the input distribution.

This multi-prototype method enables topoART modules to learn topologies and capture

clusters with arbitrary geometries. Besides competitive learning, it also uses cooperative

learning by allowing the second winner (sbm) to learn with a smaller learning rate than

the first (bm): βsbm < βbm = 1. Finally, to compensate for fuzzy ART’s bias toward

small categories, topoART uses a particular activation function for prediction, which is

independent of category size (Tscherepanow, 2010; Tscherepanow et al., 2011, 2012):

Tj = 1 −
|
(
x ∧ w j

)
− w j |

|x |
. (7)

TopoART has spawned several variants for unsupervised (Tscherepanow, 2012;

Tscherepanow et al., 2011, 2012), supervised (Tscherepanow, 2011; Tscherepanow&Riech-

ers, 2012), and semi-supervised (Nooralishahi et al., 2018) learning paradigms.

2.4. DUAL VIGILANCE FUZZY ART

Dual vigilance fuzzy ART (DVFA) (Brito da Silva et al., 2019a) consists of a single

ART module equipped with two layered vigilance parameters. The larger vigilance value

is referred to as the “upper bound” (ρUB) and is responsible for the data compression/quan-

tization, whereas the lower vigilance value is referred to as the “lower bound” (ρLB) and

is responsible for the cluster similarity. Briefly, when a category J is activated after a
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winner-take-all competition, then a vigilance check with a large value is performed (using

ρUB in Eq. (4)); if it is satisfied, then it behaves identically to fuzzy ART. However, if this

test fails, then a second test is performed with a slightly smaller vigilance value (using ρLB

in Eq. (4)). If category J satisfies this looser constraint, then a new category I is created

and permanently assigned to the same cluster C as the tested category via a binary mapping

matrix Wmap =
[
w

map
r,c

]
P×K , which expands as

w
map
r,c =



1, r = I, c = C

0, r = I, c , C

w
map
r,c , r , I, ∀c

, (8)

where P and K are the current number of categories and clusters, respectively. On the other

hand, if both vigilance tests fail for all categories, then a new one (I) is created and Wmap

expands as

w
map
r,c =



1, r = I, c = K + 1

0, r = I, c , K + 1

0, r , I, c = K + 1

w
map
r,c , r , I, c , K + 1

, (9)

note that in all scenarios, the index of the new category is I = P + 1.

Therefore, each output cluster maintains a list of categories it is represented by,

which is a similar principle employed by fuzzy ARTMAP’s map field matrix (Carpenter

et al., 1992) to perform supervised mappings of categories to classes. However, DVFA’s

matrixWmap performs an unsupervised many-to-one (surjective) mapping of categories to

clusters (this is a multi-prototype approach). In this manner, the data distribution can be

more faithfully mirrored, and clusters of arbitrary geometries may be retrieved.
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3. DISTRIBUTED DUAL VIGILANCE FUZZY ART

The distributed dual vigilance fuzzy ART (DDVFA) neural network architecture

described in Section 3.1 can be viewed as an “ART of ARTs”, in which each node in the

category representation field F2 of a global ART is itself a local ART, where the latter

represents a given data cluster. Equivalently, it can be seen as an unsupervised modular

neural network consisting of local ARTs whose multi-module decision making system is

a global ART. Since ART-based systems are sensitive to the order of input presentation,

Section 3.2 presents an approach to compensate for this dependency: the output of a DDVFA

module (layer 1) is cascaded into a compatible Merge ART module (layer 2).

3.1. DDVFA ARCHITECTURE

Table 1 lists the notation used in this section, and Figure 2 depicts a generic DDVFA.

It is a modular structure in which a global ART controls local parallel ARTs via a vigilance

feedback between thesemodules – cf. ART tree (Wunsch II, 1991;Wunsch II et al., 1993), in

which F2 nodes are also ARTmodules, but these are not controlled by a global ARTmodule.

The global ART acts as a mapping mechanism analogous to the inter-ART module in fuzzy

ARTMAP architectures (Asfour et al., 1993; Carpenter et al., 1992), thus maintaining

hierarchical consistency. This relates to self-consistent modular ART (Bartfai, 1994);

however, DDVFA uses a bottom-up agglomerative approach, whereas the former uses a

top-down divisive approach limited to hyperrectangular cluster representations. Concretely,

DDVFA is a multi-prototype hierarchical agglomerative clustering (HAC) method that

builds a self-consistent two-level hierarchy of categories.

Similar to DVFA, the vigilance parameters of the global and local ARTs are denoted

as ρLB and ρUB, respectively, where the constraint ρLB ≤ ρUB is enforced. Setting

ρUB = ρLB reduces the DDVFA to a generic fuzzy ART framework, which ensures that

each global ART’s F2 node (i.e., each local ART) encodes one category. Alternately, setting
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Table 1. Notation for DDVFA.

Notation Description

X a data set X = {xl}
N
l=1 ∈ R

d .
ART (i)j global ART’s F2 node j (layer i).

T ART (i)j , M ART (i)j activation and match functions of local ART (i)j , respec-
tively.

w
ART (i)j
k k th category weight vector of local ART (i)j .

T
ART (i)j
k , M

ART (i)j
k activation and match functions of w

ART (i)j
k , respectively.

γ ≥ 1 kernel width.
0 ≤ γ∗ ≤ γ reference kernel width.
ρ
(i)
UB ≥ ρ

(i)
LB lower and upper bound vigilance parameters (layer i).

Tp,q, Mp,q activation and match matrices between local ART (1)p

and local ART (2)q .

n
ART (i)j
k number of samples encoded by category k of local

ART (i)j (instance counting).

nART (i)j total number of samples encoded by local ART (i)j (in-
stance counting).

𝐴𝐴𝐴𝐴𝐴𝐴1
(1) …

𝑥𝑥1 𝑥𝑥2 𝑥𝑥2𝑑𝑑…

𝒙𝒙

𝜌𝜌𝐿𝐿𝐿𝐿
(1)

𝐴𝐴𝐴𝐴𝐴𝐴2
(1) 𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚

(1)
𝒘𝒘1
𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚

(1) …

𝑥𝑥1 𝑥𝑥2 𝑥𝑥2𝑑𝑑…

𝒙𝒙

𝜌𝜌𝑈𝑈𝐿𝐿
(1)

𝒘𝒘2
𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚

(1)

𝒘𝒘𝑛𝑛
𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚

(1)

Constraint
𝜌𝜌𝑈𝑈𝐿𝐿

(1) ≥ 𝜌𝜌𝐿𝐿𝐿𝐿
(1)

Figure 2. DDVFA architecture. Each global ART’s F2 node is a local fuzzy ART (as
portrayed in Figure 1) with shared complement-coded input x ∈ R2d and vigilance ρ =
ρ
(1)
UB ≥ ρ

(1)
LB.
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ρUB strictly greater than ρLB builds a multiple category representation for each cluster, thus

enabling an approximation of that cluster’s geometry over the data space according to the

underlying assumption of the activation and match functions, which are to be set a priori.

The vigilance parameters ρLB and ρUB reflect the minimum similarity of a cluster and the

granularity level of the data quantization (i.e., the categories’ sizes), respectively. In other

words, the rationale is to restrict the maximum internal category size of each local ART

while maintaining a smaller similarity constraint for the cluster represented by each global

ART F2 node. Thus, local ART modules (or clusters) can be added as needed.

The inner workings of DDVFA are the same as a generic ART architecture, as

reviewed in Section 2. However, the activation T ARTi (·) and match M ARTi (·) functions of

the global ART’s F2 node i are a distributed version of the local ARTi categories’ activation

T ARTi
j and match M ARTi

j functions based on HAC, where j = {1, ..., k} represents the

categories. Specifically, the activation and match functions of global ART’s F2 node i in

layer (1) are given by a function of local ART (1)i ’s k nodes:

T ART (1)i = f
(
T

ART (1)i

1 ,T
ART (1)i

2 , ... ,T
ART (1)i

k

)
, (10)

where

T
ART (1)i

j =
©«
|x ∧ w

ART (1)i

j |

α + |w
ART (1)i

j |

ª®®¬
γ

, j ∈ {1, ... , k}, (11)

and

M ART (1)i = g

(
M

ART (1)i

1 , M
ART (1)i

2 , ... , M
ART (1)i

k

)
, (12)

where

M
ART (1)i

j =
©«
|x ∧ w

ART (1)i

j |

|x |

ª®®¬
γ

, j ∈ {1, ... , k}. (13)
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In this study, for simplicity, f (·) = g (·) in (10) and (12), i.e., the same functional

relationship is used for the activation and match functions. These are listed in Table 2 and

are based on HAC methods (Xu & Wunsch II, 2009).

A power parameter γ ≥ 1 is employed here in both the activation and match

functions. Like the power parameter used in (Carpenter, 1997; Carpenter et al., 1998),

γ assumes the role of a kernel width, facilitates the dual vigilance parameters selection, and

reduces category proliferation (Section 5.6). Setting γ = 1 corresponds to a standard fuzzy

ARTmodule, in which a moderately far sample would still have a reasonably large value for

the match function. This extension of successful dual vigilance parameters occurs because

the match and activation functions (when γ = 1) decay linearly and slowly for samples

outside a category’s hyperrectangular boundaries and thus, by increasing γ, steeper decays

are created (Figure 3). FasArt (Izquierdo et al., 2001) and the fuzzy min-max neural

network (Simpson, 1992, 1993) variant (Gabrys & Bargiela, 2000) devise custom fuzzy

membership functions, using an analogous parameter to control the membership values.

The property exploited here is the fact that the activation and match functions

become more “selective” (as expected from a power rule as a contrast-enhancement pro-

cedure (Carpenter, 1997; Carpenter et al., 1998)); e.g., in Figure 3 their trapezoidal form

approaches a rectangular membership function. Therefore, regarding the match function,

increasing γ makes far samples less similar and a category’s vigilance region (Meng et al.,

2016) smaller (Figure 3). Naturally, when applying a power rule to a scalar in the range

[0, 1], such as the case of the match and activation functions, its value decreases with γ.

Therefore, to account for the scaling effect, instead of using (13), the match function is

normalized as:

M
ART (1)i

j =
©«
|w

ART (1)i

j |

|x |

ª®®¬
γ∗

T
ART (1)i

j , j ∈ {1, ..., k}, (14)
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Table 2. DDVFA’s activation and match functions.

Method T ART (1)i = f (·) M ART (1)i = g(·)

single max
j

(
T

ART (1)i

j

)
max

j

(
M

ART (1)i

j

)
complete min

j

(
T

ART (1)i

j

)
min

j

(
M

ART (1)i

j

)
median median

j

(
T

ART (1)i

j

)
median

j

(
M

ART (1)i

j

)
averagea 1

ki

ki∑
j=1

T
ART (1)i

j
1
ki

ki∑
j=1

M
ART (1)i

j

weightedb
ki∑

j=1
p jT

ART (1)i

j

ki∑
j=1

p j M
ART (1)i

j
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a,b ki represents the number of categories in ART (1)i .
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ART

(1)
i

j

nART
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i

and nART (1)i =
∑
j

n
ART (1)i

j . This represents an a priori probability of ART (1)i ’s

category j analogous to (Vigdor & Lerner, 2007; Williamson, 1996).
c wc is the centroid representing all categories of ART (1)i , where its l component is given by
wc,l = min

j

(
w j,l

)
for l = {1, ..., 2d}.

(a) γ = 1 (b) γ = 10

Figure 3. 3D surfaces, contours, and cross-section cuts representing the normalized match
functions (Mn

γ ) using γ∗ = 1 and different values of γ.
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where 0 ≤ γ∗ ≤ γ is the reference kernel width with respect to which the match function

is normalized (see Appendix A). In this paper’s experiments, such normalization was

performed with respect to the match function values of a standard fuzzy ART (i.e., γ∗ = 1).

Note that the higher order HAC-based activation functions in Eq. (11) do not change the

search order for global ART when varying γ for single, complete, and centroid methods;

but it may for weighted and average. Additionally, it also does not affect the search order

within the local fuzzy ART module using the higher order activation and match functions.

Remark 1. A power law was introduced in distributed ART/ARTMAP (Carpenter,

1997) for the increased gradient content-addressablememory rule as a contrast enhancement

procedure, and it has been used in other ART variants such as distributed ARTMAP (Car-

penter et al., 1998) and default ARTMAPs (Amis & Carpenter, 2007; Carpenter, 2003). As

opposed to the latter ART systems, where the activation functions are normalized to 1 with

respect to a subset of highly active nodes, DDVFA’s activation functions are not normal-

ized, but rather its match functions. Specifically, the latter are normalized using a reference

parameter γ∗ and with respect to an individual category; additionally, DDVFA’s match-

reset-search mechanism itself is distinct and uses winner-takes-all learning, as opposed to

distributed ART’s distributed learning.

Remark 2. There are subtle, yet fundamental, differences between DVFA and

DDVFA besides the architecture itself and the distributed HAC-based higher order nature

of the activation and normalized match functions. The first one relates to the search

mechanism. In DVFA, it is possible for categories mapped to the same cluster to be brought

up during the search process. Conversely, in DDVFA, if a global ART node does not satisfy

the vigilance test, then its local ART and the cluster it represents (which includes all its

categories) is shut down and will not appear again during global ART’s search. Another

difference is that, according to Eq. (12) and Table 2, the match functions are distributed,

and, in the case of single and complete variants, the category selected by winner-takes-all

competition and the category subjected to the vigilance test are not required to be the same.
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Naturally, DDVFA integrates a winner-take-all mechanism to select among global

ART’s F2 nodes (i.e., local Fuzzy ARTs) with a variety of distributed HAC-based ac-

tivation/match functions, which are computed using local fuzzy ART’s weight vectors.

According to their definitions (Table 2), they range from winner-take-all (single) and loser-

take-all (complete) to completely distributed (average, centroid, and weighted). DDVFA

can be viewed as an ART-based online incremental approximate (prototype-based) HAC

method. If ρ(1)UB = 1, then the approach reduces to an ART-based HAC, since each local

fuzzy ART’s category encodes a single sample, and the dendrogram cut-level is defined by

the global ART module’s vigilance parameter ρ(1)LB. Algorithm 4 summarizes the DDVFA’s

pseudocode.

3.2. MERGE ART MODULE

The order of input presentation is a challenge for incremental learners as it plays a

significant role in such systems’ performance (see references in (Brito da Silva & Wunsch

II, 2018a)). For this reason, a Merge ARTmodule (Figure 4) is introduced here to be placed

at layer 2, i.e., on top of the DDVFA in a cascade design. It acts as another ART module

with dual vigilance parameters in which the inputs are ART nodes from DDVFA. It has its

own set of parameters that are independent of DDVFA. However, for simplicity, DDVFA’s

activation and match functions functional forms were kept to maintain the same underlying

cluster assumptions, and (ρ(2)LB, ρ
(2)
UB) were set to (ρ

(1)
LB, ρ

(1)
UB).

The merging process consists of unions or concatenation of local fuzzy ARTs

(merging step) followed by compressions within each set of local fuzzy ARTs (compression

step). LetTk,l = [ti j]R×C andMk,l = [mi j]R×C be the activation andmatchmatrices ofMerge

ART’s F2 node ART (2)k when the input ART (1)l (from DDVFA) is presented, where R and C

are the number of categories of Merge ART’s ART (2)k and DDVFA’s ART (1)l , respectively.



210

Algorithm 4: DDVFA

Input : x, α, β, ρ(1)UB, ρ
(1)
LB, γ, γ

∗, method.
Output
:

DDVFA clusters.

1 Present input sample x ∈ X .

2 Compute T
ART

(1)
i

j , ∀ i, j (Eq. (11)).

3 Compute T ART
(1)
i , ∀ i (Eq. (10), Table 2’s method).

4 Find the winning node I ← arg max
i
{T ART

(1)
i }.

5 Compute M
ART

(1)
I

j , ∀ j (Eq. (14)).

6 Compute MART
(1)
I (Eq. (12), Table 2’s method).

7 Evaluate vigilance test ν1 : MART
(1)
I ≥ ρ

(1)
LB.

8 if ν1 is satisfied (resonance) then
9 Find winning category J ← arg max

j
{T

ART
(1)
I

j }.

10 Evaluate vigilance test ν2 : M
ART

(1)
I

J ≥ ρ
(1)
UB.

11 if ν2 is satisfied (resonance) then
12 Update category J weight vector wART

(1)
I

J (Eq. 5).
13 else
14 Inhibit category J. If there are still active categories in ART (1)I then go to

step 9; otherwise create a new category using fast commit (wART
(1)
I

new ← x).

15 else
16 Inhibit ART (1)I . If there are still active F2 nodes in global ART then go to step 4;

otherwise create a new ART node and apply fast commit (wART
(1)
new

new ← x).

The entries of matrices Tk,l and Mk,l are computed as:

ti, j =
©«
|w

ART (1)
l

j ∧ w
ART (2)

k

i |

α + |w
ART (2)

k

i |

ª®®¬
γ

, (15)

mi, j =
©«
|w

ART (2)
k

i |

|w
ART (1)

l

j |

ª®®¬
γ∗

ti, j . (16)
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Figure 4. Merge ART module. Each ART (2) is a fuzzy ART with ρ = ρ(2)UB.

The activation and match functions of the Merge ART module are listed in Table 3.

When resonance is triggered, i.e., when the condition M ART (2)K ≥ ρ
(2)
LB is satisfied, then

ART (2)K (new) ← ART (2)K (old) ∪ ART (1)l . Finally, to compress the representation, i.e., to

reduce the number of categories, in the last step of the Merge ART procedure, the category

weight vectors wART (2)
k and instance countings nART (2)

k of each local ART module are fed to a

fuzzy ARTwith higher order activation and match functions, using the parameters ρ = ρ(2)UB,

γ∗ = 1, and γ; in this case, when a category learns using Eq. (5) then its instance counting is

updated as nnew = nold + nw, where nw is the instance counting of the category w presented

as an input.

The Merge ART module can be triggered at any stage during incremental learning.

For convenience, in this study it is activated by the end of one epoch (a full pass through

the data, similar to (Swope, 2012)), i.e., after N samples are presented to the learning

system, where N is made equal to the data cardinality. Therefore, this framework may

perform online incremental approximate HAC without computing a distance matrix with

the entire data or requiring full recomputations when new samples are presented. Again,

as the vigilance parameter ρUB approaches 1, there is little to no data compression. Merge
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Table 3. Merge ART’s activation and match functions.

Method T ART (2)
k = f (·) M ART (2)

k = g(·)

single max
i, j

(
[ti j]

)
max

i, j

(
[mi j]

)
complete min

i, j

(
[ti j]

)
min

i, j

(
[mi j]

)
median median

i, j

(
[ti j]

)
median

i, j

(
[mi j]

)
average 1

RC

R∑
i=1

C∑
j=1

ti j
1

RC

R∑
i=1

C∑
j=1

mi j

weighteda
R∑

i=1

C∑
j=1

pi p j ti j
R∑

i=1

C∑
j=1

pi p jmi j

centroidb
(
|w

ART
(2)
k

c ∧w
ART

(1)
l

c |

α+|w
ART

(2)
k

c |

)γ (
|w

ART
(2)
k

c ∧w
ART

(1)
l

c |

|w
ART

(1)
l

c |

)γ
a pi =

n
ART

(2)
k

i

nART
(2)
k

and p j =
n
ART

(1)
l

j

nART
(1)
l

. This represents an a priori probability of categories i and

j analogous to (Vigdor & Lerner, 2007; Williamson, 1996). Statistical independence is
assumed.
b w

ART (2)
k

c and w
ART (1)

l
c are the centroids representing all categories of ART (2)k and ART (1)l ,

respectively. Each of their n components is given by wART (2)
k

c,n = min
j

(
w

ART (2)
k

j,n

)
and wART (1)

l
c,n =

min
j

(
w

ART (1)
l

j,n

)
, where n = {1, ..., 2d}.

ART relates to traditional HAC approaches using ART’s activation function as the similarity

measure and the match function as the dendrogram threshold level, i.e., the activation and

match functions of the Merge ART module perform an ART-based HAC using the weight

vectors created by DDVFA. Algorithm 5 summarizes theMerge ARTmodule’s pseudocode.

Remark 3. Merging strategies are commonly employed in ART-based systems.

The Merge ART module presented here is closely related to the ART category merging

methods discussed in (Benites & Sapozhnikova, 2017; Isawa et al., 2008a,b, 2009; Swope,

2012; Zhang et al., 2006) and especially the frameworks in (Benites & Sapozhnikova,

2017; Swope, 2012). In the latter, fuzzy ART weights are merged via a fuzzy ART

module with its own set of parameters. Although both the DDVFA + Merge ART and the
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Algorithm 5:Merge ART module

Input : DDVFA,
{
α, β, ρ

(2)
UB, ρ

(2)
LB, γ, γ

∗,method
}
inherited from DDVFA, number of

iterations t (optional).
Output
:

Merge ART clusters.

/* Merging step. */
1 repeat
2 for l = {1, ... , No. global ART F2 nodes} do
3 Present input node ART (1)

l
∈ DDVFA.

4 Compute T ART
(2)
k , ∀ k (Table 3’s method).

5 Find the winning node K ← arg max
k

{T ART
(1)
k }.

6 Compute MART
(2)
K (Table 3’s method).

7 Evaluate vigilance test ν1 : MART
(2)
K ≥ ρ

(2)
LB.

8 if ν1 is satisfied (resonance) then
9 ART (2)K ← ART (2)K ∪ ART (1)

l
.

10 else
11 Inhibit node K . If there are still active nodes in Merge ART then go to

step 5; otherwise create a new ART node and apply fast commit
(ART (2)new ← ART (1)

l
).

12 DDVFA←Merge ART.
until stopping criteria: reaching a predefined number of iterations t or there is no
change in Merge ART nodes (convergence)
/* Compression step. */

13 for each ART (2)
k
∈ Merge ART do

14 ART (2)
k
← F A

(
{w, n} ∈ ART (2)

k
, ρ
(2)
UB, γ, γ

∗, α, β
)
.

/* FA: Fuzzy ART algorithm ran for 1 epoch. */

strategy in (Benites & Sapozhnikova, 2017; Swope, 2012) use a fuzzy ART framework for

merging, they have the following fundamental differences: (a) Merge ART’s inputs are local

fuzzy ART modules from DDVFA (i.e., subsets of categories) to be merged using a fuzzy

ART framework augmented with HAC-based distributed higher order activation and match

functions; (b) the output of the merging procedure includes not only categories but also

ART modules; (c) Merge ART’s compression step does not use an activation threshold (as

in (Swope, 2012)), but instead it uses higher order activation/match functions (in contrast
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to (Benites & Sapozhnikova, 2017; Swope, 2012)); (d) the weight update is not based on

an overlap/gap between weights (as in (Swope, 2012)), but instead it follows standard fuzzy

ART rules (Eq. (5)) which correspond to the weight merging in (Benites & Sapozhnikova,

2017) (and (Zhang et al., 2006) in fast learning mode); and (e) the vigilance parameter used

to cluster samples is also used to merge weights during the compression step (in contrast

to (Swope, 2012)).

The Merge ART module was designed such that its output can be used to replace

DDVFA when the merging procedure is done. The fact that ρ(2)LB used to concatenate

DDVFA’s local Fuzzy ARTs is smaller than ρ(1)UB used to cluster the samples, (ρ(2)LB = ρ
(1)
LB ≤

ρ
(1)
UB = ρ

(2)
UB), conforms with the findings reported in (Swope, 2012) that this setting yields

a good performance for merging fuzzy ART weights. This is expected, since the overall

architecture (DDVFA + Merge ART) is multi-layered and related to ART-based serial

structures (e.g., (Bartfai, 1996; Ishihara et al., 1995)), which in turn typically follow similar

parameterization.

4. EXPERIMENTAL SETUP

4.1. DATA SETS

A mix of 30 real-world and artificial benchmark data sets comprising diverse char-

acteristics were used in the experiments. They are available at the UCI Machine Learning

Repository (Bache & Lichman, 2013), Fundamental Clustering Problem Suite (Ultsch,

2005), Clustering data sets (Fränti, Pasi et al., 2015), and Data package (Ilc, 2013). Figure 5

illustrates these data sets, and Table 4 summarizes their characteristics. Linear normal-

ization was applied to all data sets to scale their features to the range [0, 1], as well as

complement coding, which is a useful data representation technique to mitigate a type of

category proliferation in fuzzy ART caused by weight erosion.
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(a) Aggreg. (b) Atom (c) Chainlink (d) Compound (e) Dermat.

(f) Ecoli (g) Face (h) Flag (i) Flame (j) Giant

(k) Glass (l) Hepta (m) Iris (n) Jain (o) Lsun

(p) Moon (q) Path Based (r) R15 (s) Ring (t) Seeds

(u) Spiral (v) S. Control (w) Target (x) Tetra (y) Twodiam.

(z) Wave (aa) Wine (ab) Wingnut (ac) Wisconsin (ad) WDBC

Figure 5. Data sets used in the experiments. Solely for visualization purposes, the data sets
withmore than 3 features (i.e.,Dermatology, Iris,Wine, Seeds,Wisconsin,WDBC, Synthetic
Control, Glass, and Ecoli) are depicted using principal component analysis projection. The
data sets’ features and projections are scaled to the range [0, 1].
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Table 4. Summary of the data sets’ characteristics.

Data set (N, d, k) type reference(s)

Aggregation (788,2,7) Artificial (Fränti, Pasi et al., 2015; Gionis et al., 2007)
Atom (800,3,2) Artificial (Ultsch, 2005)
Chainlink (1000,3,2) Artificial (Ultsch, 2005)
Compound (399,2,6) Artificial (Fränti, Pasi et al., 2015; Zahn, 1971)
Dermatology (358,34,6) Real World (Bache & Lichman, 2013)
Ecoli (336,7,8) Real World (Bache & Lichman, 2013)
Face (320,2,4) Artificial (Ilc, 2013; Ilc & Dobnikar, 2011)
Flag (640,2,3) Artificial (Ilc, 2013; Ilc & Dobnikar, 2011, 2012)
Flame (240,2,2) Artificial (Fränti, Pasi et al., 2015; Fu & Medico, 2007)
Giant (862,2,2) Artificial (Ilc, 2013; Ilc & Dobnikar, 2011, 2012)
Glass (214,10,6) Real World (Bache & Lichman, 2013)
Hepta (212,3,7) Artificial (Ultsch, 2005)
Iris (150,4,3) Real World (Bache & Lichman, 2013; Fisher, 1936)
Jain (373,2,2) Artificial (Fränti, Pasi et al., 2015; Jain & Law, 2005)
Lsun (400,2,3) Artificial (Ultsch, 2005)
Moon (514,2,4) Artificial (Ilc, 2013; Ilc & Dobnikar, 2011, 2012)
Path based (300,2,3) Artificial (Chang & Yeung, 2008; Fränti, Pasi et al., 2015)
R15 (600,2,15) Artificial (Fränti, Pasi et al., 2015; Veenman et al., 2002)
Ring (800,2,2) Artificial (Ilc, 2013; Ilc & Dobnikar, 2011, 2012)
Seedsa (210,7,3) Real World (Bache & Lichman, 2013; Charytanowicz et al., 2010)
Spiral (312,2,3) Artificial (Chang & Yeung, 2008; Fränti, Pasi et al., 2015)
Synthetic Controlb (600,60,6) Real World (Bache & Lichman, 2013)
Target (770,2,6) Artificial (Ultsch, 2005)
Tetra (400,3,4) Artificial (Ultsch, 2005)
Two Diamonds (800,2,2) Artificial (Ultsch, 2005)
Wave (287,2,2) Artificial (Ilc, 2013; Ilc & Dobnikar, 2011, 2012)
Wine (178,13,3) Real World (Bache & Lichman, 2013)
Wingnut (1016,2,2) Artificial (Ultsch, 2005)
Wisconsin (683,9,2) Real World (Bache & Lichman, 2013)
WDBCc (569,30,2) Real World (Bache & Lichman, 2013)

The (N, d, k) triad represents the number of samples, features and clusters of a data set.
a The contributors gratefully acknowledge support of their work by the Institute of Agrophysics of the
Polish Academy of Sciences in Lublin.
b Image courtesy of Eamonn Keogh.
c Wisconsin Diagnostic Breast Cancer.

4.2. CLUSTERING ALGORITHMS AND PARAMETER TUNING

To set the parameters of the clustering algorithms employed in the experiments,

grid searches were performed through their parameter spaces. For all algorithms, the best

solution was selected according to the parameter combination that yielded the peak average

performance.
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4.2.1. ART-Based Clustering Methods. Fuzzy ART, fuzzy topoART, and DVFA

were compared to DDVFA. In the experiments performed, fuzzy ART’s, DVFA’s and

DDVFA’s vigilance parameters were scanned in the range [0, 1] with identical step sizes

equal to 0.01 (DVFA’s and DDVFA’s vigilances were also subjected to the constraint

ρUB ≥ ρLB). For all fuzzy ART modules, the maximum number of epochs was set to 1

(online mode), the choice parameter (α) was set to 0.001, and the learning rate (β) was set

to 1 (fast learning). DDVFA’s parameters γ∗ and γ were set to 1 and 3, respectively; and, for

simplicity, ρ(1)UB = ρ
(2)
UB and ρ(1)LB = ρ

(2)
LB. Moreover, in all the fuzzy ART implementations,

no uncommitted category participated in the winner-take-all competitive process. If none

of the current committed categories satisfy the vigilance criteria, then a new one is created

and set to the current sample (fast commit). Regarding topoART, the parameters ρa, βsbm,

φ and τ were scanned in the ranges [0, 1] with a step size of 0.008, [0, 0.75] with a step

size of 0.25, [1, 4] with a step size of 1, and [10%, 30%] of the data cardinality with a step

size of 10%, respectively. These ranges and step sizes generated approximately the same

number of parameter combinations for topoART, DVFA, and DDVFA. Module B’s clusters

were taken as topoART’s output. Finally, for all these methods, 30 runs were performed for

each data set in both random and VAT ordered presentation scenarios.

4.2.2. Non-ART-Based Clustering Methods. Density-based spatial clustering of

applications with noise (DBSCAN) (Ester et al., 1996), affinity propagation (AP) (Frey &

Dueck, 2007), k-means (MacQueen, 1967), and single linkage hierarchical agglomerative

clustering (SL-HAC) (Xu&Wunsch II, 2009)were compared toDDVFA. In the experiments

performed, DBSCAN’s MinPts parameter was varied in the range [1, 4] with a step size

of 1, while eps was scanned in the range [0,
√

d] with equally spaced 1300 values, where

d is the dimensionality of the data (thus encompassing the full range of possible distance

values in the d-dimensional unit cube). The number of clusters k in k-means was varied

in the range [1, N], where N is the cardinality of the data set (thus encompassing the full

range of possible values for the number of clusters). Additionally, k-means was repeated 10
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times, and the best solution, according to the cost function being minimized, was selected

for each value of k. The AP’s damping factor λ was varied in the range [0.5, 1]with equally

spaced 5200 values, and the preference parameter was set as the median of the data samples’

similarities. The maximum iteration limit was set to 200 for AP and 300 for k-means. SL-

HAC used Euclidean distance, and its dendrogram was cut at all merging levels. Finally,

for all these methods, a single run was performed for each randomized data set, since they

are global approaches that are either not (or almost not) order dependent.

4.3. CLUSTERING PERFORMANCE ASSESSMENT

The adjusted rand index (AR) (Hubert & Arabie, 1985) is an external cluster validity

index commonly used in the unsupervised learning literature to measure the level of agree-

ment between a data sets’ reference partition (i.e., ground truth structure) and a discovered

partition (Xu & Wunsch II, 2009). It was used in this work to evaluate the quality of the

solutions returned by all clustering algorithms. The (AR) is defined as:

AR =

(N
2
)
(tp + tn) − [(tp + f p)(tp + f n) + ( f n + tn)( f p + tn)](N

2
)2
− [(tp + f p)(tp + f n) + ( f n + tn)( f p + tn)]

, (17)

where tp, tn, f p and f n stand for true positive, true negative, false positive, and false

negative, respectively.

4.4. STATISTICAL ANALYSIS METHODOLOGY

The clustering algorithmswere compared following the procedures discussed in (Demšar,

2006):

1. The quantities of interest (i.e., performance in terms of AR and network compactness)

were tested for equality using Iman-Davenport’s correction (Iman&Davenport, 1980)

of Friedman’s non-parametric rank sum test (Friedman, 1937, 1940).
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2. If there was sufficient evidence to reject the null hypothesis, then a critical difference

(CD) diagram (Demšar, 2006) was generated using Nemenyi’s post-hoc test (Ne-

menyi, 1963).

4.5. SOFTWARE AND CODE

The experiments were conducted using MATLAB, scikit-learn (Pedregosa et al.,

2011), Orange (Demšar et al., 2013), and Cluster Validity Analysis Platform (Wang et al.,

2009). The MATLAB code for fuzzy ART, DVFA, and DDVFA is available at the Applied

Computational Intelligence Laboratory group GitHub repositories1,2. The topoART ex-

periments were carried out using LibTopoART3 (Tscherepanow, 2010), whereas the other

clustering algorithms’ implementations were from scikit-learn4.

5. RESULTS AND DISCUSSION

5.1. DDVFA RESULTS WITH PRE- AND POST-PROCESSING

This study investigates DDVFA’s order of presentation dependency by analyzing

two frameworks: an offline approach that consists of pre-ordering the shuffled samples

using VAT (Bezdek & Hathaway, 2002), as per (Brito da Silva & Wunsch II, 2018a), and

an online approach in which the samples are solely randomized prior to presentation. The

latter is a more realistic scenario when an online incremental learner is required, i.e., a

learning system is confronted with a data stream. That is why all the experiments were

conducted with one epoch (single pass), so each data sample is only presented once.

1https://github.com/ACIL-Group/DVFA.
2https://github.com/ACIL-Group/DDVFA.
3LibTopoART v0.74, available at https://www.libtopoart.eu.
4http://scikit-learn.org



220

Aggreg.

Atom

Chainlink

Compound

Dermatology

Ecoli
Face

FlagFlame
Giant

Glass

Hepta

Iris

Jain

Lsun

Moon

P. based

R15

Ring

Seeds

Spiral
S. Control

Target Tetra
Twodiamonds

Wave

Wine

Wingnut

Wisconsin

WDBC

0.2
0.4

0.6
0.8

1.0

VAT + DDVFA DDVFA DDVFA + Merge

Aggreg.

Atom

Ecoli
Face

FlagFlame
Giant

Glass

Hepta

Iris

Jain

Lsun

Moon

R15

Ring

Seeds

Spiral
S. Control

Target Tetra
Twodiamonds

Wave

Wine

Wingnut

WDBC

0.2
0.4

0.6
0.8

Dermatology

Compound

Chainlink
1.0

Wisconsin

P. based

(a) average

Aggreg.

Atom

Ecoli
Face

FlagFlame
Giant

Glass

Hepta

Iris

Jain

Lsun

Moon

R15

Ring

Seeds

Spiral
S. Control

Target Tetra
Twodiamonds

Wave

Wine

Wingnut

WDBC

0.2
0.4

0.6
0.8

Dermatology

Compound

Chainlink
1.0

Wisconsin

P. based

(b) centroid

Aggreg.

Atom

Ecoli
Face

FlagFlame
Giant

Glass

Hepta

Iris

Jain

Lsun

Moon

R15

Ring

Seeds

Spiral
S. Control

Target Tetra
Twodiamonds

Wave

Wine

Wingnut

WDBC

0.2
0.4

0.6
0.8

Dermatology

Compound

Chainlink

Wisconsin

P. based

1.0

(c) complete

Aggreg.

Atom

Ecoli
Face

FlagFlame
Giant

Glass

Hepta

Iris

Jain

Lsun

Moon

R15

Ring

Seeds

Spiral
S. Control

Target Tetra
Twodiamonds

Wave

Wine

Wingnut

WDBC

0.2
0.4

0.6
0.8

Dermatology

Compound

Chainlink

Wisconsin

P. based

1.0

(d) median

Aggreg.

Atom

Ecoli
Face

FlagFlame
Giant

Glass

Hepta

Iris

Jain

Lsun

Moon

R15

Ring

Seeds

Spiral
S. Control

Target Tetra
Twodiamonds

Wave

Wine

Wingnut

WDBC

0.2
0.4

0.6
0.8

Dermatology

Compound

Chainlink
1.0

Wisconsin

P. based

(e) single

Aggreg.

Atom

Ecoli
Face

FlagFlame
Giant

Glass

Hepta

Iris

Jain

Lsun

Moon

R15

Ring

Seeds

Spiral
S. Control

Target Tetra
Twodiamonds

Wave

Wine

Wingnut

WDBC

0.2
0.4

0.6
0.8

Dermatology

Compound

Chainlink

Wisconsin

P. based

1.0

(f) weighted

Figure 6. Radar charts of the peak average performances (AR) of all three different DDVFA
systems, which are grouped by the type of activation/match functions (a)-(f). The results
are based on 30 runs per data set using γ∗ = 1 and γ = 3. Typically, VAT pre-ordering
yielded the best performance, while DDVFA and DDVFA + Merge ART appear to yield
a similar performance, with the exception of the single-linkage-based DDVFA, in which
using Merge ART makes a noticeable difference when compared to DDVFA by itself.

Employing the methodology described in subsection 4.2, the experiments were

performed with the following three systems: (1) DDVFA, (2) VAT + DDVFA, and (3)

DDVFA + Merge ART. The results are summarized in Figure 6, which depicts radar charts

of the peak average performance of all the mentioned systems grouped by the type of

HAC-based activation/match functions (i.e., per Tables 2 and 3’s method): (6a) average,

(6b) centroid, (6c) complete, (6d) median, (6e) single, and (6f) weighted. It shows that, in

general, VAT pre-ordering yields a better performance than pure DDVFA or post-processing

with Merge ART. The latter approaches yielded a similar performance across all types of
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activation/match functions, except for the single-linkage based DDVFA, in which using

Merge ART makes a significant difference compared to DDVFA by itself. For instance,

Figure 7 illustrates the outputs of DDVFA before and after cascading it with Merge ART

for the Spiral, Wave, Atom and Chainlink data sets.

5.1.1. Statistical Analysis of Performance. Using the Iman-Davenport test, a sta-

tistical analysis was conducted to quantitatively assess if the performances of the different

types of HAC-based activation/match functions (average vs. centroid vs. complete vs.

median vs. single vs. weighted) were equivalent when fixing the type of DDVFA system.

All these performance equivalency hypotheses were rejected at a 0.05 significance level

(Table 5). Therefore, Nemenyi’s test was performed, and Figure 8 depicts the resulting

CD diagrams. They indicate that the best performing groups seem to be: (Figure 8a)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Output partitions of the DDVFA system (a)-(d) before, and (e)-(h) after cascading
the Merge ARTmodule for the (a,e) Spiral, (b,f)Wave, (c,g) Atom, and (d,h) Chainlink data
sets.
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{average, single, weighted, median}, (Figure 8b) {weighted, median}, and (Figure 8c)

{single, weighted}; and the worst performing groups seem to be: (Figure 8a) {centroid},

(Figure 8b) {centroid, complete}, and (Figure 8c) {centroid, complete}, respectively. The

fact that the best average rank for DDVFA is achieved by the weighted variant is expected

since it considers additional information in the form of local prior probabilities.

A similar statistical analysis was conducted to determine if the performances of the

systems (DDVFA vs. VAT + DDVFA vs. DDVFA + Merge ART) were equivalent when

fixing the type of activation/match functions. All these null hypotheses were rejected at a

0.05 significance level (Table 6). Therefore, Nemenyi’s test was performed, and, for clarity,

Figure 9 solely depicts the resulting CD diagrams of selected HAC-based activation/match

functions. Typically, pre-processing with VAT or post-processing with the Merge ART

module are statistically equivalent, and, as expected, they are statistically better than just

feeding the shuffled data directly to DDVFA.

5.1.2. Summary. The statistical analysis suggests that pre-processing with VAT

or post-processing with Merge ART yields better results than just DDVFA. Furthermore,

in general, single, median, average and weighted HAC-based activation/match functions

appear to be statistically equivalent. Thus, the recommended systems are DDFVA + Merge

ART for online learning mode and random presentation, and VAT + DDVFA for offline

learning mode and applications where pre-ordering is feasible; for both of these systems

the single-linkage variant is recommended since it appeared in the top 2 average rank for

both learning modes.

5.2. PERFORMANCE COMPARISON 1: ART-BASED CLUSTERING ALGO-
RITHMS

Table 7 lists the AR peak average performance of fuzzy ART, DVFA, topoART B,

and DDVFA for both random and VAT ordered presentation scenarios. Given the results of

Section 5.1’s statistical analyses, the VAT + DDVFA and DDVFA + Merge ART systems
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Table 5. A statistical comparison of the different HAC activation/match functions’ perfor-
mances per DDVFA system: Friedman-Iman-Davenport p-values.

System DDVFA VAT + DDVFA DDVFA + Merge ART

p-valuea 1.1056e-09 4.2657e-08 6.8745e-13
a Considering a given system, all HAC activation/match function types are statistically
compared.

Table 6. A statistical comparison of the different systems’ performances per HAC activa-
tion/match function type: Friedman-Iman-Davenport p-values.

Method average centroid complete median single weighted

p-valuea 3.1048e-11 3.7364e-10 2.4092e-14 3.8147e-13 1.1102e-16 9.8684e-10
a Considering a given activation/match function type, all three DDVFA systems are statistically
compared.

were selected, and the performance was recorded with respect to single linkage-based

activation and match functions variant.

5.2.1. Statistical Analysis of Performance. The hypothesis that these algorithms

perform equally was tested using the Iman-Davenport statistic and rejected at a 0.05 signif-

icance level for both random (p-value=1.1102E-16) and VAT orderings (p-value=3.2012E-

07). Therefore, the CD diagrams were further computed, as shown in Figure 10, using

Nemenyi’s test. As shown, VAT pre-processing (offline incremental mode) equalizes per-

formance, such that all multi-prototype ART-based algorithms become statistically similar,

while also outperforming fuzzy ART. Alternately, when data is presented randomly in an

online incremental mode DDVFA + Merge ART yields a statistically better performance

than all the other ART-based algorithms at a 0.05 significance level. DVFA and topoART B

were observed to be statistically equivalent while also surpassing standard fuzzy ART (as

expected per (Brito da Silva et al., 2019a)).
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Figure 8. CD diagrams for all three DDVFA systems considering all HAC-based distributed
activation/match functions.
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Figure 9. CD diagram for selected distributed HAC-based activation/match functions
considering all three DDVFA systems. The CD diagram of the single variant is also
representative for centroid, complete, median, and weighted.

5.2.2. StatisticalAnalysis ofCompactness. The compactness of themulti-prototype

ART-based networks was also compared, i.e., the number of categories that were created

to represent the data sets’ clusters. The hypothesis of equivalence (using Iman-Davenport’s

test) was rejected at a 0.05 significance level, with p-values equal to (a) 5.2039E-03 for

VAT pre-ordering and (b) 1.7622E-02 for random presentation. Given this outcome, the

corresponding CD diagrams were generated as shown in Figure 11 using Nemenyi’s test.

In online learning mode (Figure 11a), in which samples are presented randomly, topoART

has the best average ranking for compactness. Yet, in offline learning mode (Figure 11b),

in which order-dependence can be managed via VAT pre-processing, DDVFA has a better

average compactness ranking than topoART. However, their observed compactness were
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Figure 10. CD diagrams comparing the performance of ART-based clustering methods.

similar and with no statistically significant difference. As expected, topoART creates more

compact networks than DVFA in all scenarios (Brito da Silva et al., 2019a). Note that

improved compactness may be obtained by carefully tuning DDVFA’s parameter γ.

5.2.3. Summary. The statistical analysis suggests that if pre-processing with VAT,

then topoART, DVFA, and DDVFA seem to perform equally; whereas for random presen-

tation DDVFA + Merge ART’s performance was observed to be statistically better than the

remaining ART-based systems. Moreover, no statistical differences were found between the

compactness of topoART and DDVFA systems using single linkage functions for randomly

or VAT ordered presentations, and both achieved a better average rank than DVFA.



228

1 2 3

TopoART
DDVFA + Merge

DVFA

CD

(a) Random order

1 2 3

DDVFA
TopoART

DVFA

CD

(b) VAT pre-order

Figure 11. CD diagrams comparing the compactness of the multi-prototype ART-based
architectures.

5.3. PERFORMANCE COMPARISON 2: NON-ART-BASED CLUSTERING AL-
GORITHMS

Table 7 also reports the performance of k-means, DBSCAN, affinity propagation

(AP), and single linkage (SL-HAC). Again, the Iman-Davenport test was used to compare

these algorithms to (a)VAT+DDVFA, and (b)DDVFA+MergeART. These null hypotheses

were rejected at a 0.05 significance level with p-values equal to (a) 5.4413E-06, and (b)

4.4746E-04. Next, the CD diagrams were generated using Nemenyi’s test, as shown in

Figure 12. For these data sets and at a 0.05 significance level, no statistical difference was

observed between the k-means and AP, while the two DDVFA systems (VAT + DDVFA

and DDVFA + Merge ART) seem to be statistically equivalent to DBSCAN, SL-HAC,

and k-means. Nevertheless, both DDVFA systems have a smaller average rank value
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(a) DDVFA + Merge ART vs. non-ART-based methods.
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(b) VAT + DDVFA vs. non-ART-based methods.

Figure 12. CD diagrams comparing the performance of two DDVFA systems to SL-HAC,
DBSCAN, k-means, and AP clustering algorithms.

(particularly when using the VAT pre-processor). This on par performance is remarkable,

especially regarding the comparison with the DDVFA + Merge ART system, since in

this case clustering is performed both incrementally and online, as opposed to the other

global clustering methods. Re-performing the computations using the entire data set is not

required if a new sample is presented (cf., SL-HAC). Therefore, it is possible to extend

the current knowledge base. Moreover, the weight vectors do not cycle, and previously

acquired knowledge is not forgotten (cf., k-means). These important advantages of the

DDVFA systems are inherited from fuzzy ART.
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5.4. COMPUTATIONAL COMPLEXITY ANALYSIS

Table 8 shows a summary of the running time complexity for each of the algorithms

used in this work. The complexity shown is for a data set of N input samples, with k cate-

gories. Since each of the algorithms’ running time grows linearly with the dimensionality of

the input d, it was omitted from the table for the sake of brevity. For fuzzy ART, topoART,

DVFA, and DDVFA algorithms, the table indicates the time complexity for a single pass

through the data set (i.e., when these algorithms operate in online mode), whereas entries

showing a t parameter indicate that this time grows linearly with each iteration of the re-

spective algorithm. The indicated running time complexity is a measure of how the time

needed to run each of these algorithms for a single combination of user-specified parameters

grows with the size of the data set and the number of categories. Specifically, following

the experimental setup described in Section 4.2, the number of user-specified parameter

combinations used to tune each algorithm is reported in Table 8.

The computational complexity of DDVFA andMerge ART can be observed directly

from Algorithms 4 and 5, respectively, where k refers to the total number of categories

across all of the ART nodes inside DDVFA. For each input sample presentation in DDVFA,

the activation and match functions are calculated once for each of those k categories, and

each of the operations in Table 2 only performs an additional k computations, leading to

an overall computational complexity of O(nk). For the Merge ART procedure, in each

of the t iterations that the algorithm performs until convergence, subsets of the k nodes

are compared pair-wise with other nodes, which leads to k2 work in the worst case. This

results in overall O(k2t) computational complexity for Merge ART, although it is worth

noting that this is a pessimistic upper-bound, since most of the time only small subsets of

k are compared, leading to the actual work being only a fraction of k2. Moreover, since

ART-based algorithms do not require the user to directly set the value of k, the total number

of categories in each of these algorithms, and therefore the value of k, will vary depending

on the way the algorithm builds its internal representation.
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Table 8. Time complexity and hyper-parameterization of all algorithms used in this work.

Algorithm Time complexity User-specified parameter(s) No. of parameter combinations

Fuzzy ART O(Nk) (Meng et al., 2016) ρ 101
TopoART O(Nk) (ρa, βsbm, φ, τ) 5040
DVFA O(Nk) (ρLB, ρUB) 5151
DDVFA O(Nk) (ρ(1)LB, ρ

(1)
UB) 5151

VATa O(N2) (Havens & Bezdek, 2012) - -
Merge ARTb O(k2t) (ρ(2)LB, ρ

(2)
UB) 5151c

DBSCAN O(N2) (Schubert et al., 2017) (MinPts, eps) 5200
AP O(N2t) (Shang et al., 2012) λ 5200
SL-HACd O(N2) (Sibson, 1973) dendrogram cut-off level data dependent
k-meanse O(Nkt) (Xu & Wunsch II, 2009) k N (data dependent)

a Pre-processing.
b Post-processing.
c Number of parameter combinations for the system DDVFA + Merge ART. Note that all three DDVFA systems
(viz., DDVFA, VAT + DDVFA, and DDVFA + Merge ART) undergo the same number of parameter combinations
(5151), since VAT does not require parameterization and Merge ART uses ρ(2)LB = ρ

(1)
LB and ρ(2)UB = ρ

(1)
UB.

d The number of possible parameter values is equal to the the total number of merging levels in the data sets’
dendrogram.
e The number of possible parameter values is equal to the data sets’ number of samples N .

5.5. DDVFA’S HYPER-PARAMETERIZATION

As discussed in Section 4.2.1, besides the choice (α) and learning (β) parameters that

all fuzzy ART networks require to be set, DDVFA requires the selection of the following

additional six parameters: γ∗, γ, ρ(1)UB, ρ
(2)
UB ρ

(1)
LB, and ρ

(2)
LB. Note however that, in the

experiments carried out, γ∗ = 1, ρ(1)UB = ρ
(2)
UB, and ρ

(1)
LB = ρ

(2)
LB. Thus, there are effectively

three additional parameter to be set: ρ(1)UB, ρ
(1)
LB and γ.

Particularly, in the experiments carried out, for all three systems (DDVFA, VAT +

DDVFA, and DDVFA + Merge ART), the centroid-based method consistently yielded the

best results (in terms of performance and model compactness) when setting ρ(1)UB = ρ
(1)
LB for

all data sets. Similarly, for the complete method, the majority of the best results achieved

by the DDVFA and DDVFA + Merge ART systems also used ρ
(1)
UB = ρ

(1)
LB. Under such

parameter setting, DDVFA reduces in functionality to a fuzzy ART network augmented

with higher order activation and match functions. Regarding the remaining HAC methods

(i.e., single, median, average, and weighted) the setting of the upper and lower bound
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vigilance parameters is data dependent, thus requiring careful tuning as with most clustering

algorithms. In practical unsupervised learning applications, onemay resort to expert domain

knowledge or to relative incremental cluster validity indices (Brito da Silva et al., 2019c;

Ibrahim et al., 2018a,b; Moshtaghi et al., 2019) to drive the parameter tuning process.

Finally, a detailed discussion regarding the kernel width parameter γ, and its im-

plications to model compactness (i.e., category proliferation) and performance, is provided

in the following subsection. In this work, fixing γ to 2 or 3 achieved good results in the

experiments carried out.

5.6. SENSITIVITY TO KERNELWIDTH PARAMETER

To examine the behavior of the DDVFA systems with respect to parameter γ, γ = 1

and γ = 3 were arbitrarily set, and Wilcoxon’s signed-ranks tests (Wilcoxon, 1945) were

conducted to compare the performance and compactness of the best dual vigilance parameter

combination (peak average performances over 30 runs). The results are reported in Table 9.

Regarding the HAC-based activation/match functions, a significant statistical differ-

ence for both performance and compactness was observed for (a) all DDVFA systems using

the single HAC method, (b) the majority of DDVFA systems using centroid, median, and

complete HAC methods. Average and weighted variants do not appear to be very much

affected by changing parameter γ between these two values. With respect to the three

DDVFA systems, performance and compactness are affected by parameter γ, except for the

compactness of the VAT + DDVFA system which remains mostly unaffected.

Due to these statistical analysis results, the DDVFA systems’ behavior was further

investigated using single-linkage HAC activation/match functions with respect to param-

eter γ. The study is performed by varying γ in the interval [0, 5] with a step size of 0.5

and observing the following aspects: peak average performance (AR), number of clusters,

and number of categories created. The last two quantities were examined since DDVFA

belongs to the class of multi-prototype-based clustering methods, i.e., each cluster may be
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Table 9. A statistical comparison of γ = 1 versus γ = 3: Wilcoxon p-values.

Systems
Methods

Average Centroid Complete Median Single Weighted

Performance

VAT + DDVFA 2.1228E-02 4.8300E-03 1.0200E-01 3.9650E-02 3.1506E-02 1.6480E-01
DDVFA 1.3591E-01 1.8254E-06 3.7323E-04 5.2872E-04 1.9209E-06 3.4935E-01
DDVFA + Merge ART 2.2101E-01 3.3445E-06 4.0355E-04 1.7515E-02 2.6539E-03 1.5884E-01

Compactness

VAT + DDVFA 7.1864E-01 1.8663E-01 5.6445E-01 3.2279E-01 1.7982E-02 7.9707E-01
DDVFA 6.8344E-03 1.7697E-03 7.1966E-05 7.9639E-03 6.6540E-06 3.0581E-03
DDVFA + Merge ART 1.0000E+00 4.5022E-06 1.5649E-05 3.1513E-02 8.0045E-04 2.0223E-01

Bold values indicate statistically significant results.

represented by multiple categories. Such behaviors are illustrated in Figs. 13 through 15.

For clarity, and according to the recommendations outlined in Section 5.1, only the behavior

with respect to the data sets Seeds, Wine, Target, Tetra, Lsun, and Moon is reported.

For each value of γ, the vigilance parameter combination corresponding to the best

average performance over 10 different input permutation orders is selected. Following

Occam’s razor and the principle of parsimony (Duda et al., 2000), among all models that

yield the best performance, the one with the simplest clustering structure is selected, i.e.,

the one that requires the smaller number of categories to encode its clustering partition.

Thus, the depicted box-plots relate to the simplest model that achieved the peak average

performance for each value of γ.

Remark 4. Note that the vigilance parameter combinations that yield each box-plot

in Figs. 13 through 15 are not held constant across the different values of γ; therefore,

they may not be necessarily the same. For instance, Figure 13 shows that, for the VAT

+ DDVFA system, given a value of γ, there is a dual vigilance parameter combination

that can find the correct partitions (AR = 1) with similar compactness levels (number of

categories) across γ values for the Target, Tetra, Lsun, and Moon data sets. Analogously,

given a value γ, there is a dual vigilance parameter combination for the DDVFA + Merge

ART system that yields maximum AR for the Target, Lsun, and Moon data sets; however,
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Figure 13. The behavior of the VAT+DDVFA system with respect to parameter γ using
the Seeds,Wine, Target, Tetra, Lsun, andMoon data sets: (a)-(f) peak average performance
(AR), (g)-(l) number of clusters, and (m)-(r) total number of categories created. Both the
number of clusters and categories are taken with respect to the most compact model that
yields the depicted peak average performance (i.e., dual vigilance parameterization is not
held constant while varying parameter γ).

the number of categories fluctuates when the samples are randomly presented. If the dual

vigilance parameter combination is held constant, e.g., by setting it to the best combination

associated with γ = 1, then, for other γ values, the behaviors with respect to performance,

number of clusters and categories may change for both systems, as shown in Figure 16

for the Target data set. Note the increase in the number of categories due to the increase

of γ: the smallest dual vigilance parameter values required to achieve the best performance

for γ = 1 are somewhat large, and the same values coupled with a more selective kernel

(larger γ) result in more categories being created.



235

1 1.5 2 2.5 3 3.5 4 4.5 5

γ

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

A
R

(a) Seeds

1 1.5 2 2.5 3 3.5 4 4.5 5

γ

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

A
R

(b) Wine

1 1.5 2 2.5 3 3.5 4 4.5 5

γ

0.78

0.8

0.82

0.84

0.86

0.88

0.9

A
R

(c) Target

1 1.5 2 2.5 3 3.5 4 4.5 5

γ

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
R

(d) Tetra

1 1.5 2 2.5 3 3.5 4 4.5 5

γ

0.5

0.6

0.7

0.8

0.9

A
R

(e) Lsun

1 1.5 2 2.5 3 3.5 4 4.5 5

γ

0.35

0.4

0.45

0.5

0.55

0.6

0.65

A
R

(f) Moon

1 1.5 2 2.5 3 3.5 4 4.5 5

γ

5

6

7

8

9

10

11

12

N
o

. 
C

lu
s
te

r
s

(g) Seeds

1 1.5 2 2.5 3 3.5 4 4.5 5

γ

10

15

20

25

30

35

40

45

N
o

. 
C

lu
s
te

r
s

(h) Wine

1 1.5 2 2.5 3 3.5 4 4.5 5

γ

10

10.5

11

11.5

12

12.5

13

13.5

14

N
o

. 
C

lu
s
te

r
s

(i) Target

1 1.5 2 2.5 3 3.5 4 4.5 5

γ

10

15

20

25

N
o

. 
C

lu
s
te

r
s

(j) Tetra

1 1.5 2 2.5 3 3.5 4 4.5 5

γ

8

10

12

14

16

18

20

22

24

N
o

. 
C

lu
s
te

r
s

(k) Lsun

1 1.5 2 2.5 3 3.5 4 4.5 5

γ

18

20

22

24

26

28

N
o

. 
C

lu
s
te

r
s

(l) Moon

1 1.5 2 2.5 3 3.5 4 4.5 5

γ

5

6

7

8

9

10

11

12

N
o

. 
C

a
te

g
o

ri
e
s

(m) Seeds

1 1.5 2 2.5 3 3.5 4 4.5 5

γ

20

40

60

80

100

120

140

160

180

N
o

. 
C

a
te

g
o

ri
e

s

(n) Wine

1 1.5 2 2.5 3 3.5 4 4.5 5

γ

50

100

150

200

250

300

350

400

450

N
o

. 
C

a
te

g
o

ri
e

s

(o) Target

1 1.5 2 2.5 3 3.5 4 4.5 5

γ

0

50

100

150

200

250

N
o

. 
C

a
te

g
o

ri
e

s

(p) Tetra

1 1.5 2 2.5 3 3.5 4 4.5 5

γ

20

40

60

80

100

120

140

160

180

200

N
o

. 
C

a
te

g
o

ri
e

s

(q) Lsun

1 1.5 2 2.5 3 3.5 4 4.5 5

γ

60

80

100

120

140

160

180

N
o

. 
C

a
te

g
o

ri
e

s

(r) Moon

Figure 14. The behavior of the DDVFA system with respect to parameter γ using the Seeds,
Wine, Target, Tetra, Lsun, and Moon data sets: (a)-(f) peak average performance (AR),
(g)-(l) number of clusters, and (m)-(r) total number of categories created. Both the number
of clusters and categories are taken with respect to the most compact model that yields
the depicted peak average performance (i.e., dual vigilance parameterization is not held
constant while varying parameter γ).

Naturally, the behavior of the DDVFA systems with respect to γ is data- and system-

dependent. Although some AR performance fluctuation exists across the values of γ for

some data sets, it generally seems to be fairly robust to this parameter. The number of

categories, i.e., the compression level, often drastically changes with γ. For example,

setting γ = 1 (i.e., using standard fuzzy ART building blocks) versus γ = 2 already yields

noticeable changes in many data sets as shown in Figs. 13 through 15, especially for the

DDVFA + Merge ART system. Furthermore, the number of categories appears to decrease

by increasing γ as this tendencywas observed inmany of the data sets in Figs. 13 through 15.

Specifically, Figure 17 illustrates this effect in the Target data set. These experimental

results are consistent with previous findings in related work, in which improved memory
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Figure 15. The behavior of the DDVFA + Merge ART system with respect to parameter
γ using the Seeds, Wine, Target, Tetra, Lsun, and Moon data sets: (a)-(f) peak average
performance (AR), (g)-(l) number of clusters, and (m)-(r) total number of categories created.
Both the number of clusters and categories are taken with respect to themost compact model
that yields the depicted peak average performance (i.e., dual vigilance parameterization is
not held constant while varying parameter γ).

compression is achieved when using power rules coupled with distributed learning in ART-

systems (Carpenter, 1997; Carpenter et al., 1998). Another important aspect refers to the

region of the dual vigilance parameter space which correlates with better performance; such

a region seems to increase with the value of γ for some data sets (e.g., the Target data set in

Figure 18), usually at the expense of the network’s compactness.

6. CONCLUSION

This paper presents distributed dual vigilance fuzzy ART (DDVFA), a novel, mod-

ular, hierarchically self-consistent ART-based architecture for incremental, unsupervised

learning. DDVFA features a number of innovations that differ from other ART-based sys-
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Figure 16. The behavior of the (a)-(c) VAT + DDVFA, (d)-(f) DDVFA, and (g)-(i) DDVFA
+ Merge ART systems for different values of parameter γ while holding the dual vigilance
parameters constant. Single linkage HAC-based activation and match functions are used.

tems. It relies on dual vigilance parameters to handle data quantization (local scale) and

cluster similarity (global scale), features multi-prototype representations, and higher-order
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(a) (1, 19) (b) (3, 12) (c) (1, 78) (d) (3, 17)

Figure 17. The best and most compact output partitions for the Target data set using the
(a)-(b) VAT + DDVFA and (c)-(d) DDVFA + Merge ART systems. The ordered pairs
correspond to (γ, total number of categories). (a) and (c) correspond to fuzzy ART and are
subject to category proliferation, whereas (b) and (d) correspond to DDVFA and represent
the same data with fewer categories.

distributed activation and match functions. DDVFA consists of a global ART network

whose nodes are local ART modules. The learning mechanism of the former is triggered

by the feedback from the latter, thus enabling the system to capture arbitrary data distribu-

tions when using appropriate activation/match functions. DDVFA enables both one- and

multi-category representations of clusters (i.e., one-to-one and one-to-many mappings of

categories to clusters) according to the setting of the upper and lower vigilance parameter

values.

Like all agglomerative clustering algorithms, notably fuzzyARTandDVFA,DDVFA

is sensitive to input order presentation. This work therefore introduces a compatible Merge

ART module that yields improved performance in the online mode where samples arrive

in a random order and pre-processing cannot be employed. Experiments were conducted

with random and VAT ordered samples. As expected, the latter approach yields better

average performance ranks, and thus it is recommended in applications where the offline

learning mode is available. Otherwise, for online incremental learning, the usage of a

Merge ART module cascaded with DDVFA is recommended, given that the latter showed

superior performance and less sensitivity to input presentation order. The VAT + DDVFA

and DDVFA + Merge ART systems were found to be statistically equivalent in this paper’s
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Figure 18. Heat maps corresponding to the average performance (AR) of (a)-(c) VAT +
DDVFA, (d)-(f) DDVFA, and (g)-(i) DDVFA + Merge ART, for the Target data set when
varying parameter γ. More yellow is better, implying a broader range of good parameter
values. Sub-figures (a), (d), and (g) correspond to fuzzy ART building blocks, whereas the
other portions of the figure correspond to contributions from this paper.

experiments. Naturally, the type of distributed activation/match functions used for the sim-

ilarity definition is data-dependent; the single-linkage-based ones typically yielded the best

and second best average performance rank when cascading Merge ART and pre-processing
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with VAT, respectively. Conversely, weighted-based activation/match functions yielded the

best average performance rank when solely using DDVFA. Naturally, as with other ART

algorithms, the dual vigilance parameters must be carefully tuned.

The combination of DDVFA + Merge ART significantly outperformed fuzzy ART,

DVFA, and topoART in most of the data sets with randomly presented samples, where a

statistical differencewas observed. Conversely, when pre-processingwithVAT, no statistical

difference was observed among the ART networks, except for fuzzy ART. The compactness

(i.e., number of categories created) of the networks generated by the multi-prototype ART-

based architectures was also compared, and again, no statistical difference was observed

between these DDVFA systems and topoART. Furthermore, the clustering performance

of these best performing DDVFA systems were compared with single-linkage hierarchical

agglomerative clustering (HAC), DBSCAN, k-means and affinity propagation. The results

indicated that these DDVFA systems are statistically equivalent to the first three clustering

algorithms mentioned, and performed statistically better than affinity propagation. This is

noteworthy since DDVFA-based systems are based on incremental learning, whereas all the

other non-ART-based algorithms used batch learning. Incremental learning is an important

and often essential capability in application. For problems needing incremental learning,

DDVFA + Merge ART is demonstrably superior.

Finally, this work discussed DDVFA’s computational complexity and hyper param-

eterization. Particularly, it investigated the effect of the kernel width parameter γ in the

behavior of DDVFA. The performance was robust toward this parameter, and with appropri-

ate selection it can potentially increase the compactness (or equivalently, reduce the model

complexity) of the DDVFA systems. This memory compression characteristic is consistent

with findings from previous related work (distributed ART and ARTMAP systems), which

combines power rules and distributed learning. Moreover, it was observed that γ can extend

the subspace of dual vigilance parameter combinations that yield effective performance.
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APPENDIX

DERIVATION OF THE MATCH FUNCTION IN DDVFA

This section contains the derivation of Eq. (14). Let Mγ = M
ART (1)i

j be the activation

function of category j of ART (1)i using γ and Mγ∗ the activation function of the same

category using γ∗. Then, the normalized version of Mγ with respect to Mγ∗ (Mn
γ ) is defined

as

Mn
γ =

(
max(Mγ∗) −min(Mγ∗)

) (
Mγ −min(Mγ)

max(Mγ) −min(Mγ)

)
+min(Mγ∗). (18)

The values of max(Mγ∗) and max(Mγ) are easily obtainable, since any point inside

the hyperrectangular category representation would have this value, particularly the weight

w = w
ART (1)i

j of category j itself. Furthermore, when using complement coding, |x | = d

is a constant. The values min(Mγ∗) and min(Mγ) must be located at some corner of the

d-dimensional unit hyperbox data space [0, 1]d . These values can also be easily calculated

for data sets with small dimensionalities. However, as the dimension increases, searching

2d points quickly becomes impractical. Therefore, since a match function M satisfies

0 ≤ M ≤ 1 by definition, a design decision was made to set min(Mγ∗) = min(Mγ) = 0 in

the normalization procedure. Hence,

Mn
γ = max(Mγ∗))

(
Mγ

max(Mγ)

)
=

(
|w ∧ w |

|x |

)γ∗ ©«
|x∧w |
|x |

|w∧w |
|x |

ª®¬
γ

=

(
|w |

|x |

)γ∗ (
|x ∧ w |

c + |w |

)γ
, (19)

where the constant c is inserted to safeguard against divisions by zero (since 0 ≤ ρd ≤

|w | ≤ d). This parameter implies that w = x no longer yields a match function value equal

to 1. By making c equal to the choice parameter α, then Eq. (19) becomes

Mn
γ =

(
|w |

|x |

)γ∗
Tγ, (20)



242

where Tγ = T
ART (1)i

j is the activation function of category j of ART (1)i using γ (Eq. (11)).

Naturally, if γ∗ = 0 then Mn
γ = Tγ, and for α � |w |, if γ = γ∗ then Mn

γ ≈ Mγ∗ (Eq. (13)).
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ABSTRACT

Improved data visualization will be a significant tool to enhance cluster analysis.

In this work, an information-theoretic-based method for cluster visualization using self-

organizing maps (SOM) is presented. The information theoretic visualization (IT-vis) has

the same structure as the unified distancematrix, but instead of depictingEuclidean distances

between adjacent neurons, it displays the similarity between the distributions associated

with adjacent neurons. Each SOM neuron has an associated subset of the data set whose

cardinality controls the granularity of the IT-vis and with which the first and second order

statistics are computed and used to estimate their probability density functions. These are

used to calculate the similarity measure, based on Renyi’s quadratic cross entropy and cross

information potential (CIP). The introduced visualizations combine the low computational

cost and kernel estimation properties of the representative CIP and the data structure

representation of a single-linkage based grouping algorithm to generate an enhanced SOM-

based visualization. The visual quality of the IT-vis is assessed by comparing it to other

visualization methods for several real world and synthetic benchmark data sets. (Thus,

this paper also contains a significant literature survey). The experiments demonstrate

the IT-vis cluster revealing capabilities, in which cluster boundaries are sharply captured.
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Additionally, the information theoretic visualizations are used to perform clustering of the

SOM. Compared to other methods, IT-vis of large SOMs yielded the best results in this

study, for which the quality of the final partitions was evaluated using external validity

indices.

Keywords: Self-organizing feature maps, Data visualization, Information theory, Entropy,

Review, Survey, Clustering.

1. INTRODUCTION

Data visualization methods are useful tools that provide additional information to

support exploratory data analysis. Awidely used visualizationmethod is the self-organizing

map (SOM) (Kohonen, 1982). Each position in the SOM lattice is associated with a weight

in the data space; therefore, a non-linear dimensionality reduction is achieved when map-

ping from the input space (data space) to the output space (SOM lattice). This property is

exploited by visualization techniques which aim to infer data characteristics from the SOM

neurons. In image-based visualization methods, gray-level images display some feature of

the data captured by the neurons, such as Euclidean distance and density distribution of data

samples; these characteristics are measured in the data space and imprinted in the output

space; this category of visualizations includes, for instance, the unified distance matrix

(U-matrix) (Ultsch, 1993; Ultsch & Siemon, 1990), gradient of components matrix (Costa

& Yin, 2010), boundary-matrix (Manukyan et al., 2012), gravitational algorithm enhanced

U-matrix (Brito da Silva & Costa, 2013a), data histograms (Vesanto, 1999; Zhang & Li,

1993), smoothed data histograms (Pampalk et al., 2002) and P-matrix (Ultsch, 2003). In

graph-based visualization methods, the weights of the edges (connections) between vertices

(neurons) in the SOM lattice depict information such as local distances or local-density dis-

tributions; examples of this category of visualization include theCluster Connections (Merkl

& Rauber, 1997), CONNvis (Taşdemir & Merényi, 2009) (which also displays topology

information), DISTvis and CONNDISTvis (Taşdemir, 2010). Projection-based visualiza-
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tion methods are mainly characterized by their distance-preserving property in addition

to the topology preservation of standard SOM; examples of this category of visualization

include Visualization-induced SOM (Yin, 2001, 2002a,b, 2008), AC-ViSOM (Tapan &

Siong, 2008), Probabilistic Regularized SOM (Wu & Chow, 2005), Polar SOM (Xu et al.,

2010) and Probabilistic Polar SOM (Xu et al., 2011).

Some other data visualization approaches include linear and non-linear dimension-

ality reduction methods. The classical projection method examples are linear principal

component analysis (Xu & Wunsch II, 2009, Sec. 9.2.1) and multidimensional scaling (Xu

& Wunsch II, 2009, Sec. 9.3.2) (e.g., Sammon’s mapping (Sammon, 1969)). The first

projects data onto the subspace that is spanned by a selection of the top eigenvectors of the

data covariance matrix; the latter aim to preserve inter-point relations in the original high

dimensional space and the lower dimensional projected subspace. An alternative visualiza-

tion method is the Visual Assessment of (cluster) Tendency (Bezdek & Hathaway, 2002)

and its variants, such as (Bezdek et al., 2007; Huband et al., 2004; Wang et al., 2008, 2010),

which re-order the dissimilarity matrix of the data such that similar samples are placed close

to each other. This rearranged matrix is displayed as a gray level image, where dark blocks

reveal cluster tendency.

Many data visualization techniques are eventually used to perform clustering or

clustering related tasks. Clustering is usually performed by maximizing the similarity

within groups and minimizing the similarity between groups, for which many algorithms

have been presented (Xu & Wunsch II, 2005; Xu & Wunsch II, 2009; Xu & Wunsch

II, 2010). In the case of SOM, one approach is the two-step prototype-based clustering

framework (Vesanto & Alhoniemi, 2000), which consists of a vector quantization step

followed by clustering of the prototypes. The data samples are labeled according to the

structure found in the prototypes. For instance, digital image processing techniques were

applied to the U-matrix visualization to enable clustering of the SOM using mathematical

morphology operators and thewatershed transform (Costa&Netto, 1999); this approachwas
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extended to recursively generate a hierarchical tree of SOM networks representing different

levels of data granularity (Costa & Netto, 2001). Alternatively, visualization techniques

may be used to extract features and perform clustering (Brito da Silva & Costa, 2013b,d).

CONNvis visualization is based on a local-density-based similarity matrix CONN, which

was used to devise a relative validity index (Conn_Index) (Taşdemir & Merényi, 2007,

2011) and for prototype-based clustering algorithms: CONN linkage hierarchical clustering

(Taşdemir et al., 2011) and vector quantization approximate spectral clustering (Taşdemir,

2012). Polar SOM has also been used to perform grid clustering (Xu et al., 2015). The

appeal of these approaches for both visualization and prototype-based clustering is the

ability to capture the clusters’ boundaries in high-dimensional complex data structures with

arbitrary geometries, density distributions, sizes and levels of overlap. This versatility of

the SOM makes it an effective tool for data exploration and exploitation, thereby being

extensively used for clustering tasks.

In cluster analysis, one of the ways to measure the separation between clusters is to

use divergences and non-linear distances. For instance, in multi-representative clustering

approaches, such as the ones reviewed in (Martins et al., 2004b), a competitive neural

network is the vector quantization algorithm used to generate the clusters’ representatives,

which are then connected according to their Mahalanobis distance (Martins et al., 2003) or

Kullback-Leibler divergence (Martins et al., 2004a) with regards to a user defined threshold

value. Additionally, stability regions (plateaus) can be identified.

Recently, information theoretic learning (ITL) (Principe, 2010) has emerged. In the

scope of ITL, information theoretic clustering (ITC) was presented (Gokcay & Principe,

2000, 2002) based on the insight that data samples interact with each other. This interaction

is similar to potential fields in physics. ITC is based on Renyi’s quadratic entropy estimator,

and it assesses the quality of partitions via a Clustering Evaluation Function (CEF). The



257

CEF is a non-linear weighted function to measure the distance between distributions. In

this non-parametric approach to clustering, the function evaluates the similarity between

probability density functions (pdfs) that have been calculated from the data samples.

The CEF is based on Renyi’s cross information potential (CIP), which in turn

originated fromRenyi’s entropy that was computed using the Parzen-windowmethod (Duda

et al., 2000) with a Gaussian kernel as the pdf estimation method. The objective consists

of minimizing the CEF, or conversely, maximizing the entropy between distributions using

this cost function. The CEF performs calculations between each pair of samples belonging

to different clusters. The clustering task is interpreted as a permutation problem in which

the goal is to minimize the CEF. Different strategies have been used, such as exhaustive

enumeration, a modified k-change algorithm, and simulated annealing. The performance

was judged comparable to simple supervised classifiers, such as a single perceptron, but

still lower than a multilayer perceptron (Gokcay & Principe, 2002).

ITC does not impose a structure to the data. Nonetheless, one challenge depends

on setting appropriate values to the kernel parameter for the pdf estimation, i.e. the

covariance of the multidimensional Gaussian kernel. This user-defined parameter controls

the interaction between samples. Its value is problem-specific and must be carefully chosen.

Although the kernel can be adapted to the distribution of a set of nearest samples (Gokcay

& Principe, 2002), this is a much more general challenge belonging to the realm of kernel

methods. Furthermore, it is not practical to perform pairwise calculations when dealing

with large data sets, as this makes the approach very computationally intensive.

Therefore, the representative cross information potential (rCIP) was introduced

in (Araújo et al., 2013b). In this modified version of CIP, prototypes generated by a vector

quantization method (e.g., k-means (MacQueen, 1967)) create Voronoi cells whose data

points are used to infer higher order statistical information, thus reducing the computational
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cost (handling prototypes instead of the entire data set) and removing the requirement of

defining the covariance matrix for the pdf estimation. The performance of this approach is

sensitive to the number of prototypes.

The CIP/rCIP is a descriptor with good discriminant power; thus, several CEFs were

based on it. These approaches aim to minimize the CEF through optimization methods

such as simulated annealing (Gokcay & Principe, 2000), a variant of the k-change algorithm

(Gokcay& Principe, 2002), and genetic algorithms (Araújo et al., 2013a). Other approaches

include hierarchical clustering and linear programming (Araújo et al., 2013b).

ITL was successfully used for digital image processing as a contrast enhancement

method and also for segmentation (Araújo et al., 2013a,b; Gokcay & Principe, 2002; Rao

et al., 2009). Additionally, ITL was embedded in the SOM learning algorithm (Chalasani

& Principe, 2010, 2015), in which Correntropy Induced Metric (Liu et al., 2007) was used

to improve the magnification factor in SOMs and generate an enhanced U-matrix. Another

information theoretic approach to SOM is based on minimizing the free energy quantity

(related to mutual information). The inclusion of the similarity interaction feature in the

neighborhood kernel of this type of SOM has been used to improve the visual assessment

of clusters through the U-matrix as well as quantization and topology errors (Kamimura,

2013).

Defining suitable visualization methods are of great interest as they help one to

formulate a hypothesis for the data distribution (Vesanto, 1999). Therefore, this work

presents an image-based SOM visualization which is displayed similarly to the U-matrix.

The shade is imprinted as a result of combining Renyi’s cross-entropy and cross-information

potential (both CIP and rCIP) (Araújo et al., 2013a,b; Gokcay & Principe, 2002; Rao

et al., 2009) and a single-linkage-based grouping algorithm (Gokcay & Principe, 2002)

for parameter estimation. The presented visualizations are compared to other visualization

methods, both for the visual assessment of clusters and clustering of the SOM.
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The remainder of this paper is organized as follows: Section 2 reviews the main

concepts related to SOM networks and visualization methods as well as ITC; Section 3

describes the presented approach; Section 4 details the experimental set-up; Section 5

showcases visualizations for some data sets; Section 6 presents and discusses the results

obtained when clustering the SOM using the presented visualization; finally, Section 7

draws relevant conclusions.

2. BACKGROUND AND RELATEDWORK

2.1. SELF-ORGANIZING MAPS

The self-organizing map (SOM) (Kohonen, 1982) is widely used for data visualiza-

tion and clustering. Its neurons are arranged in a lattice (output space), in an organized

manner, according to a given topology (e.g., hexagonal or rectangular). During the training

process, the closest neuron w to each data sample x in the input space, is determined and

updated according to:

w j(t + 1) =
∑N

i=1 h j,bmu(t)xi∑N
i=1 h j,bmu(t)

, (1)

which corresponds to the batch training algorithm. The w j is the weight of neuron j, xi is the

ith sample presented, N is the cardinality of the data set, and h j,bmu(t) is the monotonically

decreasing neighborhood function centered on the best matching unit (BMU), such that a

limited number of neighboring neurons to the BMU also participate in the learning process.

The neighborhood kernel is usually defined as a Gaussian function of the distance between

the neurons in the output space,

h j,bmu(t) = exp

(
−
||rbmu − r j | |

2

2σ2(t)

)
, (2)

where | | · | | is the Euclidean distance; r j and rbmu are the locations of neuron j and the BMU

in the lattice, and σ is the monotonically decreasing neighborhood radius.
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2.2. SOM-BASED VISUALIZATION METHODS

2.2.1. Image-BasedVisualizations. the unified distancematrix (U-matrix) (Ultsch,

1993; Ultsch& Siemon, 1990) is a heat map of the Euclidean distances between neighboring

neurons in the SOM lattice. It is usually displayed as a gray-level image in which bright and

dark pixels correspond to evidence of clusters (valleys) and boundaries (hills), respectively.

Figure 1 illustrates the positions (i, j) of the neurons (w) in the lattice and their positions in

the U-matrix array U(u).

The values of the U-matrix at positions {u1, u3, u5, u7} and {u2, u4, u6, u8} are anal-

ogous to (3) and (4), respectively:

U(u1) = | |w(i, j) − w(i − 1, j)| |, (3)

U(u2) =
| |w(i, j) − w(i − 1, j + 1)| | + | |w(i − 1, j) − w(i, j + 1)| |

2
√

2
. (4)

w(i−1,j−1) w(i−1,j) w(i−1,j+1)

u
8

u
1

u
2

w(i,j−1) w(i,j) w(i,j+1)
u

7 u
3

u
9

u
4

u
6 u

5

w(i+1,j−1) w(i+1,j) w(i+1,j+1)

Figure 1. Positions of the SOM neurons w in the U-matrix (u).
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The values for the positions in the U-matrix that are directly associated with the

neurons are based on the distances to their neighbors. For instance, for the neuron w(i, j) at

position u9,

U(u9) = g (U(u1),U(u3),U(u5),U(u7)) , (5)

where g(·) can be the mean or median functions. Some drawbacks of the U-matrix include

the existence of several local minima, noise, and boundaries that are not well-defined (Costa

& Netto, 1999, 2001).

The boundary-matrix (Manukyan et al., 2012) is a visualization scheme that com-

putes inter-neuron distances similarly to the U-matrix and was devised to display sharpened

cluster boundaries in sparsely-matched SOMs (low sample to neuron ratios). The boundary-

matrix is generated after a cluster reinforcement phase (post-processing strategy) performed

over the SOM neurons. The Euclidean distances are displayed using grid-lines whose

thicknesses are proportional to the boundary-matrix and overlaid on the SOM component

planes (Vesanto, 1999).

Regarding density features of the data, the smoothed data histograms (Pampalk

et al., 2002) is a visualization method that aims to estimate the data pdf by allowing more

than one BMU for each data sample, which is the case in data histograms (Vesanto, 1999;

Zhang & Li, 1993) defined by the number of samples inside the Voronoi cells pertaining

to each SOM neuron. The number of BMUs considered for each data sample is controlled

by a user-defined smoothing parameter: the lower bound corresponds to the traditional data

histogram, whereas the upper bound depicts only one big cluster.

2.2.2. Graph-Based Visualizations. the CONNvis (Taşdemir & Merényi, 2009)

is a visualization technique for SOMs whose main feature is the depiction of data topol-

ogy information. It is a weighted version of the induced Delaunay triangulation graph

(Martinetz & Schulten, 1994), in which the weights of the edges encode the local data

density distribution between adjacent neurons. The weights of the graph are stored in a

connectivity/similarity matrix (CONN) (Taşdemir & Merényi, 2005), where each element
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(i, j) consists of the number of samples x in a data set X for which neurons i and j are

the first and the second BMUs and vice-versa, thus capturing portions of their receptive

fields (RF) (Taşdemir et al., 2011):

CONN(i, j) = |RF |i j + |RF | ji, (6)

RFi j =
{
xk ∈ RFi | ‖xk − w j ‖ ≤ ‖xk − wl ‖ ∀l , i

}
, (7)

RFi =
{
xk ∈ X | ‖xk − wi‖ ≤ ‖xk − w j ‖ ∀ j

}
. (8)

The CONNvis is rendered on the SOM lattice (or in the data space for low-

dimensional data sets), where neurons that have non-null entries in the CONN matrix are

connected according to specific color and line width encoding. By analyzing the CONNvis,

one is able to evaluate topology violations regarding a trained SOM. For both clustering and

visualization, CONNvis requires that the number of neurons must be much smaller than the

number of samples (Brito da Silva & Costa, 2013c; Taşdemir, 2012; Taşdemir et al., 2011).

Cluster Connections (Merkl & Rauber, 1997) and DISTvis (Taşdemir, 2010) are

graph-based SOM visualizations that depict local distances. Cluster Connections displays

the connections of neighboring neurons in the output grid proportional to their weights’

similarity, whereas DISTvis is a rendering of the graph DIST, whose edges’ weights encode

Euclidean distances on the SOM grid, allowing connections between any neurons. Thresh-

olds and gray-level scales for intensity coloring are used to enhance the visual representation

of clusters in both methods. Merging local distance and local density information in a single

graph-based visualization is accomplished by hybridizing CONNvis with DISTvis: CON-

NDISTvis (Taşdemir, 2010). Analyzing these graphs facilitates the understanding of the

correlation between density and distance information.

2.2.3. Projection-Based Visualizations. the standard SOM allows the distortion

of the clusters’ shapes as it does not preserve inter-neuron distances, thus the data distribution

is not faithfully represented. Visualization-induced SOM (ViSOM) (Yin, 2001, 2002a,b,
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2008) was introduced to address this challenge and also to provide a low computational cost

alternative to data projection methods such as multidimensional scaling. As opposed to the

latter, ViSOM provides a mapping function to allow the projection of new data samples

on the trained manifold without re-performing all the calculations using the whole data

set. ViSOM has a distance-preserving property in addition to the topology preservation

present in standard SOM. ViSOM is a uniform quantizer, whereas SOM is a density-based

quantizer: its neurons are uniformly distributed over the datamanifold. This is accomplished

by regularizing the lateral forces between neurons through a resolution parameter, which

allows for contractions and expansions of the net so as to preserve the inter-neuron distances

in the input and output spaces. This parameter is set according to the maximum variance

or scope of the data.

Probabilistic Regularized SOM (PRSOM) (Wu & Chow, 2005) introduces a cost

function for the manifold learning process (in contrast to ViSOM), which consists of

a soft vector quantization error term and a regularized multidimensional scaling term.

The latter constrains the inter-neuron distances in order to make the input resemble the

output as faithfully as possible. PRSOM uses a soft assignment (as opposed to the hard

assignment of SOM and ViSOM), in which each neuron has a weighted probabilistic

assignment that take into account neighboring neurons. Hence, in order to improve data

visualization, the PRSOM takes advantage of SOM’s low computational cost as well as

the preservation of inter-neuron distances through multidimensional scaling. In the context

of manifold learning, SOM, ViSOM and PRSOM are discrete approximations to principal

curves/surfaces (Hastie & Stuetzle, 1989; LeBlanc & Tibshirani, 1994). Additionally,

ViSOM is considered to be a special case of PRSOM. PRSOM has an associated image-

based visualization: a coloring scheme is used to render the accumulated probability matrix,

which displays clusters and empty regions.
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The AC-ViSOM (Tapan & Siong, 2008) is a hybridization of ViSOM and the

modified Adaptive Coordinates (modified-AC) (Tapan & Teh, 2007; Teh & Sarwar, 2008),

which aims to automate the selection of the regularization parameter, improve the ViSOM

resource utilization (quantity of dead neurons) and reduce the mean squared error. The

modified-AC is a variation of the Adaptive Coordinates (Merkl & Rauber, 1997), which is

a method that mimics, in the output space, the displacement of the SOM weights in the

input space. In this manner, information obtained during the training process is used for

visualization. The drawback is that the organization of the neurons in the fixed grid is

lost. The modified-AC uses as the adaptation factor the difference between the normalized

distance in the input and output spaces. The selection of the regularization parameter in

AC-ViSOM is based on the ratio between the maximum distances in the input and output

spaces of the SOM (i.e., the ratio between normalization factors).

In the Polar SOM (PolSOM) (Xu et al., 2010), the output space is defined in a polar

coordinate system. The neurons and data positions in the output space are encoded using

radii and angles, to express the importance of each feature and the features themselves,

respectively. The neurons are distributed in the polar plane in the intersections of rings

and radial axes. The data samples have their associated positions in the output space

adapted throughout the learning process in order to be close to their respective BMU.

When projecting data, this representation emphasizes the differences among the clusters by

displaying a correlation between features (angles) and feature values (radii). The PolSOM

preserves topology and inter-neuron distance, and it has the same ViSOM advantage: an

explicit mapping function, thus no re-computation is needed for new data samples. The

Probabilistic Polar SOM (Xu et al., 2011) is a variant of Polar SOM that uses a weighted

probabilistic assignment (soft assignment) similar to PRSOM, thus aiming to minimize a

soft vector quantization error.
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2.3. INFORMATION THEORETIC CLUSTERING

Let a data set be X = {x1, x2, ..., xN }, where each sample xi ∈ R
d . In order to

make use of information theoretic clustering (ITC) (Gokcay & Principe, 2002), first it is

necessary to estimate the data pdf via the Parzen-window method, for which the Gaussian

kernel is given by,

f (x) =
1
N

N∑
i=1

G(x; xi, Σ), (9)

where G(x; µ, Σ) is the multidimensional Gaussian function parametrized by the mean (µ)

and the covariance matrix (Σ):

G(x; µ, Σ) =
1√

(2π)d det (Σ)
e−

1
2 (x−µ)

T
Σ−1(x−µ). (10)

Second, it is necessary to work with the data entropy. The concept of entropy is

related to the measure of randomness of a random variable, and ultimately, the amount

of information present. Thus, in order to measure the uncertainty of X, Renyi’s Entropy

(Rényi, 1961) can be computed using (9) as,

H(X;α) =
1

1 − α
log ©«

∞∫
−∞

f α(x)dxª®¬ , (11)

where α is an order parameter, and α > 0 and α , 1.

Using the Parzen-window estimator, Renyi’s quadratic entropy (α = 2) can be

calculated from the data samples as (Gokcay & Principe, 2000, 2002; Rao et al., 2009),

H(X; 2) = − log ©«
∞∫

−∞

f 2(x)dxª®¬ = − log (V(X)) , (12)
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where V(x) ≥ 0 is the information potential and is given by:

V(X) =
1

N2

N∑
i=1

N∑
j=1

G(xi; x j, Σi, j). (13)

When using a constant spherically symmetric Gaussian kernel in (9) for all samples

(Σ = σ2I), then Σi, j = 2σ2I, ∀(i, j), due to the fact that the integral of the product of two

Gaussians is equal to another Gaussian whose variance is the sum of the first two.

Analogously, the concepts embedded in (11) through (13) can be extended to con-

sider two random variables X and Y with distributions f (x) and g(x), thus yielding Renyi’s

cross-entropy (Rao et al., 2009),

H(X,Y ; 2) = − log ©«
∞∫

−∞

f (x)g(x)dxª®¬ = − log (V(X,Y )) , (14)

V(X,Y ) =
1

N1N2

N1∑
i=1

N2∑
j=1

G(xi; x j, Σi, j), (15)

where V(X,Y ) is the cross information potential (CIP), xi ∈ f (x) and x j ∈ g(x). Again,

Σi, j = Σi + Σ j (Araújo et al., 2013a,b).

The problem of minimizing the CIP between clusters (minimizing the mutual in-

formation) is the same as maximizing the entropy. Of course, when optimizing the CEF,

minimizing V(X,Y ) is equivalent to maximizing H(X,Y ). The minimum value of the CEF

is not zero when comparing two equal distributions, as it is in the case of other divergence

measurements such as the Kullback-Leibler, Bhattacharya and so on. However, it does have

the same general behavior (Gokcay & Principe, 2002).

The main challenge of CIP is the need for pairwise calculations for all of the samples

in the data set as well as for estimating the covariance matrix Σ. In order to overcome these,

(Araújo et al., 2013a,b) presented the representative cross information potential (rCIP). The

calculations of the rCIP aremade only with prototypes of the data, and the covariancematrix
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is computed using the data falling into the Voronoi cells associated with them. In this work,

both approaches are followed to compute the cross information potential; notwithstanding,

the covariance matrix Σ is always estimated using MinPts samples, which are points that

represent the k-nearest samples to a given neuron.

A detailed discussion regarding the influence of the translation (mean) and rotation

(covariance) of distributions with respect to the behavior of CIP and rCIP, while also varying

the value of the kernel width, can be found in (Araújo et al., 2013a). Briefly, the largest

value is obtained when distributions completely overlap, whereas translations of the mean

diminishes it. The best case to observe the separation of distributions corresponds to parallel

clusters and the worst, to aligned clusters; isotropic clusters lie in-between.

3. INFORMATION-THEORETIC VISUALIZATION

This section presents an improvement to the previously mentioned image-based

visualization techniques in order to enhance data analysis. This is achieved by imprinting,

in a heat map, SOM neurons’ similarities based information-theoretic measures: cluster

tendency is revealed by highlighting the clusters’ boundaries. Consider a SOM neural

network trained with a given data set. Each neuron i is associated with a subset Hi of the

data set with at least MinPts data points. First, these subsets Hi are generated based on

Voronoi cells, i.e., the BMUs for each data point are determined. If the number of points for

a given neuron i is less than MinPts, then the subsetHi is reset to include all of the MinPts

closest to this neuron. This step is accomplished using standard k-Nearest Neighbors (k-

NN) (Duda et al., 2000), in which all the neighbors are inside a hypersphere whose center

is neuron i. Alternatively, the subset Hi may be generated using the grouping algorithm

discussed in (Gokcay & Principe, 2002), which is hereafter referred to as a modified k-NN.

Starting at neuron i, it iteratively generates the subsetHi in a single-linkage manner, i.e., by
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adding the closest data point to the current subsetHi. The modified k-NN enables a better

estimate of the data structure (Gokcay & Principe, 2002) since the geometry of the region

where the samples ofHi scatter is not a hypersphere.

Subsequently, the sample mean µi and sample covariance matrix Σi are computed

(including neuron i in the calculations of Σi) using the subsetsHi with MinPts (MinPts ≥

d + 1, where d is the data dimensionality (Duda et al., 2000, p. 112)):

µi = E [Hi] ≈
1
Ni

∑
x∈Hi

x, (16)

Σi = E
[
(Hi − µi) (Hi − µi)

T ]
≈

1
Ni − 1

XT
i Xi, (17)

where E[·] is the expectation operator, Ni is the cardinality of the subset Hi, and Xi is the

subsetHi with zero mean.

Now, using this information, it is possible to compute the CIP or rCIP between each

pair of subsets H or each pair of adjacent neurons, respectively. In the first case, the CIP

is computed using all the data points in the subsets Hi and H j associated with neurons i

and j, respectively, to evaluate the distance between their underlying distributions. For the

second case, when computing the rCIP, only the means µ and the covariance matrices Σ of

the neurons i and j are used to compute the rCIP between the neurons.

The information theoretic visualizations (IT-vis), which includes CIP-vis and rCIP-

vis, are then generated in a fashion similar to the U-matrix (see Section 2.2). The resulting

image follows the same arrangement as the U-matrix: for a SOM with rectangular grid size

a×b, the CIP-vis and rCIP-vis have a size of (2a−1)×(2b−1). The pixel position related to

the diagonal connections (primary and secondary), is the mean of these connection values.

The positions of the neurons themselves may be computed using functions such as mean,

median, maximum, minimum, weighted average and so on. Here, the simple median and

the rectangular topology was used.
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In the output space, the resulting gray-level image depicts the similarity between the

adjacent neurons located in the input space. The range of values obtained when computing

the CIP or rCIP can be very wide, and in fact, extremely similar neurons may dominate

the visualization with very high CIP or rCIP values, in the sense that similarity details

expressed by the dynamic range of lower similarity values are compressed; thus, hiding

smaller differences in other data regions. In order to overcome this issue and observe the

finer details, a perceptual scaling is performed using a logarithmic transformation (Gonzalez

& Woods, 2006, Sec. 3.2.2). This scaling has the same rationale generally employed to

display Fourier Transforms of digital images. This transformation performs a mapping that

expands and compresses the dynamic range of low and high similarity values, respectively.

Concretely, taking the logarithm of the CIP is equivalent to computing the negative of

the entropy H. Therefore, in most cases, the entropy is better suited for visualization. In

order to keep the context of a similarity visualization, the negative of the entropy H∗ and

representative entropy rH∗ were used throughout, instead of changing from similarity (CIP

and rCIP) to dissimilarity (original H and rH formulas) representations,

H∗ = log (CIP + 1) , (18)

rH∗ = log (rCIP + 1) . (19)

Additionally, in order to improve the contrast in most visualizations, we added a

constant with a value of 1. Hereafter, we refer to the visualizations CIP-vis, rCIP-vis, H*-vis

or rH*-vis collectively as IT-vis. Algorithm 6 summarizes the steps to generate the IT-vis.

4. EXPERIMENTAL SET-UP

MATLAB, the SOMToolbox (Vesanto et al., 1999) and the Cluster Validity Analysis

Platform (Wang et al., 2009) were used. The presented visualization method was applied

to real world and synthetic data sets from the UCI Machine Learning Repository (Bache
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Algorithm 6: IT-vis Generation
1: Train the SOM.
2: Generate the subsets Hi: if the number of points falling into the Voronoi region of

neuron i is less than MinPts, then recreateHi using standard k-NN (Duda et al., 2000)
or modified k-NN (Gokcay & Principe, 2002).

3: Compute the sample covariance matrices Σi (17).
4: Compute the CIP (15) or rCIP; the later requires the additional calculation of the

sample means µi (16).
5: Generate the desired IT-vis visualization (CIP-vis, rCIP-vis, H*-vis or rH*-vis) follow-

ing the arrangement of the U-matrix depicted in Figure 1.

& Lichman, 2013), the Fundamental Clustering Problem Suite (FCPS) (Ultsch, 2005) and

also from (Fränti, Pasi et al., 2015) (which has a collection of data sets from (Chang &

Yeung, 2008; Fränti et al., 2006; Fu & Medico, 2007; Gionis et al., 2007; Veenman et al.,

2002; Zahn, 1971)). Figure 2 is an illustration of these.

Table 1 summarizes the characteristics of the data sets used in the experiments.

Linear normalization was used in order to keep the data sets’ attributes in the range [0, 1].

The SOM neurons were initialized in the subspace spanned by the eigenvectors of

the two largest eigenvalues of the data covariance matrix (linear initialization); the maps

were trained using the batch mode as it requires less parameters when tuning and converges

faster (Kohonen, 2013). The Gaussian kernel function was used with a final radius (σ f )

equal to 1, and the total number of epochs was set to 3 × 103. The MATLAB code used

in these experiments is being made available at the Applied Computational Intelligence

Laboratory public GitLab repository (Brito da Silva & Wunsch II, 2017).



271

(a) Iris (b) Seeds (c) Wine (d) WDBC (e) Synthetic
Control

-200 -100 0 100 200

-100

0

100

200

(f) dim032

(g) Hepta (h) Tetra (i) Atom (j) Chainlink (k) Target (l) Spiral

(m) Flame (n) Compound (o) Aggregation (p) Path based (q) R15
5 10 15 20 25

5

10

15

20

25

(r) D31

Figure 2. Data sets used in the experiments. The data sets Iris, Wine, Seeds, WDBC,
Synthetic Control and dim032 are depicted using principal component analysis (PCA)
projection.

5. VISUALIZATION EXPERIMENTS

5.1. REPRESENTATIVE VISUALIZATIONS

TheWine data set was chosen as a case study to illustrate the visualizations presented

in this subsection. The CIP-vis, H*-vis, rCIP-vis and rH*-vis computed from a 16 × 16

trained SOM are depicted in Figure 3 using 30 data samples per neuron. The first and

second order statistics were computed using the modified k-NN (Gokcay & Principe, 2002).

The standard CIP (Gokcay & Principe, 2002) was computed using all MinPts data samples

per neuron (Figure 3a and 3b), and the representative CIP (Araújo et al., 2013b) only used

the neurons’ statistics (Figure 3c and 3d).



272

Table 1. Data sets’ characteristics.

Data set # attributes # samples # clusters type source

Iris (Fisher, 1936) 4 150 3 Real World UCI
Wine 13 178 3 Real World UCI
Seedsa (Charytanowicz et al., 2010) 7 210 3 Real World UCI
WDBCb 30 569 2 Real World UCI
Synthetic Controlc 60 600 6 Synthetic UCI
Atom 3 800 2 Synthetic FCPS
Chainlink 3 1000 2 Synthetic FCPS
Hepta 3 212 7 Synthetic FCPS
Target 2 770 2+outliers Synthetic FCPS
Tetra 3 400 4 Synthetic FCPS
dim032 (Fränti et al., 2006) 32 1024 16 Synthetic DIM-sets (high)
Flame (Fu & Medico, 2007) 2 240 2 Synthetic Shape Sets
Compound (Zahn, 1971) 2 399 6 Synthetic Shape Sets
Aggregation (Gionis et al., 2007) 2 788 7 Synthetic Shape Sets
Spiral (Chang & Yeung, 2008) 2 312 3 Synthetic Shape Sets
Path based (Chang & Yeung, 2008) 2 300 3 Synthetic Shape Sets
R15 (Veenman et al., 2002) 2 600 15 Synthetic Shape Sets
D31 (Veenman et al., 2002) 2 3100 31 Synthetic Shape Sets

a Contributors gratefully acknowledge support of their work by the Institute of Agrophysics of the Polish
Academy of Sciences in Lublin.
b Wisconsin Diagnostic Breast Cancer.
c Image courtesy of Eamonn Keogh.

As can be inferred from these figures, the CIP-vis and rCIP-vis are visually simi-

lar. The same can be stated about the H*-vis and rH*-vis pair. The computational cost,

however, is very different. As expected from the use of representatives to compute the CIP

(Araújo et al., 2013a,b), the computation of rCIP-vis/rH*-vis is considerably faster than

CIP-vis/H*-vis. For instance, regarding the Wine data set, Figure 4 depicts the elapsed

time for computing the CIP-vis, the rCIP-vis and the U-matrix (adapted from (Araújo et al.,

2013a,b)). The U-matrix is included as a benchmark for baseline comparison purposes with

an image-based SOM visualization. Although not representative of an optimized imple-

mentation, it still allows for a rough estimate of computational cost measured via elapsed

time.
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The total elapsed time is the sum of the time needed to compute the data distance

matrix, the search for the MinPts (according to the version of k-NN), the statistical param-

eters (i.e., mean and covariance matrix) and the calculation of the CIP/rCIP for the heat

map generation. The elapsed time necessary to compute the rCIP is offset by a constant

in comparison to the U-matrix (Figure 4b), which is faster; of course, they are a function

of the SOM size but not of MinPts, which is the case for the CIP (Figure 4a). The heavy

computations required by the representative visualizations are related to the parameters

for both k-NN methods (cf. Figs. 4c and 4d), which include all of the tasks mentioned

except the computation of the CIP/rCIP for the matrix plot generation. Although more

computationally intensive than the standard k-NN, the modified k-NN conforms better with

the underlying data structure (Gokcay & Principe, 2002).

Naturally, the computational demand increaseswith the size of the data, SOMand the

MinPts value. Nonetheless, the running times can be improved, for instance, by using fast

standard k-NN implementations such as (Garcia et al., 2008;Wang, 2011), which use parallel

computing and clustering approaches, respectively. The modified k-NN can be viewed as

a call to the standard k-NN with k = 1: the samples in the current subset H are the query

points, which are updated by including the closest sample belonging to the complement

of H . Additionally, the calculation of the parameters for each neuron are independent

and, for large SOMs, can be performed in parallel to further decrease the running times.

Therefore, for practical applications and purposes, the representative visualizations are

recommended due to the speed boost (Araújo et al., 2013a,b) without compromising visual

quality. Moreover, in general, the visualization of the cross-entropy (rH*-vis) generates

more appealing visualizations than the cross-information potential (rCIP-vis), as observed

in Figure 3.
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Figure 3. SOM IT-vis types for the Wine data set using MinPts = 30: (a) CIP-vis, (b)
H*-vis, (c) rCIP-vis and (d) rH*-vis.
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Figure 4. Elapsed time to compute (a) CIP, (b) rCIP and U-matrix (adapted from (Araújo
et al., 2013a,b)), and the necessary parameters (subsets Hi and statistics) using (c) the
modified k-NN (Gokcay & Principe, 2002) and (d) the standard k-NN (Duda et al., 2000).
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5.2. K-NN METHODS AND SENSITIVITY TO THE MINPTS PARAMETER

The generation of the subsets Hi plays a major role in determining the aspect of

the IT-vis. Here, the standard k-NN algorithm (Duda et al., 2000) was used to select the

MinPts data samples closer to a given neuron i, as well as the modified k-NN algorithm

(Gokcay & Principe, 2002). In the latter k-NN approach, the first sample xk from the data

set X included in the subset Hi is the closest to neuron wi (the starting point). The next

sample to be selected is the one that has the minimum distance to either xk or wi among

all remaining samples in a single linkage fashion. The subsequent samples are added

analogously: they are the ones closest to the current subset Hi at time t (min
k,l
‖xk − xl ‖,

xk ∈ Hi(t), xl ∈ H i(t) = X −Hi(t)). The process is repeated until |Hi | = MinPts.

Regarding the visualization outcome, the difference between both k-NNs lies in the

fact that the second approach leads to a higher granularity, in the sense that it captures

and displays more strongly and effectively even the smallest differences, i.e. even small

non-uniformities within the data are captured, and as such, a very sensitive and sharp

visualization is obtained, where strong boundaries between clusters and sub-regions within

the clusters can be observed. On the other hand, using standard k-NN, results in a “blurring”

effect. In Figure 5, this effect is noticeable on the Wine data set visualization using both

k-NN methods as the generators of the subsets Hi. The advantage of using the modified

k-NN (Figs. 5{a, b, c}) over the standard k-NN (Figs. 5{d, e, f}) is that the clusters’ edges

are thinner (in most cases one pixel wide), and the regions are sharply separated. In general,

due to the sharp visualizations generated, the modified k-NN (Gokcay & Principe, 2002) is

recommended when sharp boundaries are desired.

Figure 5 also depicts the variation of the rH*-vis for several values of the MinPts

parameter. As shown, there is a reasonably large interval in which the MinPts parameter

provides a clear visualization of theWine data set. Both IT-vis computed using the different
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(a) MinPts = 20 (b) MinPts = 60 (c) MinPts = 178

(d) MinPts = 20 (e) MinPts = 60 (f) MinPts = 178

Figure 5. The rH*-vis for the Wine data set using the modified k-NN (Gokcay & Principe,
2002) (a, b, c) and standard k-NN (Duda et al., 2000) (d, e, f). Different values for the
MinPts were used and performance is seen to be robust to the choice of this parameter.

k-NNs exhibit the same hierarchical behavior of smoothed data histograms (Pampalk et al.,

2002) and bounday-matrix (Manukyan et al., 2012) visualizations when the smoothing

parameter and kernel size are varied, respectively.

5.3. VISUALIZATION EXAMPLES AND SENSITIVITY TO SOM SIZE

In this subsection the effect of the SOM size on the IT-vis is investigated. Fol-

lowing the previous subsections’ recommendations, the rH*-vis using the modified k-NN

was chosen. Figs. 6 through 11 depict six high-dimensional data sets that were used for

proof of concept: Iris, Seeds, Wine, Synthetic Control, dim032 and WDBC, respectively.

These examples illustrate the rH*-vis characteristics. Additionally, for comparison pur-
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poses, other visualization methods are also presented viz., CONNvis2 (Taşdemir, 2010),

U-matrix (Ultsch, 1993; Ultsch & Siemon, 1990), as well as the SOM neuron’s labels

obtained by majority voting. The latter depicts the data appearance on the SOM lattice,

and it is used to visually assess the clusters detected by the visualization methods. The

CONNvis2 was selected to render the available information from the connectivity matrix

CONN on the SOM grid. The connection strength between a pair of neurons was encoded

using gray-scale and line width (darker and thicker lines represent stronger connections).

Following (Taşdemir, 2010) recommendations, the entries of the CONN matrix were nor-

malized by the mean of the largest value for each neuron; next, values greater than 1 were set

to 1. Three SOM sizes were used (small, medium and large), ranging from densely-matched

to sparsely-matched regarding the ratio between the number of data samples and neurons.

The Iris data set comprises three classes of the iris plant (see Figure 6{a, c, e}):

Setosa (+), Versicolor (◦) and Virginica (4); the latter two have a high degree of overlap and

are linearly separable from the first. Examining Figure 6, the U-matrix is unable to visually

convey the existence of all three classes in any of the SOM sizes. Moreover, for the small

SOM (Figure 6h), even the boundary between the linearly separable classes is difficult to

observe. Disregarding the weak connections, the CONNvis2 reveals the clusters for small

and medium SOMs. The rH*-vis was able to reveal all of the clusters with increasing

resolution from small to large SOMs. For all of these, the vast majority of the cluster

boundaries are one pixel wide and the within-cluster pixel values are very homogeneous.

The Seeds data set encompasses three classes of wheat (see Figure 7{a, c, e}):

Kama (+), Rosa (◦) and Canadian (4). When analyzing Figure 7, it becomes noticeable

that the U-matrix does not reveal clear cluster information for any of the trained SOMs.

The presence of three major clusters can be clearly observed through the rH*-vis in all

SOM sizes, especially for small maps (Figure 7g), for which the data structure information

that is provided is clearer than CONNvis2. Figure 8 presents the visualizations for the

Wine data set, which is composed of three classes of wines. Although well-behaved, these
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(a) Labels (b) CONNvis2 (c) Labels (d) CONNvis2 (e) Labels (f) CONNvis2

(g) rH*-vis (h) U-matrix (i) rH*-vis (j) U-matrix (k) rH*-vis (l) U-matrix

Figure 6. Iris data set: {a, c, e} SOM neurons’ labels according to majority voting, {b, d, f}
CONNvis2, {g, i, k} rH*-vis using the modified k-NN and MinPts = 26, {h, j, l} U-matrix.
The SOM sizes used were: (a)-(d) 4 × 4, (e)-(h) 8 × 8 and (i)-(l) 16 × 16.

(a) Labels (b) CONNvis2 (c) Labels (d) CONNvis2 (e) Labels (f) CONNvis2

(g) rH*-vis (h) U-matrix (i) rH*-vis (j) U-matrix (k) rH*-vis (l) U-matrix

Figure 7. Seeds data set: {a, c, e} SOM neurons’ labels according to majority voting, {b,
d, f} CONNvis2, {g, i, k} rH*-vis using the modified k-NN and MinPts = 26, {h, j, l}
U-matrix. The SOM sizes used were: (a)-(d) 4 × 4, (e)-(h) 8 × 8 and (i)-(l) 16 × 16.

classes are not well-separated. Inferring the existence of three classes from the rH*-vis is

straightforward for all SOMs: the cluster boundaries are sharp and thin (one pixel wide

in almost their full extension). The U-matrix does not enable a clear visualization of the

classes. The CONNvis2 behaves similarly to the Iris data set, i.e., disregarding the weak

connections, it reveals the classes for small and medium maps.
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(a) Labels (b) CONNvis2 (c) Labels (d) CONNvis2 (e) Labels (f) CONNvis2

(g) rH*-vis (h) U-matrix (i) rH*-vis (j) U-matrix (k) rH*-vis (l) U-matrix

Figure 8. Wine data set: {a, c, e} SOM neurons’ labels according to majority voting, {b,
d, f} CONNvis2, {g, i, k} rH*-vis using the modified k-NN and MinPts = 26, {h, j, l}
U-matrix. The SOM sizes used were: (a)-(d) 4 × 4, (e)-(h) 8 × 8 and (i)-(l) 16 × 16.

(a) Labels (b) CONNvis2 (c) Labels (d) CONNvis2 (e) Labels (f) CONNvis2

(g) rH*-vis (h) U-matrix (i) rH*-vis (j) U-matrix (k) rH*-vis (l) U-matrix

Figure 9. Synthetic Control data set: {a, c, e} SOM neurons’ labels according to majority
voting, {b, d, f} CONNvis2, {g, i, k} rH*-vis using the modified k-NN and MinPts = 61,
{h, j, l} U-matrix. The SOM sizes used were: (a)-(d) 8 × 8, (e)-(h) 16 × 16 and (i)-(l)
32 × 32.

The SyntheticControl data set consists of six classes of control charts (see Figure 9{a,

c, e}): normal (+), cyclic (◦), increasing trend (4), decreasing trend (·), upward shift (×)

and downward shift (∗). None of the visualizations in Figure 9 fully reveal all six clusters.

When examining the U-matrix, for all SOM sizes, there is a clear division between the

cyclic and the remaining clusters; whereas its borders that divide the data set into four
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(a) Labels (b) CONNvis2 (c) Labels (d) CONNvis2 (e) Labels (f) CONNvis2

(g) rH*-vis (h) U-matrix (i) rH*-vis (j) U-matrix (k) rH*-vis (l) U-matrix

Figure 10. dim032 data set: {a, c, e} SOM neurons’ labels according to majority voting,
{b, d, f} CONNvis2, {g, i, k} rH*-vis using the modified k-NN and MinPts = 33, {h, j, l}
U-matrix. The SOM sizes used were: (a)-(d) 10 × 10, (e)-(h) 20 × 20 and (i)-(l) 40 × 40.

(a) Labels (b) CONNvis2 (c) Labels (d) CONNvis2 (e) Labels (f) CONNvis2

(g) rH*-vis (h) U-matrix (i) rH*-vis (j) U-matrix (k) rH*-vis (l) U-matrix

Figure 11. Wisconsin Diagnostic Breast Cancer data set: {a, c, e} SOM neurons’ labels
according to majority voting, {b, d, f} CONNvis2, {g, i, k} rH*-vis using the modified
k-NN and MinPts = 40, {h, j, l} U-matrix. The SOM sizes used were: (a)-(d) 8×8, (e)-(h)
16 × 16 and (i)-(l) 32 × 32.

clusters (normal, cyclic, decreasing trend and downward shift, increasing trend and upward

shift), are extremely faint in comparison to the rH*-vis. In the latter, the borders are

much more pronounced and thin, although weaker than the boundary that separates the

two aforementioned major clusters. In turn, the CONNvis2 provides a clearer definition of

four clusters for the small SOM. For the medium SOM, although the decreasing trend and
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downward shift clusters are separated from each other, the cyclic cluster is further divided

into three sub-clusters. The dim032 contains sixteen well-separated clusters. They were all

clearly depicted by all visualization methods. Specifically, regarding the rH*-vis and the

U-matrix, the resolution increased with size; again, rH*-vis depicted thinner and sharper

boundaries.

Finally, the Wisconsin Diagnostic Breast Cancer (WDBC) data set encloses two

classes (see Figure 11{a, c, e}): benign (+) and malignant (◦). This data set does not

exhibit a clear separation between its classes. For theWDBC, none of the U-matrices of the

different SOM sizes were able to convey meaningful information about the data structure.

On the other hand, the rH*-vis clearly reveals that the rH* values of the benign class are

in fact much larger than those of the malignant class, which are mostly represented by

the bright and dark regions in Figure 11{g, i, k}, respectively. In fact, this characteristic

would be enhanced even further if the rCIP-vis were to be observed and also accentuated

by increasing the value of MinPts. This data set behaves differently from the previous ones

in which there were areas with large within-class cross-information potential similarity that

were sufficiently dissimilar to each other, thereby generating sharp and thin boundaries

between the clusters. For the WDBC, however, the benign class has a much more compact

and defined structure as opposed to the malignant class, in which the samples are more

spread out (c.f the PCA projection of this data set in Figure 2d with the additional support

of markers and colors to denote the labels of the samples from each class: benign and

malignant samples are depicted as blue circles and red triangles, respectively). This fact

is portrayed in the rH*-vis. Thus, meaningful information can be extracted from it in all

SOM sizes. CONNvis2 for small and medium SOMs depict partial aisles positioned in the

boundaries of clusters, which resemble the arrangement of the rH*-vis regions’ shapes.
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6. A CLUSTERING APPLICATION THROUGH IT-VIS

When considering image-based SOM visualizations, digital image processing seg-

mentation techniques may be used to perform clustering tasks. In order to analyze the

performance and behavior of the rCIP-vis and rH*-vis when used for clustering, the clus-

tering methodology discussed in (Costa & Netto, 1999, 2001) is followed, which is a

post-processing strategy applied to the U-matrix that aims to automate the clustering pro-

cess. Briefly, this segmentation strategy is as follows: generate the U-matrix image, filter

the image, define the image markers using stable regions to allow the application of the

marker-controlled watershed method (Meyer, 1994), and identify each neuron region on

the SOM grid. The stable regions consists of a multi-level threshold scanning over the U-

matrix in which connected components labeling (CCL) (Haralick & Shapiro, 1992) is used

to count the number of clusters; the clustering state with the largest lifetime as a function of

this global thresholding operation is selected using the lowest threshold value. Finally, the

SOM neurons are assigned labels, according to the U-matrix segmentation. The remaining

unlabeled neurons from the watershed ridges may be labeled using standard k-NN. These

SOM labels are carried back to the samples.

First, the IT-vis were obtained as explained in Section 3. Next, the methods of Otsu’s

global thresholding (Otsu, 1979) and stable regions (Costa & Netto, 1999, 2001) were used

to generate the markers for the application of the watershed segmentation algorithm using a

4-neighborhood connectivity. Regarding the Otsu’s generated markers, a low pass Gaussian

filter was previously applied to blur the image (kernel width equal to
√

2) and enable an

increased Otsu’s thresholding performance (Gonzalez & Woods, 2006). Regarding the

stable regions markers, as opposed to (Costa & Netto, 1999, 2001), no pre-processing

stage using mathematical morphology operators nor other filtering approaches were used

to enhance the raw images. The largest threshold value was used from the selected stable

region (IT-vis are similarity images as opposed to the U-matrix which is a dissimilarity

image).
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Here, all of the intensity images were normalized to the range [0, 1]; the stable

regions’ threshold was scanned from 0 to 1 with a step size equal to 0.1 and the largest

region with a number of clusters greater than 1, if it existed, would be selected. A CCL

with a 4-neighborhood connectivity was used to estimate the number of clusters; after the

application of the watershed method, small areas with less than 2 pixels were eliminated

(except for small SOMs), and the regions representing the clusters in the image were

identified. The remaining border neurons were assigned to the clusters using standard k-NN

method with k = 1.

As mentioned previously, the segmented image represents the partition of the SOM,

and it is ultimately used to recover the clusters present in the data set, by carrying back the

labels of the neurons to the data samples. Algorithm 7 sums up the methodology used in the

experiments to segment the gray-level images and compare their resulting partitions (Costa

& Netto, 1999, 2001). The watershed algorithm is used to generate thin cluster boundaries

from the markers (cluster cores) using only the information present in the visualization; the

assigning algorithm chosen to label the border neurons may exert a significant influence

over the clustering performance, especially when the markers are small regions that need to

be grown (Brito da Silva & Ferreira Costa, 2014).

Algorithm7:Segmentation of image-based SOMvisualizations (Costa&Netto,
1999, 2001)

1: Train the SOM.
2: Generate the matrix plot (IT-vis, U-matrix).
3: Obtain the markers (Otsu’s method or stable regions).
4: Apply the watershed transform (marker-controlled).
5: Eliminate small pixel regions (less than 2 pixels).
6: Identify clusters (CCL).
7: Assign the edge neurons to clusters using a suitable algorithm (k-NN with k = 1).
8: Label the data set samples according to the discovered SOM neurons’ labels.
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The results using rCIP-vis and rH*-vis were compared to the application of the

same methods to partition the U-matrix and the logarithm of the U-matrix. Additionally,

the results were also compared to k-means (MacQueen, 1967) and CONN linkage clus-

tering (Taşdemir et al., 2011); the latter is a hierarchical clustering algorithm that has the

same rationale as the standard average linkage but uses the CONN connectivity strength

(6)-(8) as the similarity measure between the SOM neurons. Here, a dissimilarity matrix D

was generated from the CONN similarity matrix S as D = max(S) − S + 1, with zeros in

the main diagonal. Next, the standard average linkage hierarchical clustering method was

applied. Regarding k-means, 30 runs with 100 maximum iterations were performed over

the SOM neurons and the solution with the lowest quantization error was selected. For all

methods, the data sets were partitioned according to the SOM labels.

The quality of the partitions obtained from the SOM were assessed in terms of the

normalized mutual information (NMI) (Manning et al., 2008, Sec. 16.3) and the adjusted

Rand index (AR) (Hubert & Arabie, 1985) external validity indices,

N MI =
I(Y, Z)

[H(Y ) + H(Z)] /2
, (20)

AR =

(N
2
)
(tp + tn) − [(tp + f p)(tp + f n) + ( f n + tn)( f p + tn)](N

2
)2
− [(tp + f p)(tp + f n) + ( f n + tn)( f p + tn)]

, (21)

where I and H denote mutual information and entropy, respectively, regarding the ground

truthY and the output partition Z . N denotes the cardinality of the data set; tp, tn, f p and f n

stand for true positive, true negative, false positive and false negative, when comparing each

pair of samples in Y and Z . The ranges of N MI and AR are [0, 1] and [−1, 1], respectively;

the optimal value for both validity indices is 1.

For each data set, the clustering task was performed using three sizes of SOM

networks (small, medium and large). The medium SOM sizes had their rectangular grid

dimensions selected in such a way that their ratios were proportional to the square root of the

ratio between the two largest eigenvalues of the data covariance matrix (Kohonen, 2001),



285

and the number of neurons was approximately equal to 5
√

N (Vesanto & Alhoniemi, 2000),

where N is the number of samples. The small and large maps are half and double the size of

the medium map, respectively. However, here we only report the experimental results using

small and large SOMs, since they better emphasize characteristics of the SOM clustering

methods. As expected, for each data set and SOM size there is a specific combination of

parameters that leads to improved clustering results. Therefore, for consistency, all images

received the same treatment and the same methods were applied.

6.1. RESULTS AND DISCUSSIONS

The results obtained with the image segmentation methodology while using the

parameters presented in Section 4 are shown in detail for the R15 data set in Figure 12 using

a 24 × 20 SOM. This data set was chosen as a case study to illustrate the segmentation

stages. These figures depict the visualizations, the markers used by and the ridges obtained

from the watershed algorithm, as well as the final partition that was obtained using each

method applied to rCIP-vis, rH*-vis, U-matrix and logarithm of the U-matrix. The low

pass filter pre-processing stage and the threshold versus the number of clusters graph are

depicted in the cases of Otsu’s and stable regions methods, respectively.

After the imageswere generated using the trainedSOM, the pixel values are explicitly

divided into two groups using Otsu’s algorithm: clusters’ cores (within-cluster neurons)

and boundaries (between-cluster neurons). The last four rows of Figure 12 depict the output

of Otsu’s algorithm. Alternatively, the markers were also generated using the stable regions

approach (assuming the number of clusters is greater than 1); whose outputs are depicted in

the first four rows of Figure 12. Next, the markers generated by either method are used as

inputs to the watershed algorithm. Finally, CCL was used to identify the regions. Regions

with an area smaller than two pixels were disregarded; and the assignment of non-labeled
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neurons was performed using standard k-NN (k = 1), thereby generating the final partition

(last column of Figure 12). Finally, their labels are carried back to the data set and the

external validity index of the partition is calculated.

Regarding the clustering of the R15 data set, it is noticeable that the rH*-vis provided

a much larger lifetime plateau of the clustering state (Figs. 12{b, g, l, q}) than the other

image-based SOM visualizations; the 16th cluster has only one pixel, which is removed in

step 5 of Algorithm 7 - the elimination of small pixel regions is performed for all images.

Furthermore, the rH*-vis’ thin boundaries are already very similar to the output of the

watershed method. As expected, the U-matrix requires more pre and post-processing.

For instance, there is a significant amount of connected regions and small pixel groups

when applying the stable regions method in the U-matrix-based approaches in Figure 12;

additionally, the majority of their best results using large SOMs were obtained by applying

Otsu’s method, which has a smoothing pre-processing stage.

The peak performance of all of the clustering methods using small and large SOM

sizes are depicted in Tables 2 and 3. Regarding the CONN linkage, the peak performance

was obtained by scanning all merging levels of the dendrogram and selecting the cut-off

value that maximizes the external validity indices. The number of clusters parameter

of the k-means algorithm was scanned from 1 to
√

N , where N is the number of data

samples, and the value that optimizes the external validity indices was selected. Peak

performance for IT-vis images were obtained by scanning the MinPts parameter in the

interval [2 × dim, 50], where dim is the dimensionality of each data set. The exceptions

were the dim032, Synthetic Control and WDBC data sets; for the latter, the MinPts was

scanned in the range [dim + 1, 100]. No parameters were scanned for the U-matrix nor

the logarithm of the U-matrix. For all approaches, except for k-means due to random

initialization, the results are deterministic for a given set of parameters. The appropriate
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Figure 12. Clustering the R15 data set with MinPts = 25. First four rows: gray-level image,
stable region, markers, watershed ridges and final partitions for rCIP-vis (a)-(e), rH*-vis
(f)-(j), U-matrix (k)-(o) and logarithm of U-matrix (p)-(t). The IT-vis used the modified k-
NN (Gokcay & Principe, 2002) to generateH . Last four rows: gray-level image, processed
image with Gaussian low pass filter, markers, watershed ridges and final partitions for rCIP-
vis (u)-(y), rH*-vis (z)-(ad), U-matrix (ae)-(ai) and logarithm of U-matrix (aj)-(an). The
IT-vis used the standard k-NN (Duda et al., 2000) to generateH .
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(z) rH*-vis (aa) Low Pass Filter (ab) Markers (ac) Ridges (ad) Partition

(ae) U-matrix (af) Low Pass Filter (ag) Markers (ah) Ridges (ai) Partition

(aj) Log of U-matrix (ak) Low Pass Filter (al) Markers (am) Ridges (an) Partition

Figure 12. (Cont.) Clustering the R15 data set with MinPts = 25. First four rows:
gray-level image, stable region, markers, watershed ridges and final partitions for rCIP-vis
(a)-(e), rH*-vis (f)-(j), U-matrix (k)-(o) and logarithm of U-matrix (p)-(t). The IT-vis used
the modified k-NN (Gokcay & Principe, 2002) to generate H . Last four rows: gray-level
image, processed image with Gaussian low pass filter, markers, watershed ridges and final
partitions for rCIP-vis (u)-(y), rH*-vis (z)-(ad), U-matrix (ae)-(ai) and logarithm ofU-matrix
(aj)-(an). The IT-vis used the standard k-NN (Duda et al., 2000) to generateH .

value for the parameters of each clustering method may be selected, for instance, by using

heuristics based on the relative validity indices such as the ones discussed in (Gonçalves

et al., 2006; Taşdemir et al., 2011).

Regarding the different SOM sizes, k-means, CONN linkage, U-matrix and loga-

rithm of the U-matrix, and IT-vis achieved the best performance in {4, 5}, {11, 0}, {0, 6},

{9, 16} out of the 18 data sets, respectively. The numbers inside the braces refer to the

performance using the small and large SOMs, in that order. Note that some data sets had

the same performance for more than one method and the performance of the image-based
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visualizations were combined across the different image processing methods for each data

set (i.e., all U-matrix based images, all IT-vis based images). As expected, CONN linkage

outperformed the other methods for small SOM sizes (densely-matched SOMs), whereas

clustering through IT-vis was most successful for large SOMs. For IT-vis, the best results

were usually obtained using stable regions and the modified k-NN, and, in general, per-

formance improved with size. Moreover, the rH*-vis yielded better results overall when

compared to the rCIP-vis. For instance, with respect to large SOMs, 16 of the overall

best performance for the 18 data sets were achieved by clustering one of the IT-vis varia-

Table 2. Peak performance for CONN linkage, k-means, U-matrix and logarithm of U-
matrix.

Data set
SOM CONN U-matrix logarithm of U-matrix K-means

network Linkage Stable Regions Otsu’s Method Stable Regions Otsu’s Method Algorithm

size NMI AR NMI AR NMI AR NMI AR NMI AR NMI AR

Small SOM sizes

Iris 8 × 2 0.7582 0.7302 0.7201 0.5584 0.7337 0.5681 0.7201 0.5584 0.7337 0.5681 0.7507 0.7173
Wine 4 × 4 0.8326 0.8613 0.6304 0.4739 0.0000 0.0000 0.6304 0.4739 0.0000 0.0000 0.8529 0.8685
Seeds 8 × 3 0.6618 0.6699 0.4570 0.3110 0.5942 0.4883 0.4570 0.3110 0.5260 0.4605 0.7171 0.7048
Chainlink 9 × 5 1.0000 1.0000 0.3738 0.2801 0.4195 0.3059 0.3738 0.2801 0.4195 0.3059 0.4772 0.3022
Hepta 5 × 4 1.0000 1.0000 0.9451 0.8411 0.0000 0.0000 0.9451 0.8411 0.0000 0.0000 1.0000 1.0000
Tetra 6 × 5 0.9294 0.9348 0.8406 0.8036 0.9402 0.9535 0.7902 0.6961 0.9452 0.9538 0.9452 0.9538
Spiral 5 × 5 0.2984 0.1030 0.0280 0.0088 0.0053 0.0022 0.0280 0.0088 0.0088 0.0027 0.1922 0.0507
R15 6 × 5 0.9028 0.8236 0.5109 0.1985 0.0000 0.0000 0.5109 0.1985 0.0000 0.0000 0.9212 0.8548
Path based 6 × 4 0.4948 0.4024 0.4910 0.3990 0.4910 0.3990 0.3954 0.2321 0.4910 0.3990 0.4910 0.4038
Flame 5 × 4 0.7581 0.8542 0.5146 0.6371 0.5146 0.6371 0.4124 0.3384 0.5146 0.6371 0.5146 0.6371
D31 10 × 8 0.8905 0.7569 0.7538 0.4071 0.4036 0.0743 0.7103 0.3039 0.4036 0.0743 0.8553 0.6637
Compound 9 × 3 0.7736 0.7302 0.5458 0.4155 0.5089 0.4526 0.5458 0.4155 0.5089 0.4526 0.7736 0.7223
Aggregation 7 × 5 0.8905 0.8182 0.8548 0.8162 0.6857 0.5519 0.5588 0.3786 0.6770 0.5445 0.8386 0.7544
Target 7 × 6 0.9386 0.9702 0.3741 0.3192 0.0000 0.0000 0.0242 0.0035 0.0000 0.0000 0.6520 0.6495
Atom 7 × 5 0.9937 0.9975 0.1229 0.0260 0.0000 0.0000 0.1229 0.0260 0.0000 0.0000 0.6279 0.5990
dim032 8 × 6 1.0000 1.0000 0.9083 0.7006 0.0000 0.0000 0.9083 0.7006 0.4380 0.1064 0.9841 0.9361
Synthetic Control 13 × 3 0.8731 0.8028 0.5243 0.2742 0.4605 0.2672 0.5243 0.2742 0.4605 0.2672 0.8063 0.6261
WDBC 15 × 2 0.5132 0.6367 0.5156 0.5815 0.0000 0.0000 0.5156 0.5815 0.0000 0.0000 0.5132 0.6367

Large SOM sizes

Iris 32 × 8 0.4161 0.0583 0.7337 0.5681 0.7337 0.5681 0.7337 0.5681 0.7907 0.7323 0.7387 0.7282
Wine 16 × 16 0.4396 0.0902 0.0000 0.0000 0.7801 0.8040 0.0000 0.0000 0.8336 0.8498 0.8104 0.8203
Seeds 30 × 10 0.3887 0.0499 0.0183 0.0002 0.4727 0.3654 0.0663 0.0025 0.4727 0.3654 0.6954 0.6998
Chainlink 36 × 18 0.3326 0.0815 0.0000 0.0000 1.0000 1.0000 0.2215 0.2009 1.0000 1.0000 0.4652 0.2462
Hepta 18 × 16 0.7418 0.4797 1.0000 1.0000 1.0000 1.0000 0.4799 0.1952 0.0000 0.0000 1.0000 1.0000
Tetra 22 × 18 0.5543 0.1929 0.0000 0.0000 0.5484 0.3228 0.3805 0.2786 0.8120 0.7061 1.0000 1.0000
Spiral 20 × 18 0.6093 0.4228 0.0125 0.0052 0.3120 0.2155 0.0125 0.0052 0.2725 0.1308 0.3306 0.1437
R15 24 × 20 0.9013 0.8052 0.1659 0.0196 0.7425 0.2637 0.7425 0.2637 0.7425 0.2637 0.9942 0.9928
Path based 24 × 14 0.4608 0.1558 0.0000 0.0000 0.0932 −0.0014 0.0000 0.0000 0.4901 0.4157 0.5489 0.4650
Flame 20 × 16 0.2771 0.0349 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9269 0.9666 0.5510 0.4997
D31 38 × 30 0.9305 0.8734 0.0797 0.0044 0.6997 0.2636 0.8956 0.8107 0.7692 0.3258 0.9512 0.9209
Compound 34 × 12 0.6901 0.4330 0.5590 0.4237 0.8197 0.7629 0.7685 0.7524 0.8122 0.7572 0.7836 0.7293
Aggregation 28 × 20 0.9331 0.9012 0.0000 0.0000 0.8359 0.7338 0.0000 0.0000 0.8257 0.7260 0.8782 0.7759
Target 26 × 22 0.5582 0.6033 0.2302 0.0583 0.9386 0.9702 0.9386 0.9702 0.2792 0.1801 0.6644 0.6555
Atom 28 × 20 0.5134 0.5237 1.0000 1.0000 0.3693 0.3008 0.1465 0.0341 0.0000 0.0000 0.6221 0.5971
dim032 30 × 22 0.9832 0.9760 0.1555 0.0173 1.0000 1.0000 0.9984 0.9979 1.0000 1.0000 1.0000 1.0000
Synthetic Control 50 × 10 0.6864 0.4689 0.0000 0.0000 0.5341 0.2838 0.2321 0.0763 0.6922 0.5199 0.8030 0.6250
WDBC 60 × 8 0.2838 0.0729 0.0000 0.0000 0.6028 0.7120 0.0000 0.0000 0.5584 0.6623 0.6142 0.7179

Note: Bold values indicate the best performance regarding comparable SOM sizes for each data set among the methods in Tables 2 and 3. Underlined values
indicate the best performance over both SOM sizes.
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Table 3. Peak performance for IT-vis methods.

Data set

modified k-NN standard k-NN

Stable Regions + Watershed Otsu’s Method + Watershed Stable Regions + Watershed Otsu’s Method + Watershed

rCIP rH* rCIP rH* rCIP rH* rCIP rH*

NMI AR NMI AR NMI AR NMI AR NMI AR NMI AR NMI AR NMI AR

Small SOM sizes

Iris 0.8465 0.8680 0.7582 0.7302 0.0000 0.0000 0.4730 0.4202 0.7582 0.7302 0.7582 0.7302 0.7582 0.7302 0.7582 0.7302
Wine 0.9016 0.9310 0.9016 0.9310 0.0000 0.0000 0.9016 0.9310 0.7573 0.7269 0.6304 0.4739 0.5862 0.4536 0.6304 0.4739
Seeds 0.6907 0.6599 0.6537 0.6424 0.5326 0.4595 0.6459 0.5942 0.7122 0.7051 0.5942 0.4883 0.6219 0.5543 0.6907 0.6595
Chainlink 0.4786 0.4484 0.5151 0.2921 0.4259 0.3335 0.5341 0.4143 0.4458 0.4564 0.7889 0.8389 0.5009 0.6049 0.6542 0.6461
Hepta 0.9451 0.8411 1.0000 1.0000 0.0000 0.0000 0.3465 0.0990 0.9451 0.8411 0.8858 0.7221 0.5786 0.2315 0.5786 0.2315
Tetra 0.9579 0.9669 0.9579 0.9669 0.9452 0.9538 0.9452 0.9539 0.9452 0.9538 0.9452 0.9538 0.9402 0.9535 0.9452 0.9538
Spiral 0.1514 0.0671 0.2131 0.1310 0.0066 0.0032 0.0098 0.0041 0.0167 0.0074 0.0536 0.0211 0.0094 0.0056 0.0107 0.0045
R15 0.7553 0.4670 0.7296 0.4551 0.4554 0.1586 0.4864 0.1652 0.6808 0.3749 0.6622 0.3257 0.5329 0.2209 0.5194 0.2006
Path based 0.4948 0.4033 0.4910 0.4033 0.4186 0.3547 0.4910 0.4033 0.4910 0.3990 0.5021 0.4145 0.4910 0.3990 0.4910 0.3990
Flame 0.5453 0.6512 0.6047 0.6967 0.6185 0.7336 0.5453 0.6512 0.5453 0.6512 0.5453 0.6512 0.5453 0.6512 0.5453 0.6512
D31 0.8452 0.6055 0.8452 0.6055 0.6940 0.3196 0.6937 0.3169 0.6377 0.2493 0.8590 0.6273 0.6234 0.2334 0.5549 0.1604
Compound 0.7736 0.7223 0.7736 0.7223 0.7400 0.7150 0.7736 0.7223 0.7359 0.6959 0.7359 0.6959 0.5746 0.4771 0.5921 0.4526
Aggregation 0.8070 0.6770 0.8631 0.7923 0.6193 0.4346 0.7631 0.6811 0.8832 0.8080 0.8292 0.7474 0.7905 0.6994 0.8175 0.7223
Target 0.2979 0.1597 0.6698 0.6625 0.3153 0.3291 0.5282 0.5477 0.2097 0.0851 0.5921 0.6064 0.0304 0.0231 0.1331 0.0442
Atom 0.2213 0.1853 0.5035 0.4649 0.0000 0.0000 0.1471 0.0396 0.4575 0.3634 0.2260 0.0982 0.0000 0.0000 0.0000 0.0000
dim032 0.3660 0.0944 0.9333 0.7813 0.0000 0.0000 0.7250 0.3543 0.4975 0.1387 0.8772 0.6030 0.0000 0.0000 0.6991 0.3419
Synthetic Control 0.7408 0.5582 0.7216 0.4762 0.7408 0.5582 0.6993 0.5175 0.6616 0.4811 0.5243 0.2742 0.4308 0.2218 0.7408 0.5582
WDBC 0.3390 0.2493 0.5132 0.6367 0.3390 0.2435 0.0000 0.0000 0.2457 0.0607 0.6160 0.6788 0.0000 0.0000 0.0000 0.0000

Large SOM sizes

Iris 0.8705 0.8858 0.8705 0.8858 0.2599 0.1045 0.7526 0.7264 0.7337 0.5681 0.7337 0.5681 0.0000 0.0000 0.7337 0.6435
Wine 0.7844 0.7882 0.5862 0.4536 0.0000 0.0000 0.7844 0.7882 0.5341 0.4447 0.8252 0.8368 0.4781 0.3504 0.7488 0.7127
Seeds 0.7292 0.7247 0.7188 0.7180 0.5417 0.4725 0.6887 0.6688 0.6382 0.6158 0.6436 0.6233 0.6455 0.6297 0.6795 0.6787
Chainlink 0.4211 0.3130 1.0000 1.0000 0.4147 0.1621 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.4135 0.1731 1.0000 1.0000
Hepta 0.9451 0.8411 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.8356 0.7603 1.0000 1.0000 0.8010 0.6092 0.8569 0.7784
Tetra 1.0000 1.0000 1.0000 1.0000 0.8180 0.8015 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9262 0.9411 0.9899 0.9933
Spiral 0.0858 0.0829 1.0000 1.0000 0.0727 0.0233 0.4133 0.2781 0.0371 0.0057 1.0000 1.0000 0.1501 0.0787 0.4482 0.3446
R15 0.9893 0.9857 0.9893 0.9857 0.9490 0.9001 0.9913 0.9892 0.9942 0.9928 0.7425 0.2637 0.9806 0.9715 0.9942 0.9928
Path based 0.7373 0.6366 0.7373 0.6366 0.4913 0.4186 0.7339 0.7163 0.5379 0.4518 0.7107 0.7023 0.5238 0.4802 0.7918 0.7931
Flame 0.6715 0.5243 1.0000 1.0000 0.6491 0.5155 0.6491 0.5155 0.9313 0.9714 0.9355 0.9666 0.8991 0.9501 0.8994 0.9502
D31 0.9580 0.9370 0.9580 0.9370 0.9302 0.8734 0.9564 0.9337 0.9551 0.9337 0.9063 0.6990 0.9500 0.9237 0.8624 0.5367
Compound 0.7252 0.5434 0.8847 0.8519 0.6710 0.4929 0.8949 0.8487 0.8466 0.8073 0.8136 0.7607 0.7732 0.7248 0.8042 0.7531
Aggregation 0.8465 0.6936 0.9367 0.9067 0.8269 0.7999 0.9134 0.9126 0.9538 0.9139 0.9538 0.9139 0.9634 0.9580 0.9067 0.8286
Target 0.1532 0.0639 0.9386 0.9702 0.0753 0.0326 0.4997 0.5604 0.9386 0.9702 0.9386 0.9702 0.0854 0.0227 0.4844 0.5424
Atom 0.1357 0.0929 1.0000 1.0000 0.0526 0.0587 0.4005 0.3855 0.0822 0.0552 1.0000 1.0000 0.0224 0.0152 0.3381 0.2367
dim032 0.3396 0.1024 1.0000 1.0000 0.3254 0.0972 1.0000 1.0000 0.5613 0.2398 0.9153 0.6654 0.3570 0.1093 1.0000 1.0000
Synthetic Control 0.6052 0.4437 0.4019 0.1418 0.6121 0.4490 0.6739 0.5061 0.6035 0.4396 0.7215 0.5707 0.5706 0.4139 0.6791 0.5116
WDBC 0.5562 0.6771 0.4164 0.4198 0.2851 0.2935 0.6594 0.7357 0.2492 0.1798 0.6730 0.7420 0.1838 0.0999 0.0000 0.0000

Note: Bold values indicate the best performance regarding comparable SOM sizes for each data set among the methods in Tables 2 and 3. Underlined values indicate the best
performance over both SOM sizes.

tions using large SOMs, which is the highest count among the clustering methods for both

SOM sizes; specifically, 11 using the rH*-vis generated with the modified k-NN in Table 3

corresponds to the best overall performance; again, the highest count among the clustering

methods for all SOM sizes. Regarding 6 out of the 7 remaining data sets, their best solutions

could also be retrieved either using a different IT-vis (5) or different SOM size (1).

The appeal of applying the watershed algorithm is the generation of one pixel-wide

boundaries between clusters. This is less significant when using rH*-vis with the modified

k-NN, as the boundaries between the clusters are already very thin and thus already very

similar to the output of the watershed algorithm (cf. Figure 12). Thus, Table 4 depicts
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Figure 13. AR index for different values of the minimum number of points (MinPts) of the
subsetH generated using the modified k-NN (Gokcay & Principe, 2002) (first three rows)
and the standard k-NN (Duda et al., 2000) (last three rows) for all data sets. In this sweep
analysis, the clustering performed using Otsu’s method is represented in red and green
lines for the rCIP-vis and rH*-vis respectively. The clustering performed using the stable
regions approach is represented in black and light blue lines for the rCIP-vis and rH*-vis,
respectively.
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Table 4. Clustering results for large SOM sizes. Peak performance for IT-vis methods
without the watershed algorithm.

Data set

modified k-NN standard k-NN

Stable Regions Otsu’s Method Stable Regions Otsu’s Method

rCIP rH* rCIP rH* rCIP rH* rCIP rH*

NMI AR NMI AR NMI AR NMI AR NMI AR NMI AR NMI AR NMI AR

Iris 0.8705 0.8858 0.8705 0.8858 0.2552 0.1463 0.7304 0.6821 0.7337 0.5681 0.7337 0.5681 0.0000 0.0000 0.7337 0.6100
Wine 0.7728 0.7726 0.5748 0.4464 0.0000 0.0000 0.7844 0.7882 0.6125 0.4687 0.8330 0.8483 0.6281 0.4766 0.7872 0.7847
Seeds 0.7029 0.7024 0.7188 0.7180 0.5685 0.4913 0.6820 0.6795 0.6820 0.6795 0.6886 0.6895 0.6886 0.6895 0.6618 0.6500
Chainlink 0.4211 0.1709 1.0000 1.0000 0.4655 0.2148 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.4667 0.2091 1.0000 1.0000
Hepta 0.9451 0.8411 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.8965 0.7926 1.0000 1.0000 0.8604 0.6183 0.8965 0.7926
Tetra 1.0000 1.0000 1.0000 1.0000 0.8991 0.9027 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9899 0.9933 1.0000 1.0000
Spiral 0.1193 0.1133 1.0000 1.0000 0.0813 0.0472 0.5040 0.3480 0.0198 0.0000 1.0000 1.0000 0.2430 0.1205 0.5246 0.4091
R15 0.9913 0.9892 0.9893 0.9857 0.9648 0.9097 0.9913 0.9892 0.9942 0.9928 0.7425 0.2637 0.9914 0.9892 0.9942 0.9928
Path based 0.7373 0.6366 0.7373 0.6366 0.5286 0.4659 0.7412 0.7184 0.5489 0.4650 0.7239 0.7125 0.5986 0.5477 0.8187 0.8205
Flame 0.6715 0.5243 1.0000 1.0000 0.6493 0.5480 0.6681 0.5156 0.9269 0.9666 0.9635 0.9833 0.9269 0.9666 0.9269 0.9666
D31 0.9563 0.9339 0.9563 0.9339 0.9479 0.9162 0.9611 0.9427 0.9574 0.9377 0.9062 0.6992 0.9579 0.9382 0.8629 0.5373
Compound 0.7252 0.5434 0.8846 0.8552 0.7023 0.5070 0.9003 0.8452 0.8598 0.8200 0.8282 0.7653 0.8103 0.7531 0.8221 0.7630
Aggregation 0.8475 0.6953 0.9367 0.9055 0.8729 0.8457 0.9195 0.9168 0.9538 0.9139 0.9538 0.9139 0.9915 0.9949 0.9067 0.8286
Target 0.1527 0.0401 0.9386 0.9702 0.1312 0.0492 0.5541 0.5921 0.9386 0.9702 0.9386 0.9702 0.0000 0.0000 0.5401 0.5845
Atom 0.0619 0.0501 1.0000 1.0000 0.0333 0.0342 0.4469 0.4323 0.0230 0.0145 1.0000 1.0000 0.0074 0.0068 0.3442 0.2433
dim032 0.3660 0.0944 1.0000 1.0000 0.3660 0.0944 1.0000 1.0000 0.5576 0.2165 0.9153 0.6654 0.3660 0.0944 1.0000 1.0000
Synthetic Control 0.6593 0.4773 0.4019 0.1418 0.7084 0.5342 0.7198 0.5401 0.3830 0.2114 0.7548 0.5861 0.6063 0.4509 0.7272 0.5615
WDBC 0.3899 0.2889 0.4238 0.4296 0.4457 0.3577 0.4804 0.5233 0.0920 0.1279 0.6628 0.7420 0.1878 0.0329 0.0000 0.0000

the performance of clustering large SOMs without the watershed algorithm, in order to

analyze its influence regarding the segmentation of IT-vis. Noticeably, the vast majority of

the clustering results are similar, and in some cases superior, to those reported in Table 3.

Additionally, in order to analyze the sensitivity of large SOMs regarding MinPts,

this parameter was varied in the same ranges mentioned previously and the behavior of

the adjusted Rand index (AR) of the partitions is illustrated for all data sets in Figure 13

for both k-NN methods. As expected, there was no universal value for the minimum

number of points parameter (MinPts) that can be used for all the data sets to provide

the best performance, regardless of the IT-vis type used. For many data sets, an interval

or plateau in which partitioning the SOM using one of the IT-vis provides a comparable

or superior performance regarding the other clustering methods (cf. Figure 13) can be

observed. Additionally, other data sets had good performances for a wide range of values

for which MinPts may be effectively used. The best results from Figure 13 are the ones

summarized in Table 3. In general, clustering the rH*-vis led to the majority of the best
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performances using stable regions followed by Otsus’s method (cf. light blue and green

curves in Figure 13 and Table 3). Specifically, clustering the rH*-vis generated with the

modified k-NN is recommended, under which most of the data sets had better performances.

7. CONCLUSION

This work presented information-theoretic-cluster visualizations (IT-vis) for self-

organizing maps. The visualizations consist of a gray-level images that follows the structure

of the unified distance matrix and displays either Renyi’s (representative) cross-information

potential or a modified version of Renyi’s (representative) cross-entropy: rCIP-vis or CIP-

vis and rH*-vis or H*-vis, respectively. The visualizations require only one input parameter

(MinPts), which must be set by the user. It is the number of samples to compute the

statistics (mean and covariance matrix) of the subsetsH of the data set associated with each

neuron. This is not a considerable challenge, since performance appears to be robust with

respect to MinPts.

In order to create the subsetsH , the standard k-NN and a modified k-NN were used.

In the first case, the visualization is smoother as the subsetHi is taken inside a hypersphere

centered at neuron i. On the other hand, the second case is able to highlight and sharply

depict the differences among clusters and the sub-regions within them due to the fact that

the statistics are computed using samples that better follow the data structure at the region in

which a given neuron is located, with the granularity controlled by the MinPts parameter.

As expected, computing the representative IT-vis is much faster than their original

counterparts (CIP-vis and H*-vis), while providing the same level of detail to the visualiza-

tion. Specifically, the rH*-vis, which displays entropy information, is much more suitable

for visualization as it compresses the range of high values of rCIP and unveils subtleties in

the regions with low CIP values by expanding its range. From visualization experiments

with several data sets and SOMs ranging from densely-matched to sparsely-matched maps,

rH*-vis appears to be robust with respect to the SOM dimensions.
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The IT-vis were compared and contrasted with the standard U-matrix and CON-

Nvis2. In most cases, they revealed visually clearer cluster information. For instance,

compared to the U-matrix, most rH*-vis provided a portrayal of data sets for which the clus-

ter’s boundaries were visually sharper and thinner. As expected, the visualization power

of CONNvis2 is better harvested for smaller map sizes as it takes advantage of the vector

quantization and larger sample to neuron ratio. On the other hand, the resolution of rH*-

vis increases with the size of the map, at an additional computational cost. CONNvis2,

however, has the unique feature of enabling the visualization of topology violations.

Regarding the clustering task, among the methods compared, the results showed

that for the majority of the data sets, superior or comparable peak performances were

achieved by using the presented IT-vis for large SOMs; specifically, the rH*-vis generated

with the modified k-NN clustered via the stable regions approach. The CONN linkage

obtained the overall best performance for small SOMs. Similarly to the U-matrix, the

clustering methodology based on the digital image processing techniques of Otsu’s global

thresholding method, stable regions and the watershed algorithm, when employed over

the IT-vis, also detects the number of clusters and clusters of complex geometric shapes.

Specifically, the rH*-vis generated with the modified k-NN clustered by the stable regions

approach has the additional benefit of, in many cases, providing larger lifetimes and thinner

boundarieswithout any image pre-processing. Furthermore, for large SOMs, the application

of the watershed algorithm appears to be an optional step as the performance was minimally

affected.

Finally, rH*-vis is recommended for both visualization and clustering, along with

the use of large SOMs, as resolution increases with size. Concerning clustering, the stable

regions thresholding method is recommended, as it led to the best results for the majority

of the data sets. Finally, it is preferable for the rH*-vis to be generated with the modified

k-NN; however, the question of when to choose one mode over the other is ultimately

application-dependent and user-defined. Naturally, superior performance may be achieved
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by applying more thorough pre-processing to the images and by using more complex image

segmentation algorithms, such as local thresholding, information-theoretic based image

segmentation, or simply by evaluating the CEF for the partitions of each segmented image

and selecting the one that minimizes it (or using a suitable validity index). In combination, it

is expected that these observations will assist in improved visualization for cluster analysis.
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ABSTRACT

Validation is one of the most important aspects of clustering, but most existing

approaches have required batch calculation. Recently, interest has grown in providing

online alternatives for data stream applications. This paper extends the incremental cluster

validity index (iCVI) family by presenting incremental versions of Calinski-Harabasz (iCH),

Pakhira-Bandyopadhyay-Maulik (iPBM), WB index (iWB), Silhouette (iSIL), Negentropy

Increment (iNI), Representative Cross Information Potential (irCIP) and Representative

Cross Entropy (irH), and Conn_Index (iConn_Index). The sum-of-squares-based iCVIs

were realized by incorporating a recently developed incremental update for the clusters’

compactness, whereas the information-theoretic-based iCVIswere realized by incorporating

a classic incremental update for the clusters’ covariance matrices. The multi-prototype

representation required by the graph-based iCVI was realized by customizing a fuzzy

ART-based neural network and incrementally updating a matrix of connections between

prototypes. This paper also provides a thorough comparative study on the effect of correct,

under- and over-partitioning on the behavior of these iCVIs, the Partition Separation (PS)

index and four recently developed iCVIs: incremental Xie-Beni (iXB), incremental Davies-

Bouldin (iDB), and incremental generalized Dunn’s indices 43 and 53 (iGD43 and iGD53).
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Experimentswere carried out using a framework as clustering algorithm agnostic as possible

and results on synthetic benchmark data sets showed that while evidence of most under-

partitioning cases could be inferred from the behaviors of the majority of these iCVIs,

over-partitioning was found to be a more challenging problem detected by a smaller fraction

of them. Interestingly, over-partition, rather then under-partition, was more prominently

detected on the real world benchmark data sets experiment with in this study. The expansion

of iCVIs provides significant novel opportunities for assessing and interpreting in real-time

the results of unsupervised lifelong learning, in which samples cannot be reprocessed due

to memory and/or application constraints.

Keywords: Clustering, Validation, Incremental Cluster Validity Index (iCVI), Adaptive

Resonance Theory (ART), incremental (online) clustering algorithms, data streams.

1. INTRODUCTION

Cluster validation (Gordon, 1998) is a fundamental topic in cluster analysis because

it is crucial to assess the quality of partitions detected by clustering algorithms since no class

label information is available. Moreover, different clustering solutions may be found by

distinct algorithms, or even by the same algorithm subjected to different hyper-parameters

or a different input presentation order (Brito da Silva & Wunsch II, 2018a; Xu et al., 2012).

Cluster validity indices (CVIs) function as evaluators of such solutions by computing some

cluster quality measure based on (i) the degree of agreement between the output and the

reference partitions (externalCVIs), or (ii) the data itself and the output partition information

(internal CVIs). Numerous examples of such criteria have been presented in the literature

to evaluate partitions in offline mode; for comprehensive reviews and experimental studies

the interested reader may refer to (Arbelaitz et al., 2013; Bezdek et al., 1997; Dimitriadou

et al., 2002; Dubes & Jain, 1979; Halkidi et al., 2002a,b; Hämäläinen et al., 2017; Milligan

& Cooper, 1985; Vendramin et al., 2010; Vinh et al., 2010; Wang & Zhang, 2007; Xu &

Wunsch II, 2005; Xu & Wunsch II, 2009).
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Recently, incremental cluster validity indices (iCVIs) have been developed to track

the effectiveness of online clustering methods over data streams (Ibrahim et al., 2018a,b;

Moshtaghi et al., 2018; Moshtaghi et al., 2019). These are online versions of sum-of-

squares (SS) based internal CVIs (Zhao & Fränti, 2014), which typically exhibit a trade-

off between measures of compactness (a.k.a. dispersion or within-cluster scatter) and

isolation (a.k.a. between-cluster separation) (Xu et al., 2012; Zhao & Fränti, 2014). To

enable cluster validation in online applications, a recursive formulation of compactness was

introduced in (Moshtaghi et al., 2018; Moshtaghi et al., 2019). This strategy has been used

to develop incremental versions of Davies-Bouldin (Davies & Bouldin, 1979) (iDB) and

Xie-Beni (Xie & Beni, 1991) (iXB) in (Moshtaghi et al., 2018; Moshtaghi et al., 2019)

as well as incremental versions of two generalized Dunn’s indices (Bezdek & Pal, 1998)

(iGDs) in (Ibrahim et al., 2019). Particularly, the behavior of iXB and iDB were analyzed in

both accurately and poorly partitioned data sets in (Moshtaghi et al., 2018; Moshtaghi et al.,

2019), whereas the studies in (Ibrahim et al., 2018a,b) only investigate the iDB’s behavior

in cases where the MU streaming clustering (MUSC) (Ibrahim et al., 2016) accurately

detected the structures present in the data. In this context, the contributions of this work are

two-fold:

1. Presenting 7 additional iCVIs. The incremental versions of Calinski-Harabasz (Cal-

iński & Harabasz, 1974), WB index (Zhao et al., 2009), Pakhira-Bandyopadhyay-

Maulik (Pakhira et al., 2004), and Silhouette (Rousseeuw, 1987) were realized by em-

ploying the incremental update of compactness developed in (Moshtaghi et al., 2018;

Moshtaghi et al., 2019). The incremental versions of Negentropy Increment (Lago-

Fernández & Corbacho, 2009; Lago-Fernández & Corbacho, 2010), Representative

Cross Information Potential and Representative Cross Entropy (Araújo et al., 2013a,b)

were realized using the incremental update of covariance matrices (Duda et al., 2000).

Finally, the incremental version of the Conn_Index (Taşdemir&Merényi, 2007, 2011)

was realized by storing co-activation counts of multiple prototypes generated using
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fuzzy adaptive resonance theory (ART)-based models (Carpenter et al., 1992, 1991).

The latter were chosen for their simple parameterization of quantization granularity

and other useful properties (Brito da Silva et al., 2019; Wunsch II, 2009).

2. Performing a comparative study among 13 iCVIs in cases of correct, under- and

over-partitioning on synthetic and real world benchmark data sets. It is not the focus

of this study to contrast the iCVIs’ behavior associated with specific online clustering

algorithms and their dynamics. Therefore, to explore such scenarios, a framework as

clustering algorithm agnostic as possible was used to define the data partitions.

To the best of our knowledge, this work provides the first comprehensive and sys-

tematic comparative study on iCVIs. The remainder of this paper is structured as follows:

Section 2, provides a brief review of CVIs, iCVIs and ART; Section 3 presents this work’s

extensions of several other CVIs to the incremental family; Section 4 details the set-up

used in the numerical experiments; Section 5 describes and discusses the results; Section 6

compares batch and incremental versions of the Conn_Index; and Section 7 summarizes

this paper’s findings.

2. BACKGROUND AND RELATEDWORK

This section provides an overview of CVIs, iCVIs and ART neural networks used

in this study.

2.1. BATCH CLUSTER VALIDITY INDICES (CVIS)

Consider a data set X = {xi}
N
i=1 and its hard partition Ω = {ωi}

k
i=1 of k disjointed

clusters ωi, such that
k⋃

i=1
ωi = X . In the following CVI overview, vi is cluster ωi’s prototype

(centroid) defined as
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vi =
1
ni

ni∑
j=1

x j∈ωi

x j, (1)

k is the number of clusters, d is the dimensionality of the data (xi ∈ IRd), and N and ni are

the cardinalities of a data set and cluster ωi, respectively. Additionally, the data geometric

center is given by

µdata =
1
N

N∑
i=1

xi, (2)

and the compactness of cluster ωi with respect to point z is

CPp
q (z, ωi) =

ni∑
j=1
‖x j − z‖

p
q, x j ∈ ωi, (3)

where ‖ · ‖pq is the `q norm to the pth power.

2.1.1. Calinski-Harabasz (CH). The CH index (Caliński & Harabasz, 1974) is

defined as:

CH =
BGSS/(k − 1)

WGSS/(N − k)
, (4)

where the between group sum of squares (BGSS) and within group sum of squares (WGSS)

are computed as:

WGSS =
k∑

i=1
CP2

2(vi, ωi), (5)

BGSS =
k∑

i=1
ni‖vi − µdata‖

2
2, (6)

This is an optimization-like criterion (Vendramin et al., 2010) such that larger values of CH

indicate better clustering solutions.

2.1.2. WB-Index (WB). The WB index (Zhao et al., 2009) is related to CH as

discussed in (Zhao & Fränti, 2014) and is given by:
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W B = k
WGSS
BGSS

. (7)

Smaller values of WB suggest better data partition quality.

2.1.3. Davies-Bouldin (DB). The DB index (Davies & Bouldin, 1979) averages

the similarities R of each cluster i with respect to its maximally similar cluster j , i:

DB =
1
k

k∑
i=1

Ri, (8)

where

Ri = max
i, j

(
Si + Sj

Mi, j

)
, (9)

Sl =


1
nl

nl∑
m=1
xm∈ωl

‖xm − vl ‖
q


1
q

, l = {1, ..., k}, (10)

Mi, j =

[
d∑

t=1
|vit − v jt |

p

] 1
p

, p ≥ 1. (11)

The variables (p, q) are user-defined parameters, and Sl and Mi, j (Minkowski metric)

measure compactness and separation, respectively. Smaller values of DB indicate better

clustering solutions.

2.1.4. Xie-Beni (XB). The XB index (Xie & Beni, 1991) was originally designed

to detect compact and separated clusters in fuzzy c-partitions. A hard partition version is

given by the following ratio of compactness to separation (Lamirel & Cuxac, 2015; Lamirel

et al., 2016):

XB =
WGSS/N

min
i, j
‖vi − v j ‖

2
2
. (12)

Smaller values of XB indicate better clustering solutions.
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2.1.5. Generalized Dunn’s Indices (GDs). The GDs (Bezdek & Pal, 1998) com-

prise a set of 17 variants of the original Dunn’s index (Dunn, 1973) devised to address the

latter’s sensitivity to noise. These CVIs are given by:

GDrs =

min
i, j

[
δr(ωi, ω j)

]
max

k
[∆s(ωk)]

, (13)

where δr(·) is ameasure of separation and∆s(·) is ameasure of compactness. The parameters

r and s index the measures’ formulations (r ∈ {1, ..., 6} and s ∈ {1, 2, 3}). In particular,

when employing Euclidean distance, the GD43 and GD53 variants are formulated using

δ4(ωi, ω j) = ‖vi − v j ‖2, (14)

δ5(ωi, ω j) =
CP1

2(vi, ωi) + CP1
2(v j, ω j)

ni + n j
, (15)

∆3(ωk) =
2 × CP1

2(vk, ωk)

nk
. (16)

Larger values of these GDs suggest better clustering partitions.

2.1.6. Pakhira-Bandyopadhyay-Maulik (PBM). Consider the I index (Bandy-

opadhyay & Maulik, 2001) defined as:

I =
(

1
k
×

E1
Ek
× Dk

) p

, p ≥ 1, (17)

where

E1 =

N∑
i=1
‖xi − µdata‖2, (18)

Ek =

k∑
i=1

CP1
2(vi, ωi), (19)

Dk = max
i, j

(
‖vi − v j ‖2

)
, (20)
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The quantities Ek and Dk measure compactness and separation, respectively. This CVI

comprises a trade-off among the three competing factors in Eq. (17): 1
k decreases with k,

whereas both E1
Ek

and Dk increase. By setting p = 2 in Eq. (17), the I index reduces to the

PBM index (Pakhira et al., 2004). Larger values of PBM indicate better clustering solutions.

2.1.7. Silhouette (SIL). The SIL index (Rousseeuw, 1987) is computed by aver-

aging the silhouette coefficients sci across all data samples xi:

SIL =
1
N

N∑
i=1

sci, (21)

where

sci =
bi − ai

max (ai, bi)
, (22)

ai =
1

ni − 1
CP1

2(xi, ωi), (23)

bi = min
l,l,i

[
1
nl

CP1
2(xi, ωl)

]
, (24)

the variables ai and bi measure compactness and separation, respectively. Larger values

of SIL (close to 1) indicate better clustering solutions. To reduce computational complex-

ity, some SIL variants, such as (Hruschka et al., 2006, 2004; Luna-Romera et al., 2016;

Rawashdeh & Ralescu, 2012), use a centroid-based approach. The simplified SIL (Hr-

uschka et al., 2006, 2004) has been successfully used in clustering data streams processed

in chunks, in which the silhouette coefficients are also used to make decisions regarding the

centroids’ incremental updates (Silva & Hruschka, 2016).

2.1.8. Partition Separation (PS). The PS index (Yang&Wu, 2001) was originally

developed for fuzzy clustering; its hard clustering version is given by (Lughofer, 2008):

PS =
k∑

i=1
PSi, (25)
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where

PSi =
ni

max
j
(n j)
− exp

−
min
i, j

(
‖vi − v j ‖

2
2
)

βT

 , (26)

βT =
1
k

k∑
l=1
‖vl − v̄‖2, (27)

v̄ =
1
k

k∑
l=1

vl, (28)

The PS index only comprises a measure of separation between prototypes. Although

included in the batch CVI section, it can be readily used to evaluate the partitions identified

by unsupervised incremental learners that model clusters using centroids (e.g., (Lughofer,

2008)). Larger values of PS indicate better clustering solutions.

2.1.9. Negentropy Increment (NI). The NI index (Lago-Fernández & Corbacho,

2009; Lago-Fernández & Corbacho, 2010) measures the average normality of the clusters

of a given partitionΩ via negentropy (Comon, 1994) while avoiding the direct computation

of the clusters’ differential entropies. Unlike the other CVIs discussed so far, the NI is not

explicitly constructed using measures of compactness and separation (Arbelaitz et al., 2013;

Lago-Fernández & Corbacho, 2010), thereby being defined as:

NI =
1
2

k∑
i=1

pi ln |Σi | −
1
2

ln |Σdata | −

k∑
i=1

pi ln pi, (29)

where | · | denotes the determinant. The probabilities (p) and covariance matrices (Σ) are

estimated as:

pi =
ni

N
, (30)

Σi =
1

ni − 1

ni∑
j=1

x j∈ωi

(x j − vi)(x j − vi)
T, (31)

Σdata =
1

N − 1

(
XTX − Nµdataµ

T
data

)
, (32)
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and the means v and µdata are estimated using Eqs. (1) and (2), respectively. Smaller values

of NI indicate better clustering solutions.

2.1.10. Representative Cross Information Potential (rCIP). Cluster evaluation

functions (CEFs) based on cross information potential (CIP) (Gokcay & Principe, 2000,

2002) have been consistently used in the literature to evaluate partitions and drive optimiza-

tion algorithms searching for data structure (Araújo et al., 2013a,b; Gokcay & Principe,

2000, 2002), thus this work includes these CEFs under the CVI category. Precisely, rep-

resentative approaches (Araújo et al., 2013a,b) replace the sample-by-sample estimation of

Renyi’s quadratic Entropy (Rényi, 1961) using the Parzen-window method (Duda et al.,

2000) (original CIP (Gokcay & Principe, 2000, 2002)) via prototypes and the statistics of

their associated Voronoi polyhedrons. The rCIP was devised for prototype-based clustering

(i.e., two-step methods: vector quantization followed by clustering of the prototypes) (Ana

& Jain, 2003; Cottrell & Rousset, 1997; Karypis et al., 1999; Tyree & Long, 1999; Vesanto

& Alhoniemi, 2000). The CEF used here is defined as (Araújo et al., 2013a):

CEF =
k−1∑
i=1

k∑
j=i+1

rCIP(ωi, ω j), (33)

where

rCIP(ωi, ω j) =
1

Mi Mj

Mi∑
l=1

Mj∑
m=1

G(∆vl,m,Σl,m), (34)

G(∆vl,m,Σl,m) =
e−

1
2∆v

T
l,m
Σ−1
l,m∆vl,m√

(2π)d |Σl,m |

, (35)

∆vl,m = vl − vm, Σl,m = Σl + Σm, {vl, Σl} ∈ ωi, {vm, Σm} ∈ ω j , Mi and Mj are the

number of prototypes used to represent clusters ωi and ω j , respectively. The prototypes

and covariance matrices are estimated using Eqs. (1) and (31), respectively. Smaller values

of CEF indicate better clustering solutions. Recently, the information potential (Principe,

2010) measure has been used to define a system’s state when modeling and analyzing

dynamic processes (Oliveira et al., 2018, 2017).



313

2.1.11. Conn_Index. TheConn_Index (Taşdemir&Merényi, 2007, 2011)was also

developed for prototype-based clustering. It is formulated using the connectivity strength

matrix (CONN ), which is a symmetric square similarity matrix that represents local data

densities between neighboring prototypes (Taşdemir & Merényi, 2006, 2009). Its (i, j)th

entry is formally given by:

CONN (i, j) = CADJ(i, j) + CADJ( j, i), (36)

where the (i, j)th entry of the non-symmetric cumulative adjacency matrix (CADJ) cor-

responds to the number of samples for which vi and v j are, simultaneously, the first and

second closest prototypes (according to some dissimilarity measure D(·), such as Euclidean

distance), respectively:

CADJ(i, j) = card(RFi, j), (37)

RFi, j = {xk ∈ RFi : D(xk, v j) ≤ D(xk, vl) ∀l , i}, (38)

RFi =
{
xk ∈ X : D(xk, vi) ≤ D(xk, v j) ∀ j

}
. (39)

where card(·) is the cardinality operator. The Conn_Index is defined as:

Conn_Index = Intra_Conn × (1 − Inter_Conn) , (40)

where the intra-cluster (Intra_Conn) and inter-cluster (Inter_Conn) connectivities are:

Intra_Conn =
1
k

k∑
l=1

I nt r a(ωl), (41)

I nt r a(ωl) =
1
nl

M∑
i, j

vi,v j∈ωl

CADJ(i, j), (42)
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Inter_Conn =
1
k

k∑
l=1

max
m,m,l

[I nt er(ωl, ωm)] , (43)

I nt er(ωl, ωm) =

M∑
i, j

vi∈ωl,v j∈ωm

CONN (i, j)

M∑
i, j

vi∈Vl,m

CONN (i, j)
, (44)

Vl,m = {vi : vi ∈ ωl, ∃v j ∈ ωm : CADJ(i, j) > 0}, (45)

the variable M is the total number of prototypes, and I nt er(ωl, ωm) = 0 if Vl,m = {∅}.

Naturally, the quantities Intra_Conn and Inter_Conn measure compactness and separa-

tion, respectively. Larger values of the Conn_Index (close to 1) indicate better clustering

solutions.

2.2. INCREMENTAL CLUSTER VALIDITY INDICES (ICVIS)

The compactness and separation terms commonly found in CVIs are generally

computed using data samples and prototypes, respectively (Ibrahim et al., 2018a;Moshtaghi

et al., 2018). In order to handle online clustering applications demands (i.e., data streams),

an incremental CVI (iCVI) formulation that recursively estimates the compactness term

was introduced in (Moshtaghi et al., 2018; Moshtaghi et al., 2019) in the context of fuzzy

clustering.

Remark 1. Hereafter the notation CPp
q is simplified to CP. This notation was

changed because only the squared Euclidean norm (p = q = 2) will be used for the

compactness. Henceforth, CP’s subscripts designate cluster membership.
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Specifically, consider the hard clustering version of cluster i’s compactness CPi

(i.e., by setting the fuzzy memberships in (Moshtaghi et al., 2018; Moshtaghi et al., 2019)

to binary indicator functions):

CPi =

ni∑
j=1

x j∈ωi

‖x j − vi‖
2
2 . (46)

In such a case, when a new sample x is presented and encoded by cluster i, then its new

compactness value becomes:

CPnew
i =

nnewi∑
j=1

x j∈ωi

‖x j − vnew
i ‖22, (47)

where

nnew
i = nold

i + 1, (48)

vnew
i = vold

i + (x − vold
i )/n

new
i , (49)

and

Nnew = Nold + 1. (50)

The compactness in Eq. (47) can be updated incrementally as (Moshtaghi et al.,

2018; Moshtaghi et al., 2019):

CPnew
i = CPold

i + ‖ zi‖
2
2 + nold

i ‖∆vi‖
2
2 + 2∆vT

i g
old
i , (51)

where

zi = x − vnew
i , (52)

∆vi = vold
i − vnew

i , (53)
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and vector g, which is formally defined as

gi =

ni∑
j=1

(
x j − vi

)
, (54)

is incrementally updated at each iteration using:

gnew
i = gold

i + zi + nold
i ∆vi . (55)

Using such incremental formulation, the following iCVIs were derived (their hard

partition counterparts are shown here (Ibrahim et al., 2019)):

1. incremental Xie-Beni (iXB) (Moshtaghi et al., 2018; Moshtaghi et al., 2019)

XBnew =
1

Nnew ×

knew∑
i=1

CPnew
i

min
i, j

(
‖vnew

i − vnew
j ‖

2
2

) , (56)

2. incremental Davies-Bouldin (iDB) (Moshtaghi et al., 2018; Moshtaghi et al., 2019)

DBnew =
1

knew

knew∑
i=1

max
j, j,i

©«
CPnew

i

nnewi
+

CPnew
j

nnewj

‖vnew
i − vnew

j ‖
2
2

ª®®¬ , (57)

3. incremental generalized Dunn’s indices (iGDs) (Ibrahim et al., 2019)

GDnew
43 =

min
i, j

(
‖vnew

i − vnew
j ‖2

)
max

k

(2CPnew
k

nnew
k

) , (58)

GDnew
53 =

min
i, j

(
CPnew

i + CPnew
j

nnew
i + nnew

j

)
max

k

(2CPnew
k

nnew
k

) . (59)
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Note that only one prototype v, counter n and compactness CP are updated after

each input presentation. If a new cluster emerges, then knew = kold +1, and its compactness

CP and vector g are initialized as 0 and ®0 (since v = x), respectively.

2.3. ADAPTIVE RESONANCE THEORY (ART)

This study uses a neural network implementation of adaptive resonance theory

(ART) (Carpenter & Grossberg, 1987) given its fast and stable online learning as well as

automatic category recognition capabilities. ART models encompass a rich history with

many implementations well-suited to iCVI computation (see (Brito da Silva et al., 2019)

for a comprehensive review on ART models); the ones used in this study’s experiments are

discussed next.

2.3.1. Fuzzy ART. The fuzzy ART model (Carpenter et al., 1991) implements

fuzzy logic (Zadeh, 1965) to bound data within hyper-boxes. For a normalized data set

X = {xi}
N
i=1 (xi ∈ IRd, 0 ≤ xi, j ≤ 1 , j = {1, ..., d}), the fuzzy ART algorithm, with

parameters (α, β, ρ), is defined by:

I = (x, 1 − x), (60)

Tj =
‖min(I, w j)‖1

α + ‖w j ‖1
, (61)

‖min(I, w j)‖1 ≥ ρ‖I ‖1, (62)

wnew
j = wold

j (1 − β) + βmin(I, wold
j ). (63)

Equation (60) is the complement coding function, which concatenates sample x and

its complement to form an input vector I with dimension 2d. Equation (61) is the activation

function for each fuzzy ART category j, where ‖ · ‖1 is the L1 norm, min(·) is performed

component-wise, and α is a tie breaking constant. Each category is checked for validity

against Eq. (62)’s vigilance parameter ρ in a descending order of activation. If no valid
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category is found during training, then a new category is initialized using I as the new

weight vector w. Otherwise, the winning category is updated according to Eq. (63) using

learning rate β.

2.3.2. Fuzzy ARTMAP. In a fuzzy ARTMAP network (Carpenter et al., 1992),

two fuzzy ART modules, A- and B-side, are supplied with separate but dependent data

streams. Specifically, in classification settings, these streams consist of data and class

labels, respectively. Both ART modules cluster their inputs according to local topology

and parameters while an inter-ART module enforces a surjective mapping of the A-side to

the B-side, effectively learning the functional map of the A-side to the B-side categories.

This model will be required to (i) extend the iCVI study to prototype-based CVIs such as

the Conn_Index, and (ii) perform the experiments under a clustering agnostic framework

(see Section 5), in which the A-side categories represent cluster prototypes and are driven

by the B-side true data partition labels (note that we follow a simplified fuzzy ARTMAP

design (Kasuba, 1993), in which the B-side is replaced by a stream of class labels).

3. EXTENSIONS OF ICVIS

To compute the CVIs mentioned in Section 2.1 incrementally, employing one of the

following approaches is sufficient:

1. The recursive computation of compactness developed in (Moshtaghi et al., 2018;

Moshtaghi et al., 2019) (CVIs: CH, WB, PBM, and SIL).

2. The incremental computation of probabilities, means and covariance matrices (CVIs:

rCIP and NI). Naturally, if the clustering algorithm of choice already models the

clusters using a priori probabilities, means and covariance matrices (such as Gaussian

ART (Williamson, 1996) andBayesianART (Vigdor&Lerner, 2007)), then, similarly

to PS, these CVIs can be readily computed.
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3. The incremental building of a multi-prototype representation of clusters using a mod-

ified ART model while tracking the density-based connections between neighboring

prototypes (CVI: Conn_index). Specifically, the latter is accomplished by updat-

ing (incrementing and/or expanding) CADJ and CONN matrices as clusters grow

and/or are dynamically created.

In the following iCVIs’ extensions (iCH, iWB, iPBM, iSIL, irCIP, iNI, and iConn_index),

if a new cluster is formed after sample x is presented, then the total number of clusters

is updated to knew = kold + 1 (otherwise knew = kold), and, unless otherwise noted, the

variables associated with this new cluster are initialized as nnew
knew = 1 (number of samples

encoded), vnew
knew = x (this clusters’ prototype), CPnew

knew = 0 (initial compactness), gnew
knew =

®0

(initial vector g). Naturally, clusters that do not encode the presented sample remain with

constant parameter values for the duration of that input presentation. Also note that, where

necessary, the Euclidean norm is replaced with the squared Euclidean norm (i.e., ‖·‖2) to

compute the compactness CP (as per (Moshtaghi et al., 2018; Moshtaghi et al., 2019)).

Finally, for iCVIs that require the computation of pairwise (dis)similarity between pro-

totypes, the (dis)similarity matrix is kept in memory, where only the rows and columns

corresponding to the prototype that is adapted are modified.

3.1. INCREMENTAL CALINSKI-HARABASZ INDEX (ICH)

The iCH computation is defined as:

CHnew =

knew∑
i=1

SEPnew
i

knew∑
i=1

CPnew
i

×
Nnew − knew

knew − 1
, (64)

where

SEPnew
i = nnew

i ‖vnew
i − µnew

data‖
2
2 . (65)
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Note that the variables {n1, ..., nk}, {v1, ..., vk}, {CP1, ...,CPk}, {g1, ..., gk}, µdata, k, N ,

and {SEP1, ..., SEPk} are all kept in memory. These are updated using Eqs. (48) to (55),

except for SEP, which is adapted using Eq. (65). The data mean µdata is updated like the

prototypes v (i.e., Eq. (49) using µdata in place of v and N in place of n).

3.2. INCREMENTALWB INDEX (IWB)

The iWB computation is very similar to iCH’s:

W Bnew = knew

knew∑
i=1

CPnew
i

knew∑
i=1

SEPnew
i

, (66)

and the same variable definitions previously mentioned apply.

3.3. INCREMENTAL PAKHIRA-BANDYOPADHYAY-MAULIK INDEX (IPBM)

The iPBM computation is defined as:

PBMnew =


max
i, j

(
‖vnew

i − vnew
j ‖

2
2

)
k∑

i=1
CPnew

i

×
CPnew

0
knew


2

, (67)

where CP0 and
k∑

i=1
CPnew

i correspond to E1 and Ek , respectively. These are updated

according to Eqs. (48) to (55) along with the remaining compactness variables. Only the

pairwise distances with respect to the updated prototype need to be recomputed at any given

iteration.
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3.4. INCREMENTAL SILHOUETTE INDEX (ISIL)

The SIL index is inherently batch (offline), since it requires the entire data set to

be computed (the silhouette coefficients are averaged across all data samples in Eq. (21)).

To remove such a requirement and enable incremental updates, a hard version of the

centroid-based SIL variant introduced in (Rawashdeh & Ralescu, 2012) is employed here

as well as the squared Euclidean norm (i.e., ‖ · ‖22): this is done in order to employ the

recurrent formulation of the compactness in Eq. (51). Consider the matrix Sk×k , where k

prototypes vi are used to compute the centroid-based SIL (instead of the N samples xi -

which, by definition, are discarded after each presentation in online mode). Define each

entry si, j = D(vi, ω j) (dissimilarity of vi to cluster ω j) of Sk×k as:

si, j =
1
n j

nj∑
l=1
xl∈ωj

‖xl − vi‖
2
2 =

1
n j

CP(vi, ω j), (68)

where i = {1, ..., k} and j = {1, ..., k}. The silhouette coefficients can be obtained from the

entries of Sk×k as:

sci =

min
l,l,J
(si,l) − si,J

max
[
si,J,min

l,l,J
(si,l)

] , vi ∈ ωJ . (69)

where ai = si,J and bi = min
l,l,J
(si,l).

Remark 2. At first, when examining Eq. (68), one might be tempted to store a

k × k matrix of compactness entries along with their accompanying k2 vectors g (one

for each entry) to enable incremental updates of each element of matrix of Sk×k ; this

approach, however, may lead to unnecessarily large memory requirements. A more careful

examination shows that it is sufficient to simply redefine CP and g for each cluster i

(i = {1, ..., k}) as:

CPi =

ni∑
j=1

x j∈ωi

‖x j − ®0‖22 =
ni∑

j=1
x j∈ωi

‖x j ‖
2
2, (70)
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gi =

ni∑
j=1

x j∈ωi

(
x j − ®0

)
=

ni∑
j=1

x j∈ωi

x j, (71)

which is equivalent to fixing v = ®0. Therefore, their incremental update equations become

(as opposed to Eqs. (51) and (55)):

CPnew
i = CPold

i + ‖x‖22, (72)

gnew
i = gold

i + x. (73)

Using this trick, when a sample x is assigned to clusterωJ , then the update equations

for each entry si, j of Sk×k are given by Eq. (74). Note that the numerators of the expressions

in Eq. (74) update the compactness “as if” the prototype has changed from ®0 to vnew at

every iteration (∆v = −vnew). The remaining variables such as n, N , and v are updated as

previously described. This allows {CP1, ...,CPk} and {g1, ..., gk} to continue being stored

similarly to the previous iCVIs, instead of a k × k matrix of compactness and the associated

k2 vectors g.

Remark 3. In the casewhere a new clusterωk+1 is created following the presentation

of sample x, then a new column and a new row are appended to the matrix Sk×k . Unlike the

other iCVIs, the compactness CPk+1 and vector gk+1 of this cluster are initialized as ‖x‖22
and x, respectively. Then, the entries of Sk×k are updated using Eq. (75).

Following the incremental updates of the entries of Sk×k (Eq. (74) or (75)), the

silhouette coefficients (sci) are computed (Eq. (69)), and the iSIL is updated as:

snew
i, j =



1
nnewj

(
CPold

j + ‖ zi‖
2
2 + nold

j ‖v
old
i ‖

2
2 − 2vold T

i gold
j

)
, (i , J, j = J)

1
noldj

(
CPold

j + nold
j ‖v

new
i ‖22 − 2vnew T

i gold
j

)
, (i = J, j , J)

1
nnewj

(
CPold

j + ‖ z j ‖
2
2 + nold

j ‖v
new
j ‖

2
2 − 2vnew T

j gold
j

)
, (i = J, j = J)

sold
i, j , (i , J, j , J)

(74)
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snew
i, j =



CPk+1 + ‖v
old
i ‖

2
2 − 2vold T

i gk+1 , (i , k + 1, j = k + 1)

1
noldj

(
CPold

j + nold
j ‖v

new
i ‖22 − 2vnew T

i gold
j

)
, (i = k + 1, j , k + 1)

0 , (i = k + 1, j = k + 1)

sold
i, j , (i , k + 1, j , k + 1)

(75)

SILnew =
1

knew

knew∑
i=1

scnew
i . (76)

3.5. INCREMENTAL NEGENTROPY INCREMENT (INI)

The iNI computation is defined as:

NInew =

k∑
i=1

pnew
i ln

(√
|Σnew

i |

pnew
i

)
−

1
2

ln |Σdata | (77)

where pnew
i = nnew

i /N
new, andΣnew

i is computed using the following recursive formula (Duda

et al., 2000):

Σnew =
nnew − 2
nnew − 1

(
Σold − δI

)
+

1
nnew

(
x − vold

) (
x − vold

)T
+ δI (78)

This work’s authors set δ = 10− εd to avoid numerical errors, where ε is a user-defined

parameter. If a new cluster is created, then Σ = δI and |Σ | = 10−ε .

3.6. INCREMENTAL REPRESENTATIVE CROSS INFORMATION POTENTIAL
(IRCIP) AND CROSS-ENTROPY (IRH)

Section 5 will show that using the representative cross-entropy rH for computing

the CEF makes it easier to observe the behavior of the incremental clustering process (this

corroborates a previous study in which rH was deemed more informative than rCIP for
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multivariate data visualization (Brito da Silva & Wunsch II, 2018b)):

rH(ωi, ω j) = − ln
[
rCIP(ωi, ω j)

]
, (79)

CEF =
k−1∑
i=1

k∑
j=i+1

rH(ωi, ω j). (80)

Note that, as opposed to the rCIP-based CEF, larger values of rH-based CEF indicate

better clustering solutions. Concretely, since the CEF only measures separation, then, like

iNI, it is only necessary to update the means and the covariance matrices online in order

to construct the incremental CEF (iCEF). This is also done using Eqs. (49) and (78),

respectively. The iCEFs, based on rCIP and rH, are hereafter referred to as irCIP and irH,

respectively.

3.7. INCREMENTAL CONN_INDEX (ICONN_INDEX)

The Conn_Index is an inherently batch CVI formulated around the CADJ and

CONN matrices. Each element (i, j) of the CADJ matrix requires the count of the samples

in the data set with the first and second closest prototypes, vi and v j respectively, while

the symetric CONN matrix is equal to the sum of the CADJ matrix with its transpose.

When clustering data online, vi and v j may change for previously presented samples as

prototypes are continuously modified or created. However, for the purpose of building and

incrementing CADJ and CONN matrices online (with only one matrix entry changing per

sample presentation), it is assumed that the trends exhibited over time by the iConn_Index

do not differ dramatically from its offline counterpart. Batch calculation can be eliminated

entirely by keeping the values of Eqs. (42) and (44) in memory and updating only the entries

that depend on prototypes vi and v j .
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In this study, the multi-prototype cluster representation required by the Conn_Index

was generated using a modified fuzzy ARTMAP, whose modules A and B are used for

prototype and cluster definition, respectively. Fuzzy ARTMAP’s module A was modified

in such a way that it forcefully creates two prototypes using the first two samples of every

emerging cluster in module B. By enforcing this dynamic, each cluster always possesses

at least two prototypes for the computation of the iConn_Index. This strategy addresses

two problems: first, it allows CADJ to be created from the second presented sample and

onward; second, it prevents cases in which well-separated clusters are strongly connected

simply because one of them does not have another prototype to assume the role of the

second winner.

Remark 4. Fuzzy ART neural networks represent prototypes by the categories’

weight vectors w (see Section 2.3). Thus, the two highest ranked resonant categories (i.e.,

the ones with the largest activation function values according to Eq. (61) that also satisfy

Eq. (62)’s resonance criteria) constitute the first and second winner pair. Note that the

second winning prototype for a sample (w j) is the winning A-side category when the first

winning prototype (wi) has been removed from the A-side category set. Moreover, if no

second resonant category is found during search, then the second winning category defaults

to the highest activated one.

Upon receiving the very first sample input, we can only form a single viable cluster

and prototype and, therefore, we cannot calculate the iConn_Index. We remedy this by

introducing a counter separate from the CADJ matrix. This counter is incremented to

count the number of times a sample has been presented while only a single prototype

exists, thus preserving these otherwise troublesome samples. Upon creation of the second

prototype w2 in fuzzy ARTMAP’s module A, the CADJ matrix will be incremented for

the first time at element (2, 1). At this point, the element (1, 2) will be incremented by the

value of the instance counter. When this instance counting technique is combined with the

forcible splitting of prototypes previously mentioned, the result is that all samples will be



326

taken into account when computing iConn_Index. For all subsequent samples, the instance

counter will remain unused, the CONN and CADJ incrementing will be streamlined, and

the iConn_Index will be calculable.

Remark 5. The iConn_Index boundary conditions are listed below:

1. Cluster represented by a single prototype (singleton), e.g., immediately following the

creation of a new cluster: the I nt r a entry for that cluster, given by Eq. (42), defaults

to a value of 0, since CADJ(i, i) = 0 ∀i.

2. A single non-singleton cluster exists (i.e., a unique cluster represented by multiple

prototypes): I nt r a = 1 for this cluster.

3. Like the remaining iCVIs in this study, iConn_Index is not defined for a single cluster,

since I nt er (Eq. (43)) cannot be computed.

4. Instead of the original constraint CADJ(i, j) > 0 imposed by Eq. (45), this paper’s

iConn_Index implementation uses CONN (i, j) > 0, as this seemed to make its be-

havior smoother in our experiments.

Note that items (1)-(3) arise directly from the Conn_Index definitions (Taşdemir &Merényi,

2011), whereas item (4) follows from the step-by-step illustrative example in (Taşdemir &

Merényi, 2007). For further clarity, the pseudo-code for the iConn_index is provided in

Algorithm 8.

4. NUMERICAL EXPERIMENTS DESIGN

The behaviors of 13 iCVIs (namely iCH, iSIL, iPBM, iWB, iXB, iDB, iGD43,

iGD53, PS, iNI, irCIP, irH, and iConn_Index) were analyzed using the benchmark data

sets summarized in Table 1. These synthetic and real world data sets are also depicted

in Figure 1’s scatter plots and encompass a diverse set of properties, such as unbalanced

classes, high dimensionality, levels of overlap and number of samples.
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Algorithm 8: iConn_Index
/* Initialization */

1 CADJ := [] ;
2 CONN := [] ;
3 I nt er := [];
4 I nt r a := [];
5 Inter_Conn := 0;
6 Intra_Conn := 0;
7 Scounter := 0;
/* iConn_Index computation */

8 while streaming samples do
9 x := new sample;
10 Process x with an ART-based model to obtain the first wi ∈ ωk and second

wj ∈ ωl best matching prototypes;
11 if wj = {∅} then
12 Scounter := Scounter + 1;
13 else if Scounter > 0 then
14 CADJ(wj, wi) := CADJ(wj, wi) + Scounter ;
15 Scounter := 0;
16 if Scounter = 0 then
17 CADJ(wi, wj) := CADJ(wi, wj) + 1;
18 Update CONN using Eq. (36);
19 Update I nt r a(ωk) using Eq. (42);
20 if ωk , ωl then
21 Update I nt er(ωk, ωl) and I nt er(ωl, ωk) using Eq. (44);
22 else
23 Update I nt er(ωk, ωm), ∀m using Eq. (44);

end
24 Recompute Intra_Conn using Eq. (41);
25 Recompute Inter_Conn using Eq. (43);
26 Recompute Conn_Index using Eq. (40);

end

Like (Ibrahim et al., 2018a; Ibrahim et al., 2019; Ibrahim et al., 2018b; Mosh-

taghi et al., 2018; Moshtaghi et al., 2019), a natural ordering, i.e., meaningful temporal

information is assumed. To emulate such scenarios, the samples were presented in a

cluster-by-cluster fashion (samples within a given cluster were randomized), and thus this

experiment setup is suitable for change point detection (Ibrahim et al., 2019). All iCVIs

were subjected to the same 10 random orders of clusters (and order of samples within each

cluster) per data set per experiment (see Sections 5.1 to 5.3).
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The following discussion is relative to the data sets used in the experiments, their

respective order of cluster and sample presentation as well the application of linear normal-

ization. The latter assumes knowledge of the minimum and maximum data statistics, since

the vector quantization required by the iConn_Index is realized via fuzzy ARTMAP. There-

fore, for consistency, all data sets were normalized to the unit cube [0, 1]d . Additionally,

note that the fuzzy ARTMAP dynamics were performed with the additional application of

complement coding (Carpenter et al., 1992). Finally, note that this study does not employ

multi-prototype representations for irCIP or irH, i.e., Mi = Mj = 1, ∀i, j in Eq. (34), since,

as opposed to iConn_Index, such representations are not mandatory for their computation.

Moreover, in these experiments, ε = 12 in Eq. (78) for the incremental computation of the

covariance matrices used by irCIP, irH and iNI.

The numerical experiments and the statistical analysis were carried out using the

MATLAB software environment and the scmamp R package (Calvo & Santafé, 2016),

respectively. The source code of the (i)CVIs, ART models’ algorithms, and experiments is

provided by the iCVI MATLAB Toolbox at the Applied Computational Intelligence Labora-

tory public GitHub repository1.

5. A COMPARATIVE STUDY

This section discusses the behavior of the iCVIs in three general caseswhen assessing

the quality of clustering solutions in real-time: (1) correct partitions, (2) under-partitions,

and (3) over-partitions. It should be emphasized that this analysis is not focused on evaluating

the performance or capabilities of specific online clustering algorithms, but instead the

purpose of this study is to observe the behavior of the iCVIs in these different scenarios

to gain insight on their applicability. Similar to (Ibrahim et al., 2019), in each of these

1https://github.com/ACIL-Group/iCVI-toolbox
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(a) A3 (b) Birch1 (c) Birch2 (d) Dim032

(e) Dim064 (f) Dim128 (g) Dim256 (h) Dim512

(i) Dim1024 (j) S1 (k) S2 (l) S3

(m) S4 (n) Unbalance (o) Aggreg. (p) D31

(q) R15 (r) Hepta (s) Lsun (t) Tetra

(u) Isolet (v) MNIST

Figure 1. (a)-(t) Synthetic data sets. (u)-(v) Real world data sets. High dimensional
data sets are shown using a 2-dimensional t-distributed stochastic neighbor embedding
(t-SNE) (van der Maaten & Hinton, 2008) projection.
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scenarios, we investigate the iCVIs’ dynamics triggered by the two following events: (a)

the creation of a new cluster (for scenarios (1) and (3)) or the merging of two clusters (for

scenario (2)) and (b) the assignment of samples to the current (existing) cluster.

Note that this is not an exhaustive study of all possible permutations of clusters and

samples (which is k! for clusters, and ni! within each cluster i). Nonetheless, we seek to find

typical behaviors that would allow the inference of specific problems that may arise during

incremental unsupervised learning: iCVIs should help the practitioner to identify issues

by yielding good values when correctly partitioning and bad values when problems occur.

Particularly, the observations from case (1) are used as a reference behavior (or default) to

which cases (2) and (3) are compared. The overarching goal is to observe the capabilities

of the iCVIs in identifying anomalous behaviors caused by deliberately generated problems

(under- and over-partitions).

5.1. CORRECT PARTITIONS

Assume that a suitable clustering algorithm was selected and optimally parameter-

ized, thus yielding correct data partitions when presenting samples in a given cluster-by-

cluster ordering. Since, this study’s goal is not to compare the merits of any particular

incremental clustering algorithm used for data streams, then to emulate the scenario previ-

ously described and make the experiments clustering algorithm agnostic, we simply cluster,

or in reality classify, each sample based on their respective labels and recompute the iCVIs

incrementally. This experimental setup relies on the assumption that, if there exists a subset

of clustering algorithms that can perfectly cluster a given data set, then at each point in time

they must make the same, and correct, sample assignment to clusters. Furthermore, such

correct assignments should be reflected by good iCVI values.

For brevity, Figure 2 shows the iCVIs’ behaviors when correctly partitioning only

the R15 data set. Note that these figures depict the iCVIs’ behaviors immediately following

the creation of a second cluster because they usually cannot be computed for a single cluster.
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Note how iConn_Index behavior tends to follow an exponential of the form A(1 − e−Bt)

during the presentation of each cluster in well-behaved data sets. Such response attempts

to approach the somewhat step-like behavior of its batch counterpart (see Section 6).

Figure 2 also shows that sudden changes in many iCVI values follow the emergence

of new clusters (as expected from previous studies (Ibrahim et al., 2018a; Ibrahim et al.,

2019; Ibrahim et al., 2018b; Moshtaghi et al., 2018; Moshtaghi et al., 2019)). During

the presentation of samples belonging to a particular cluster, different behaviors can be

observed. To identify trends among the iCVIs in a principled manner, in each run of each

data set, the following experimental data was collected:

1. The number of times the iCVI increased, decreased and remained constant imme-

diately following the creation of a new cluster (hereafter referred to as immediate

behavior).

2. The number of times the iCVI increased, decreased and remained constant during the

assignment of samples to the current existing cluster (hereafter referred to as medium

term behavior). Particularly, in each time interval corresponding to the presentation

of samples belonging to an existing cluster, a simple linear regression model (Kutner

et al., 2004) was fit and a t-test was performed for the first order coefficient (slope). If

the null hypothesis could be rejected under a 5% significance level, then we observed

the first order coefficient’s sign: if positive then it was counted as an increasing trend,

if negative as a decreasing trend. Otherwise, if the t-test result was not deemed

statistically significant then the behavior was accounted for as constant (i.e., no iCVI

change).

Both experimental data (1) and (2) were then averaged across 10 runs for each data

set. Next, both data were analyzed by adapting the methodology discussed in (Calvo &

Santafé, 2016; Trawiński et al., 2012) to our problem. In particular,
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Figure 2. (a)-(m) Behaviors of iCVIs (blue curves) when correctly partitioning the data set
R15. (n) The number of clusters is depicted by the step-like red curve. Each discrete time
instant (x-axis) corresponds to the presentation of one sample. The dashed vertical lines
delimit consecutive clusters (ground truth), i.e., samples before a dashed line belong to one
cluster whereas samples after it belong to another.
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1. We performed the Iman–Davenport’s version of Friedman’s rank sum test to check

the hypothesis that these trends are equally typical/probable.

2. If the null hypothesis of the previous test was rejected then we proceeded with a

post-hoc test (Bergmann–Hommel’s method) to identify the most typical/probable

trend.

This analysis was repeated for all iCVIs and the results are summarized in Table 2.

We emphasize that the behaviors listed in Table 2 are typical, not exclusive. The only iCVIs

that consistently behaved following solely the trends showed in Table 2 (i.e., for all data sets,

without exceptions) were the iCH, iWB, iConn_Index, iGD53, irH and PS for experimental

data (1). The iCVIs generally exhibited different trends, but if a single one of them was

frequent enough to be deemed as statistically significant, then it is reported in Table 2.

5.2. UNDER-PARTITIONS

Consider a scenario in which a suboptimal clustering algorithm is selected or an

appropriate one is badly parameterized such that it yields an under-partition of the data set

at hand. For instance, Figure 3a shows an under-partition of the R15 data set yielded by a

fuzzy ART trained under a suboptimal parameter setting and when clusters are presented in

the order depicted in Figure 3b. We are interested in how similar scenarios would reflect in

the iCVIs behaviors (ideally they should yield poor values) and how strikingly these would

deviate from the reference (i.e., according to Table 2). Therefore, we deliberately under-

partition each data set by randomly merging two close clusters: these are selected with

probability proportional to the Euclidean distance between their centroids. In particular,

the probability of selecting clusters i and j for merging is given by:

pi, j =
‖vi − v j ‖

6
2

(k2)∑
m,n
‖vm − vn‖

6
2

, (81)
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Figure 3. (a) An under-partition of the data set R15 by fuzzy ART. (b) Presentation order
of the clusters.

where the 6th power is used for contrast enhancement. After a cluster pair is selected, they

are assigned the same label during the online computation of the iCVIs. It is reasonable

to assume that a clustering algorithm might allocate samples from close clusters together

rather than those from clusters farther apart. Equation (81) is used to avoid repeatedly

merging the same two closest clusters in all runs.

For brevity, Figure 4 shows the iCVIs’ behaviors when under-partitioning only the

R15 data set. The gray shaded areas shown in these figures correspond the exact time

interval in which samples from different clusters are merged, and thus the total number of

clusters remains constant. Note that the merged clusters are not necessarily consecutive,

given that the sequence of clusters is randomized.

To identify under-partitioning trends among the iCVIs in a principled manner, in

each run of each data set, the following data was collected:
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1. The number of times the iCVI increased, decreased and remained constant immedi-

ately following the first merged sample (hereafter referred to as immediate behavior).

2. The number of times the iCVI increased, decreased and remained constant during

the incorrect assignment of samples, i.e., during merging (hereafter referred to as

medium term behavior).

The procedures discussed in Section 5.1 were used to obtain the experimental data

(2) and to perform the statistical comparison among trends. The results obtained, which are

summarized in Table 2, show that:

1. All iCVIs consistently worsened while the algorithm incorrectly agglomerated sam-

ples from different clusters (behavior during merging). The exception is the

iConn_Index, for which an overall increasing trend was deemed statistically sig-

nificant. Additionally, compared to the correct partition experiment while under

constant number of clusters, the iCH, iPBM, iWB, iGD43, iGD53 and PS have oppo-

site behavior, which is a strong indication of the occurrence of this problem in the

clustering process.

2. Immediately after starting to incorrectly merge clusters (i.e., first merged sample),

the performances of most iCVIs are typically accompanied by a change toward worse

values under constant number of clusters. The exceptions are iGD43, iGD53 and

PS, which did not exhibit a statistically significant immediate behavior across our

experiments.

3. Although iSIL’s and iDB’s trends during merging are similar to the correct partition

case under constant number of clusters, it is still possible to infer the under-partition

issue, since in many cases a sudden and pronounced worsening of these iCVIs

was observed as a defining characteristic following such problem. Many of these

worsening trends during merging “dominate” the “natural” worsening tendencies of
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(a) iCH (b) iWB

(c) iI (iPBM) (d) iSIL

(e) iXB (f) iDB

(g) iGD43 (h) iGD53

(i) irH (j) irCIP

(k) iNI (l) iConn_Index

(m) PS (n) Number of clusters

Figure 4. Each discrete time instant (x-axis) corresponds to the presentation of one sample
of the data set R15 during the under-partitioning experiment. The black dashed vertical
lines delimit consecutive clusters (ground truth), i.e., samples before a dashed line belong to
one cluster whereas samples after it belong to another. The green continuous vertical lines
indicate the instant in which the under-partition (UP) problem starts: the samples delimited
by the gray shaded interval are assigned to an existing cluster, instead of forming a new one.
(a)-(m) Behaviors of iCVIs (blue curves). (n) Number of clusters (step-like red curve).
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these iCVIs. However, there are instances in which the challenge relies in patently

identifying, without any external knowledge, how much the relative worsening would

actually constitute a problem. The latter issue can potentially affect many iCVIs; for

instance it is also present in irCIP and irH. The statistically significant trends of the

latter iCVI is also the same as the ones for correct partitions. Although no direct

comparison to the correct partitioning case is possible for iXB, a similar aggressive

worsening behavior was observed in many cases; thus, analogous conclusions and

caveats apply.

In summary, a worsening iCVI trend under constant number of clusters is an indica-

tion that the clustering algorithm might be mistakenly grouping the samples under the same

cluster umbrella, and thus should trigger the practitioner’s attention. However, it is impor-

tant to be cautious with respect to false positives because even when a correct partition was

retrieved in the experiments of Section 5.1, some iCVIs exhibited large fluctuations while

assigning samples of some data sets to their correct cluster (number of clusters is constant

in that interval), as well as false negatives, givent that the behaviors listed in Table 2 are

typical, not exclusive. As a general recommendation, abrupt changes toward worse values

of an iCVI under constant number of cluster should be carefully examined. Also, as pointed

out in (Ibrahim et al., 2019), it is recommended to observe more than one iCVI. This is even

more important to reliably detect under-partition.

5.3. OVER-PARTITIONS

Finally, consider a scenario in which a suboptimal clustering algorithm is selected or

an appropriate one is badly parameterized such that the data set at hand is over-partitioned.

For instance, Figure 5a shows an over-partition of the unbalance data set yielded by standard

fuzzy ART (the clusters were presented in the order depicted in Figure 5b), which is

suboptimal given that the global vigilance parameter (ρ) assumes equally sized clusters. We
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are interested in how over-partition would reflect in the iCVIs behaviors (ideally they should

yield poor values) and how strikingly these would deviate from their expected behaviors

when correct partitions are detected (i.e., the “references” according to Table 2). Therefore,

we deliberately over-partition each data set by splitting one of its clusters. A cluster is

chosen for splitting with probability proportional to its size, thus favoring the selection of

large clusters. It is reasonable to assume that certain clustering algorithms, such as standard

ART-based ones, would split large clusters according to their parameterization (e.g., the

problem depicted in Figure 5). A cluster size is measured by the smallest hyperrectangle that

encloses all of its points. Thus, cluster i’s hyperrectangle size Ri is measured as (Carpenter

et al., 1991):

Ri = d − ‖
∧
Ij∈ωi

I j ‖1, (82)

where I j is the complement coded version of x j (see Eq. (60)). To avoid splitting large

clusters with small number of samples (n) and consequently permit a better observation of

the iCVIs behaviors during over-partition, if ni < 10 then Ri was set to 0.

Naturally, some method must be employed to split a cluster. That is why the over-

partition experiment is not completely clustering algorithm agnostic: fuzzy ART was used

to create the over-partition. Therefore, results might be somewhat biased toward fuzzy

ART solutions. For clarity, the selected clusters were split only into two sub-clusters. In

particular, for each selected cluster, its samples were shuffled and fed to fuzzy ARTs trained

for 1 epoch (i.e., online mode) with progressively larger vigilance parameter (ρ) values

until a solution with 3 clusters was found, in which case the vigilance parameter sweep was

stopped. The vigilance values for the fuzzy ART trained with that specific sample order

were successively increased using

ρ(t + 1) =
1

C(t + 1)
(ρ(0) + C(t + 1) − 1), (83)

C(t + 1) = C(t) + δ, (84)
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Figure 5. (a) An overpartition of the data set unbalance by fuzzy ART. (b) Presentation
order of the clusters.

where ρ(0) = 1− Rs

d , Rs is the size of the selected cluster s (Eq. (82)), C(0) = 1 and δ is the

step size which was set to 0.001. From Eqs. (83) and (84) the constraint on the subclusters’

sizes becomes increasinglymore strict as ρ increases. For instance,C = 2would correspond

to a maximum category size equal to half the size of the selected cluster (Tscherepanow,

2010). However given the ordering effects, the value selected for C is not necessarily equal

to 2; hence the necessity of the vigilance parameter sweep, which is defined following the

strategy described in Eqs. (83) and (84). This process was repeated for 10 random orders

and the clustering solution that yielded the most balanced two subclusters was used in the

over-partition experiment. This strategy was followed to (i) create a realistic over-partition

case for that cluster in online unsupervised learning mode, (ii) facilitate the observation

of over-partition behaviors and (iii) avoid the creation of singletons. The over-parition

experiment then proceeds like the previous sections, but using fuzzy ART’s labels for the

split cluster during the online computation of the iCVIs.
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For brevity, Figure 6 shows the iCVIs’ behaviors when over-partitioning only the

R15 data set. The gray shaded areas shown in these figures correspond to the time interval

in which samples belonging to the same cluster are split into two subclusters. Note that the

subclusters’ samples are randomly presented,i.e., they are not presented in a subcluster-by-

subcluster manner.

To identify over-partitioning trends among the iCVIs in a principled manner, in each

run of each data set, the following data was collected

1. The number of times the iCVI increased, decreased and remained constant immedi-

ately following a clusters’ split (hereafter referred to as immediate behavior).

2. The number of times the iCVI increased, decreased and remained constant following

the over-partition of the large cluster (hereafter referred to as medium term behavior).

The procedures discussed in Section 5.1 were used to obtain the experimental data

(ii) and to perform the statistical comparison among trends. The results are summarized in

Table 2, and show that:

1. The iCH, iWB, PS, iGD53 and irH typical behaviors are usually indiscernible from the

the ones expected when accurately partitioning during both the (incorrect) creations

of new clusters as well as during the presentation of samples belonging to the current

cluster. Additionally, the iPBM only exhibited one typical behavior, namely for the

creation of a new cluster event, which was again identical to the correct partition case.

Therefore, these iCVIs did not seem suitable to identify over-partitions.

2. The iSIL, iXB and iDB only deviate partially, ı.e. they deviate for one trend, particu-

larly the creation of a new cluster when incorrectly splitting a cluster. Although iSIL

and iDB typical trends during the cluster split are identical to the correct partition

case, and no direct comparison for iXB is possible, for many data sets they under-

went a pronounced worsening of these iCVIs values during the split. Similarly to
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(a) iCH (b) iWB

(c) iPBM (d) iSIL

(e) iXB (f) iDB

(g) iGD43 (h) iGD53

(i) irH (j) irCIP

(k) iNI (l) iConn_Index

(m) PS (n) Number of clusters

Figure 6. Each discrete time instant (x-axis) corresponds to the presentation of one sample
of the data set R15 during the over-partitioning experiment. The black dashed vertical lines
delimit consecutive clusters (ground truth), i.e., samples before a dashed line belong to
one cluster whereas samples after it belong to another. The green continuous vertical lines
indicate the instant in which the over-partition (OP) problem starts in the cluster delimited
by the gray shaded interval. (a)-(m) Behaviors of iCVIs (blue curves). (n) Number of
clusters (step-like red curve).
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the discussion in the under-partitioning case, defining how much worsening would

become a problem can be subjective, especially in borderline cases and with no ad-

ditional information. Nevertheless, these iCVIs show indication of over-partitioning

problems.

3. The irCIP exhibits the same typical trend following the presentation of the first sample

of the second subcluster and no direct comparison to the correct partition scenario

is possible. However, like the iSIL, iXB and iDB, the irCIP usually undergoes a

noticeable worsening during the splitting of the cluster.

4. The iGD43 and iConn_Index were the only iCVIs that exhibited trends opposite to

their correct partition experiments counterparts, thereby providing a strong indica-

tion of over-partition over time. Moreover, when clustering well-behaved data sets

such as dim032 through dim1024, the iConn_Index does not follow its characteristic

exponential curve (expected from correct partitions) after the erroneous creation of

a new cluster and subsequent incorrect assignment of samples. In turn, the iGD43

was the only iCVI that exhibited opposite tendencies for both the emergence of a new

cluster and the posterior assignment of samples.

In summary, 6 out of the 13 of the iCVIs (iCH, iPBM, iWB, iGD53, PS, and irH)

did not provide distinctive insights to definitively detect over-partition problem. In this

scenario, unless there was additional a priori information (e.g., the cardinality of clusters)

to detect a premature partition, these iCVIs were unable to patently identify over-partition

based on their immediate and/or medium term behaviors. On the other hand, 5 iCVIs (iSIL,

iXB, iDB, irCIP, and iNI) hinted on over-partition in regard to either immediate behavior

and/or a considerable worsening of their medium term behaviors (which were the same

as the correct partition scenario for some of these iCVIs or a direct comparison was not
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possible). Finally, 2 iCVis (iGD43 and iConn_Index) showed the opposite tendencies to

what was expected during the split, thus providing the strongest evidences for this particular

problem.

Note that although there is a natural order for the presentation of clusters, the

presentation of samples within each cluster is random. Consequently, samples of the over-

partitioned cluster are not presented in a subcluster-by-subclustermanner. This adds another

layer of complexity and thus makes this problem even more challenging. Also note that the

vast majority of behaviors are typical, not deterministic, thus we strongly recommend the

practitioner to observe a number of iCVIs in order to avoid detection of over-partition false

positives/negatives.

5.4. EXPERIMENTS WITH REAL-WORLD DATA SETS

In light of the results obtained for the synthetic data sets, in this section we analyze

the scenarios of correct, under- and over-partition performed with the real world data

sets of MNIST and Isolet. The experiments were carried out under the same settings

previously described. The discussion in this section is based on the observation of each

trend’s frequency of occurrence for these two data sets across 10 runs. For brevity, Figs. 7

through 9 illustrate the iCVIs’ behaviors under correct, under-, and over-partition only for

theMNIST data set. We note that the iNI, irCIP and irH were not observed, given the issues

associated with the reliable estimation of covariance matrices in high dimensional spaces.

All iCVIs followed the tendencies described in Table 2 when correctly partitioning

both real world data sets, with the exception of iPBM and iGD43. The former did not

consistently follow either expected trend, whereas the latter only followed the immediate

behavior trend. Regarding under-partition scenarios, the iPBM, iSIL, iWB, iDB, iGD43,

and PS consistently followed the trends listed in Table 2, wheras the iXB, iGD53, and

iConn_Index behaved with varying degrees of agreement; notably, iXB’s medium term

behavior (merging interval) was coherent with the findings for the synthetic data sets. The
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(c) iPBM
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(g) iGD43

1
.3

3
0

3

2
.0

1
2

7

2
.7

0
0

3

3
.4

1
4

4

4
.1

4
3

7

4
.8

2
6

2

5
.5

1
6

5

6
.2

1
2

3 7

Time 10
4

0.3

0.35

0.4

0.45

iC
V

I

(h) iGD53

1
.3

3
0
3

2
.0

1
2
7

2
.7

0
0
3

3
.4

1
4
4

4
.1

4
3
7

4
.8

2
6
2

5
.5

1
6
5

6
.2

1
2
3 7

Time 10
4

0.4

0.6

0.8

iC
V

I

(i) iConn_Index

1
.3

3
0

3

2
.0

1
2

7

2
.7

0
0

3

3
.4

1
4

4

4
.1

4
3

7

4
.8

2
6

2

5
.5

1
6

5

6
.2

1
2

3 7

Time 10
4

1

2

3

4

5

iC
V

I

(j) PS

1
.3

3
0

3

2
.0

1
2

7

2
.7

0
0

3

3
.4

1
4

4

4
.1

4
3

7

4
.8

2
6

2

5
.5

1
6

5

6
.2

1
2

3 7

Time 10
4

2

4

6

8

10

N
o

. 
C

lu
s
te

r
s

(k) Number of clusters

Figure 7. (a)-(j) Behaviors of iCVIs (blue curves) when correctly partitioning the data set
MNIST. (k) The number of clusters is depicted by the step-like red curve. Each discrete
time instant (x-axis) corresponds to the presentation of one sample. The dashed vertical
lines delimit consecutive clusters (ground truth), i.e., samples before a dashed line belong
to one cluster whereas samples after it belong to another.
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(a) iCH (b) iWB

(c) iI (iPBM) (d) iSIL

(e) iXB (f) iDB

(g) iGD43 (h) iGD53

(i) iConn_Index (j) PS

(k) Number of clusters

Figure 8. Each discrete time instant (x-axis) corresponds to the presentation of one sample
of the data setMNIST during the under-partitioning experiment. The black dashed vertical
lines delimit consecutive clusters (ground truth), i.e., samples before a dashed line belong to
one cluster whereas samples after it belong to another. The green continuous vertical lines
indicate the instant in which the under-partition (UP) problem starts: the samples delimited
by the gray shaded interval are assigned to an existing cluster, instead of forming a new one.
(a)-(j) Behaviors of iCVIs (blue curves). (k) Number of clusters (step-like red curve).
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(a) iCH (b) iWB

(c) iPBM (d) iSIL

(e) iXB (f) iDB

(g) iGD43 (h) iGD53

(i) iConn_Index (j) PS

(k) Number of clusters

Figure 9. Each discrete time instant (x-axis) corresponds to the presentation of one sample
of the data set MNIST during the over-partitioning experiment. The black dashed vertical
lines delimit consecutive clusters (ground truth), i.e., samples before a dashed line belong to
one cluster whereas samples after it belong to another. The green continuous vertical lines
indicate the instant in which the over-partition (OP) problem starts in the cluster delimited
by the gray shaded interval. (a)-(j) Behaviors of iCVIs (blue curves). (k) Number of clusters
(step-like red curve).
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iCH was the only iCVI that did not behave as expected. Interestingly, the constant trend was

observed for both data sets regarding the immediate behavior of iGD43 and iGD53. Finally,

for the over-partition experiment, the iCH and iGD53 followed their expected trends. The

remaining iCVIs only partially exhibited the trends on Table 2. In particular, iSIL, iXB,

iDB and iGD43 were only consistent with their medium term behavior, whereas iWB,

iConn_Index and PS were only coherent with their immediate behavior.

Interestingly, for the real world data sets experimented with, over-partition was

prominently detected by more iCVIs than under-partition. The latter issue was only patently

flagged by the PS CVI. Regarding over-partitions the most visually useful iCVIs were iXB,

iDB, iGD43 and iConn_Index. We note that although an increasing trend was observed

for the latter, as opposed to the synthetic data set findings, the behavior following a cluster

split usually does not follow the familiar exponential curve; instead a sharp drop generally

follows the split with a small improvement/recovery afterwards. This behavior suggests

that there might be an issue with the clustering solution. In such case, the challenge lies

in discriminating between correct clusters that naturally don’t follow an exponential curve

during its evolution and/or determining a drop threshold that would constitute a problem.

Similarly, note that iGD43 also decreases following the correct creation of some new clusters,

thus discriminating among these two events might also be a challenge in some instances.

Finally, note that disagreements to the synthetic data sets’ trends listed on Table 2 are

to be expected, since those behaviors are typical but not unique. Such variance encourages

the observation of several iCVIs to reliably make inferences about the quality of streaming

data partitions in real-time.

5.5. VISUALIZATION POWER

In this section we examine a practical aspect of the iCVIs, namely their visualization

power in terms of clear hints to problems occurring during the online clustering process,

including, but not limited to, substantial variations of their values (in a global scale) over
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time. Briefly, a useful iCVI behavior shouldmake problems easier to spot. To accomplished

this, we visually inspected the iCVIs’ curves to gauge their usefulness to detect the under-

and over-partition issues that were artificially generated and intentionally inserted in the

experiments described in the previous sections. The results of such visual inspection are

summarized in Table 3.

For under-partition problems, the PS index consistently provided visually striking

cues for both synthetic and real world benchmark data sets. Moreover it was the most

robust CVI to increasing levels of cluster overlap (S1 to S4 data sets) and number of

samples/clusters (Birch1 and Birch2). The iGD43, iGD53, iXB, iDB, iSIL, iPBM, iCH and

iWB (to a lesser extent) were also visually informative for the synthetic data sets, in which

tendencies associated to this problem were clearly observable.

Regarding the over-partition problem, the iXB and iDB clearly flagged all over-

partition issues. These were followed by iGD43, iSIL, iConn_Index and irCIP were also able

to flag the majority of cases. As previously discussed, a potential challenge associated with

iConn_Index consists of determining which cases not following an exponential behavior

during the evolution of samples’ assignments should signal a problem and which cases a

cluster does not naturally follow such function, since this characteristic is used to detect

problems. Similarly, iGD43’s caveat is related to determining whether its value decrease is

associated with an over-partition problem or a correct emergence of a new cluster: in some

correct partition instances the creation a new clusters was also followed by a decrease on

this iCVI’s value.

6. A CLOSER LOOK AT ICONN_INDEX

When evaluated over time, most iCVIs discussed in this study yield the same values

as their batch counterparts (e.g., the the recursive formulation of compactness used in sum-

of-squares-based iCVIs is an exact computation, not an approximation (Moshtaghi et al.,

2018; Moshtaghi et al., 2019)). The iConn_Index is an exception, and thus is the subject of
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analysis of this section. To obtain the batch Conn_Index values, all first and second winning

fuzzy ART prototypes were recomputed after the presentation of each sample based on their

activation function values.

For illustration purposes, Figs. 10 through 12 show the evolution of both Conn_Index

and iConn_Index for data set R15 in all three scenarios described in Section 5 in one

of the ten experiments. Moreover, they also show a simple linear regression plot of

Conn_Index and iConn_Index as well as the final prototypes (hyperrectagles) and their

connectivity visualization (CONNvis (Taşdemir & Merényi, 2009)). These show that

iConn_Index smoothly follows the overall trends of its batch counterpart (with Pearson

correlation coefficients (Bain & Engelhardt, 1992) of 0.80, 0.74 and 0.94 for correct, under-

and over-partition scenarios, respectively) which has a more jagged behavior and many

plateaus. Also note the faint and permanent connections between several different clusters:

these are an artifact of the online learning process since the second closest prototype of a

sample that originated a new cluster always belongs to another existing cluster.

Table 4 reports the correlation coefficients and the mean square errors between the

incremental and batch versions of the Conn_Index for all data sets averaged across the 10

experiments. For the majority of them, the average correlation between both Conn_Index

versions is above (a) 0.75 (correct partitions), (b) 0.70 (under-partitions), and (c) 0.85

(over-partitions). Moreover, for most of data sets, the average mean square error is below

0.02 in all scenarios. Some exceptions include the data sets Aggregation, Lsun, and D31

for the correct, under-, and over-partition scenarios, respectively. These have smaller

correlation coefficients. Therefore, the effect of fuzzy ARTMAP module A’s quantization

level on the similarity of the batch and incremental implementations was investigated. This

was accomplished by varying modulue A’s vigilance parameter ρA in the closed interval

[ρmin, ρmax], where ρmax is the value listed in Table 4 for the respective data set and

ρmin = min
i

(
1 − Ri

d

)
(i.e., ρmin is computed based on the largest cluster of a given data
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set, see Eq. (82)), since the interval [0, ρmin] would yield identical results (the vigilance

test would always be satisfied). Note that larger values of ρA produce finer granularity of

clusters’ prototypes.

The correlation coefficients and mean squared errors (averaged across 10 runs)

depicted in Figure 13 show that carefully tuning the vigilance parameter (granularity level)

may improve the average correlation (from 0.5962 to 0.7977 when correctly partitioning

the Aggregation data set, 0.5792 to 0.6810 when under-partitioning the Lsun data set, and

0.8337 to 0.9609 when over-partitioning theD31 data set); however, its effect on this iCVIs’

visualization power when clustering data streams requires further investigation. All these

results support the original assumption, stated in Section 3.7, that both versions of the

Conn_Index would behave similarly. Therefore, iConn_Index is suitable for assessing the

partitions generated by incremental clustering methods.

7. CONCLUSION

This paper presented incremental versions of 7 cluster validity indices (CVIs),

namely, incrementalCalinski-Harabasz (iCH), incremental Pakhira-Bandyopadhyay-Maulik

(iPBM), incremental Silhouette (iSIL), incremental Negentropy Increment (iNI), incremen-

tal Representative Cross Information Potential (irCIP) and Cross Entropy (irH), and incre-

mental Conn_Index (iConn_Index). These and previously developed incremental cluster

validity indices (iCVIs) are essential tools at the practitioner disposal: they allow the as-

sessment of the quality of data streams’ partitions. By definition, data streams require

real-time processing of incoming samples because iterating over the entire data set is either

prohibitive or unsuitable for the application.

Furthermore, using an experimental framework as clustering algorithm agnostic

as possible and synthetic and real world benchmark data sets, the dynamics of 13 iCVIs

were analyzed in 3 different clustering scenarios: correct, under- and over-partitioning.

Specifically, a thorough comparative study was performed among the presented iCVIs,
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Table 4. Vigilance parameter (ρ) values used in in this study and the average correlation
coefficient (Ravg) and mean square error (MSEavg) between the incremental and batch
Conn_Index curves.

Data set
Vigilance Correct partition Under-partition Over-partition

ρ Ravg MSEavg Ravg MSEavg Ravg MSEavg

A3 0.900 0.9511 0.0172 0.9681 0.0125 0.9559 0.0088
Birch1 0.920 0.9387 0.0020 0.8724 0.0026 0.8830 0.0028
Birch2 0.960 0.9869 0.0188 0.9890 0.0195 0.9885 0.0148
Dim032 0.930 0.7682 0.0040 0.7014 0.0068 0.9286 0.0045
Dim064 0.950 0.7654 0.0037 0.6996 0.0084 0.9299 0.0046
Dim128 0.960 0.7855 0.0028 0.7277 0.0056 0.9282 0.0040
Dim256 0.975 0.7838 0.0031 0.6999 0.0072 0.9296 0.0054
Dim512 0.980 0.7852 0.0028 0.7312 0.0044 0.9224 0.0046
Dim1024 0.988 0.7854 0.0030 0.7573 0.0071 0.9252 0.0044
S1 0.900 0.7379 0.0100 0.6884 0.0059 0.8592 0.0060
S2 0.900 0.7675 0.0409 0.7197 0.0402 0.8676 0.0249
S3 0.950 0.9166 0.0098 0.9107 0.0136 0.9083 0.0094
S4 0.950 0.8894 0.0185 0.8810 0.0101 0.8647 0.0153
Unbalance 0.880 0.6699 0.0033 0.7660 0.0034 0.9354 0.0078
Aggregation 0.750 0.5962 0.0114 0.6736 0.0214 0.9133 0.0077
D31 0.900 0.8448 0.0109 0.8977 0.0167 0.8337 0.0140
R15 0.950 0.7037 0.0179 0.7011 0.0154 0.8357 0.0197
Hepta 0.800 0.8089 0.0109 0.7821 0.0134 0.9267 0.0116
Lsun 0.900 0.7882 0.0550 0.5792 0.0350 0.9140 0.0328
Tetra 0.800 0.7459 0.0286 0.7101 0.0155 0.9307 0.0208
Isolet 0.500 0.8072 0.0167 0.7648 0.0167 0.8494 0.0117

the Partition Separation (PS), the incremental Xie-Beni (iXB), the incremental Davies-

Bouldin (iDB) and the incremental generalized Dunn’s indices 43 and 53 (iGD43 and

iGD53) in order to observe how these iCVIs are affected by the aforementioned problems

and thus provide guidelines to aid the practitioner in identifying when these occur during

online unsupervised learning. Additionally, it was shown that, although not equal to its

batch counterpart, the iConn_Index follows the same general trends.
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Figure 10. (a) Behaviors of Conn_Index (continuous blue line) and iConn_Index (dashed red
line) when correctly partitioning the R15 data set. (b) Regression plot between Conn_Index
and iConn_Index in (a). Fuzzy ARTMAP’s A-side categories and CONNvis (thicker and
darker lines indicate stronger connections) generated with the (c) batch and (d) incremental
CONN matrices.

As expected from previous studies, most iCVIs undergo abrupt changes following

the creation of a new cluster. When samples from an existing cluster are presented, however,

each iCVI exhibits a particular behavior, which was taken as a reference to compare the
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Figure 11. (a) Behaviors of Conn_Index (continuous blue line) and iConn_Index (dashed red
line) when under-partitioning of the R15 data set. (b) Regression plot between Conn_Index
and iConn_Index in (a). Fuzzy ARTMAP’s A-side categories and CONNvis (thicker and
darker lines indicate stronger connections) generated with the (c) batch and (d) incremental
CONN matrices.

cases of under- and over-partitioning a data set. Most iCVIs detected under-partitioning of

the synthetic data sets during the incremental clustering process, whereas only a smaller

subset of them provided insight to indicate over-partitioning problems. Interestingly, the
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Figure 12. (a) Behaviors of Conn_Index (continuous blue line) and iConn_Index (dashed red
line) when over-partitioning of the R15 data set. (b) Regression plot between Conn_Index
and iConn_Index in (a). Fuzzy ARTMAP’s A-side categories and CONNvis (thicker and
darker lines indicate stronger connections) generated with the (c) batch and (d) incremental
CONN matrices.

opposite was observed for the real world data sets. According to this study’s findings, if

the practitioner is expecting under-partition, the PS index was particularly useful for the

detection of this type of problem, as well as the following CVIs: iCH, iPBM, iSIL, iWB,
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Figure 13. Correlation coefficients andMSEs between the batch and incremental versions of
Conn_Index as a function of Fuzzy ARTMAP’s module A vigilance parameter. The values
shown were averaged across 10 runs for (a) Aggregation data set under correct partition
experiment, (b) Lsun data set under under-partition experiment, and (c) D31 data set under
over-partition experiment.

iXB, iDB, iGD43, and iGD53. On the other hand, if over-partition issues are of concern, then

we recommend iXB, iDB, iGD43, iSIL, iConn_Index and irCIP. In any case, we corroborate

previous studies’ recommendations regarding iCVIs: like their batch counterparts, it is good

practice to observe a number of iCVIs’ dynamics at any given time, rather than relying on

the assessment of solely one. It is expected that the observations from the study presented

here will assist in incremental clustering applications such as data streams, as well as the

iCVIs MATLAB toolbox package provided.
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SECTION

2. SUMMARY AND CONCLUSIONS

This dissertation examined the unsupervised learning tasks of data visualization,

clustering, and validation. Specifically, the first part investigated the following aspects of

performing clustering with adaptive resonance theory (ART) neural networks: (1) input

order dependency, (2) distributed representations, (3) detection of clusters with complex

structures, (4) clustering with a reinforcement signal, and (5) category proliferation. In

order to handle the first problem, frameworks were presented in terms of pre-processing

by profiting from VAT sorting and in terms of post-processing by cascading a Merge ART

module. To address the second problem, two novel fuzzy ART-based architectures were

engineered, namely the dual vigilance fuzzy ART and and the distributed dual vigilance

fuzzy ART, where the latter possesses higher-order distributed representation according to

hierarchical agglomerative clustering. Finally, cluster validity indices were embedded in

the fuzzy ART model via a second vigilance test, thus enabling immediate feedback to

direct the dynamics of the system during offline learning. When employed, all of these

augmentations were able to improve performance, and most of them create more compact

networks (i.e., reduce category proliferation) compared to baseline ART models. Further-

more, the performance of the novel architectures that were designed were either on par or

superior to current state-of-the-art fuzzy ART-based models conceived for the clustering

task. The second part of this dissertation explored multivariate data visualization with

self-organizing map (SOM) neural networks. Particularly, an image-based visualization

following the unified distance matrix structure was devised by combining Renyi’s quadratic

cross-entropy and a single-linkage-based k-nearest neighbors. These enhancementswere ca-
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pable of improving between-cluster contrast and within-cluster uniformness. Furthermore,

the visualization capabilities of the novel approach were either comparable or superior to

classic and state-of-the-art SOM-based visualizations.

The third and final part of this dissertation expanded the current set of incremental

cluster validity indices (iCVIs) by developing online versions of 1 graph-, 3 information-

theoretic- and 4 sum-of-squares-based iCVIs. These, along with other existing iCVIs, were

tested for their performance tracking capabilities when deliberately creating erroneous par-

titions. After establishing as reference the iCVIs’ trends associated with correct partitions,

experimental results suggested that the Partition Separation (PS) as well as the incremental

versions of Calinski-Harabasz (iCH), Pakhira-Bandyopadhyay-Maulik (iPBM), Silhouette

(iSIL), WB index (iWB), Xie-Beni (iXB), Davies-Bouldin (iDB), and generalized Dunn’s

indices 43 and 53 (iGD43 and iGD53) are the most useful to visually detect under-partition

problems when clustering data streams. On the other hand, the iXB, iDB, iGD43, iSIL, in-

cremental Conn_Index and incremental Representative Cross Information Potential (irCIP)

are the most useful to flag over-partition issues.
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