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ABSTRACT

The recent technological advances enable the collection of various complex, heteroge-

neous and high-dimensional data in biomedical domains. The increasing availability

of the high-dimensional biomedical data creates the needs of new machine learning

models for effective data analysis and knowledge discovery. This dissertation intro-

duces several unsupervised and supervised methods to help understand the data,

discover the patterns and improve the decision making. All the proposed methods

can generalize to other industrial fields.

The first topic of this dissertation focuses on the data clustering. Data clustering

is often the first step for analyzing a dataset without the label information. Clus-

tering high-dimensional data with mixed categorical and numeric attributes remains

a challenging, yet important task. A clustering algorithm based on tree ensembles,

CRAFTER, is proposed to tackle this task in a scalable manner.

The second part of this dissertation aims to develop data representation methods

for genome sequencing data, a special type of high-dimensional data in the biomedical

domain. The proposed data representation method, Bag-of-Segments, can summarize

the key characteristics of the genome sequence into a small number of features with

good interpretability.

The third part of this dissertation introduces an end-to-end deep neural network

model, GCRNN, for time series classification with emphasis on both the accuracy and

the interpretation. GCRNN contains a convolutional network component to extract

high-level features, and a recurrent network component to enhance the modeling of

the temporal characteristics. A feed-forward fully connected network with the sparse

group lasso regularization is used to generate the final classification and provide good

interpretability.
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The last topic centers around the dimensionality reduction methods for time series

data. A good dimensionality reduction method is important for the storage, decision

making and pattern visualization for time series data. The CRNN autoencoder is

proposed to not only achieve low reconstruction error, but also generate discriminative

features. A variational version of this autoencoder has great potential for applications

such as anomaly detection and process control.
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Chapter 1

INTRODUCTION

1.1 Overview

High-dimensional data is very common in the biomedical domain. For example,

the profile of a patient can be considered as a high-dimensional data point with mixed

attributes, as each patient can be described by their basic information, diagnosis

history, medication history, test results and so on. Therefore, in a patient database,

the profile of each patient is usually represented by a collection of both numeric and

categorical features. Time series data is another special type of high-dimensional

data frequently seen in biomedical domains. We collect various types of time series

data for health monitoring and disease diagnosis. For example, electroencephalogram

(EEG) has been used to monitor the heart condition, and electrocardiogram (ECG)

has been to detect changes of the mental states [5] and the seizure onsets [6]. As the

recent prevalence of the wearable devices, we are interested in integrating the time

series data collected by the different sensors to make personalized health decisions.

The attributes of time series data are in a specific order, and this property promotes

some special approaches for effective analysis. As another example, with the recent

advances of the genome sequencing technology, the research that investigates the

relationship between the genome patterns and human diseases is receiving more and

more attention. The genome sequencing data is another type of high-dimensional

data, and can be considered as time series in a broader sense as their attributes are

also in a meaningful order. In this dissertation, we discuss several supervised and

unsupervised learning methods for analyzing and understanding high-dimensional
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data. More specifically, we introduce a clustering method for high dimensionality

and mixed attributes, a deep learning model for time series classification, a new data

representation for genome sequencing data, and an autoencoder model for time series

data. The proposed methods have important applications in not only the biomedical

domains but also other industrial fields.

Clustering, as an unsupervised learning techniques, is usually the very first step

for analyzing a dataset without label information. Clustering attempts to parti-

tion data such that similar data instances are in the same subset. After clustering

data, useful patterns can be discovered by explaining and characterizing the parti-

tions. As discussed earlier, many datasets in health care or biomedical domains are

high-dimensional with mixed numeric and categorical attributes. However, clustering

datasets with these characteristics in a scalable fashion still remains a challenging

problem. First of all, the high dimensionality in many real-life datasets presents a

specific challenge for clustering algorithms, especially those which are based on Eu-

clidean distance. These spaces exhibit the “curse of dimensionality” where all objects

are approximately equidistant [7] and the nearest neighbor problem can become ill-

defined [8] [9]. Secondly, real data is usually noisy, containing some irrelevant or

redundant information which hides the cluster patterns. The third challenge is that

many algorithms that rely on the traditional distance measure are sensitive to dif-

ferent units of the attributes. Although data transformation [10] can be applied to

alleviate the problem, this risks changing the distribution of data which might be

an important clue for finding the clusters. Last but not least, it is not straightfor-

ward to measure the similarity of two instances when encountering mixed categorical

and numeric attributes. In Chapter 2, we propose a tree-ensemble clustering algo-

rithm, CRAFTER, to tackle these challenges. CRAFTER is able to handle mixed

attributes simultaneously, and scales well with the dimensionality and the size of data
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sets. We demonstrate the effectiveness of CRAFTER, through a series of experiments

on both synthetic and real datasets including examples in the biomedical domain. In

additional to the biomedical domain, CRAFTER can be useful to cluster data of

different varieties in areas such as social network analysis, community detection or

sensor integration. This work is published in [11].

Time series classification (TSC) has important applications across various do-

mains. For example, in the biomedical domain, we are interested in the prediction of

the seizure onsets using the EEG, the prediction of the heart attacks using the ECG,

and the classification of the tumors based on the genome sequencing data. In manu-

facturing domain, the detection of a product defect usually relies on the classification

of the profile time series signals collected by the sensors. TSC is a supervised learning

problem that we train a classification model from a time series dataset where each

time series is an instance associated with a class label. TSC is unique and challenging

due to the high-dimensional and ordered attributes. The increase of publicly avail-

able temporal datasets (such as UCR time series archive [2]) promotes active research

in TSC in the last decade. Researchers have tackled this problem through various

techniques [12].

A good TSC model often relies on a discriminative data representation extracted

from the massive number of attributes in the original sequence. In Chapter 3 and

Chapter 4, we present two data representation methods for the time series data based

on the case study of the tumor grade classification. In Chapter 3, driven by some bio-

logical insights, a data representation named as Bag-of-Segments (BoS) is proposed to

extract predictive patterns from the whole genome sequencing dataset. Each instance

in the dataset has over 25 thousand ordered attributes. When used for subsequent

classification, our representation obtains over 98% average accuracy based on our

leave-one-out cross-validation experiment. Our method specifically may be beneficial
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in classifying ovarian serous carcinoma in patients with ambiguous histologic features.

In such challenging cases, our prediction on low-grade versus high-grade carcinomas

may provide valuable clue for patient clinical management. As an extension, in Chap-

ter 4 we develop a location-aware supervised dictionary learning method (LSDF) to

construct a stronger data representation for more complex classification tasks. The

uterine corpus endometrial carcinoma (UCEC) data generated by the TCGA Research

Network [4] is used as the case study for LSDF. The TCGA data is a microarray-

based sequencing data, and it is nosier and more difficult to analyze compared to the

low-coverage sequencing data we used in Chapter 3. Both methods can generalize to

the classification of other time series which share similar characteristics.

Recently, deep learning techniques, particularly a Convolutional Neural Network

(CNN) (originally developed by [13]) and a Recurrent Neural Network (RNN) [14, 15],

have received renewed interest in areas such as computer vision and natural language

processing. One important advantage of a deep learning model is that it often can

process the raw data as the input without the exhausting feature engineering. How-

ever, the disadvantages include the relatively large dataset required for the model

training and the difficult interpretation of the models. To advance the modeling for

time series, in Chapter 5, we consider the applications of CNNs or RNNs towards

TSC. Unlike the methods proposed in Chapter 3 and 4 where the feature extraction

and classifier training are in two separate steps, the neural network models learn the

features during the training. As an overview, the proposed model contains a convo-

lutional network component to extract high-level features, and a recurrent network

component to enhance the modeling of the temporal characteristics of time series

data. In addition, a feed-forward fully connected network with the sparse group

lasso regularization is used to generate the final classification. The proposed archi-

tecture not only achieves satisfying classification accuracy, but also obtained good
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interpretability through the sparse group lasso regularization. All these networks are

connected and jointly trained in an end-to-end framework, and it can be generally

applied to time series classification tasks across different domains without the efforts

of feature engineering. Our experiments in various time series datasets show that

the proposed model outperforms the traditional convolutional neural network model

for the classification accuracy, and also demonstrate how the sparse group lasso con-

tributes to a better model interpretation. As a case study in the biomedical domain,

we apply our model for the classification of a publicly available EEG seizure dataset.

This work is published in [16].

As huge volume of the time series data is collected from the wearable devices and

sensors at real time, we are facing challenges in the storage, analysis, and visual-

ization of time series data. An effective dimension reduction method for time series

data is a crucial step towards solving these challenges. Dimensionality reduction is

an unsupervised learning problem. The goal of dimensionality reduction is to find

a low-dimensional representation of the data which preserves the most important

characteristics of the data and also minimizes the information loss. Dimensionality

reduction, at the same time, identifies the underlying sources of variation patterns in

the data, which can contribute to our understanding on the data generation mech-

anism and feature extraction. Because of the temporal characteristics of time series

data (such as autocorrelation), they typically contain high redundancy and can be

represented by a much smaller number of features than the original dimensionality.

In addition, these temporal characteristics often contribute to the key features which

can be used in clustering, classification and anomaly detection of time series data.

In Chapter 6, we introduce a deep learning-based dimensionality reduction model,

CRNN autoencoder, for time series data. Our discussion focuses on the ability of

both reconstruction and generalization of the latent representation.
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In general, the best parametrization for deep learning models are not very well

understood, and the tuning of the parameter settings (such as the number of cer-

tain layers, filter size) are often based on trial and error. This dissertation selects

some basic architectures of proposed deep learning models and shows good results.

Potentially the results can be improved with fine-tuned parameter settings. How-

ever, the important properties we discovered regarding the proposed deep learning

architectures are expected to generalize to other, related architectures.

1.2 Datasets and Applications

In this dissertation, we discuss machine learning methods (clustering, dimension-

ality reduction, classification) which can be applied to many biomedical problems and

generalize to other industrial fields. To demonstrate the effectiveness of our methods,

we tested our methods on both real and synthetic datasets. The real datasets include

benchmark datasets from the UCI machine learning repository [1] and the UEA &

UCR time series repository [2], as well as some more domain-specific datasets, such

as the genome dataset from TCGA research network [4], the seizure EEG datasets

from Bonn University [3] and the low-coverage whole genome sequencing data gener-

ated by our collaborators at Mayo Clinic [17]. In the following, we briefly introduce

each dataset (or data source) and how they are used to support the claims in this

dissertation. These datasets are good examples for the future applications of our

methods.

1.2.1 UCI Machine Learning Repository [1]

The UCI machine learning repository is a collection of datasets that is frequently

used by machine learning community for empirical comparisons of machine learning

algorithms [1]. We compare Crafter to several other clustering methods on datasets
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from this repository, which includes two biomedical datasets (Diagnostic Breast Can-

cer Dataset and Mice Protein Expression Dataset) and six datasets from various other

domains. To evaluate the performance of different clustering algorithm, we use the

known class labels of each dataset as the ground truth which are not used during the

data clustering, and measure the concordance between the class labels and the found

clusters.

1.2.2 UEA & UCR Time Series Classification Repository [2]

The repository provides a comprehensive collection of time series data for re-

searchers to analyze and compare time series algorithms [2]. In Chapter 5, we com-

pare different variants of GCRNN to the CNN and other time series classifiers over

14 datasets from this archive. In Chapter 6, to compare CRNN autoencoder to other

dimensionality reduction methods, we focus on 4 datasets (including 3 ECG datasets

and a synthetic control dataset) from the repository in our experiments.

1.2.3 Bonn EEG Seizure Dataset [3]

This is a publicly available seizure dataset provided by Bonn University [3]. The

dataset consists of five subsets ( set Z, O, N, F and S), and each has 100 single-channel

EEG segment. Set S contains EEG segments during the seizure activity. Set Z and

Set O are the EEG segments collected when the awake healthy volunteers with their

eyes open and closed, respectively. Set N and set F contain the non-seizure segments

from the seizure patients, recorded from two different brain regions. This dataset

is used to form different classification tasks to compare GCRNN with other existing

methods in literature in Chapter 5.
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1.2.4 The Cancer Genome Atlas Data [4]

The Cancer Genome Atlas (TCGA) is a research collaboration that makes large

number of genomic data of various types of cancers publicly available [4]. It helps

the cancer researcher community to advance the diagnosis, treatment and prevention

technologies of the cancers. In Chapter 4, the uterine corpus endometrial carcinoma

(UCEC) data is used to form a binary classification problem (high grade vs. low

grade) to illustrate that the supervised dictionary learning improves the prediction

power of the representation in a complex classification problem.

1.2.5 Low Coverage Whole Genome Sequencing (LC-WGS) Data

Defined as somatic gain or loss of DNA regions, Copy Number Alterations (CNAs)

are reflective of genomic instability, frequently affecting functionally important genes,

such as tumor suppressors and oncogenes. The profiles of CNAs may provide a fin-

gerprint specific to a tumor type or tumor class [18]. The availability of Next Gen-

eration Sequencing (NGS) technology platforms has enabled the study of CNAs at

a genome wide scale and at an unprecedented level of resolution. Numerous meth-

ods are available to report CNAs from high-coverage whole genome sequencing and

for low-coverage sequencing (LC-WGS). LC-WGS has recently gained interest since

successfully translated into clinical applications. In Chapter 5, our study focuses on

34 LC-WGS data samples labeled into the low grade or the high grade. The samples

were pre-processed with Wandy [17]. Wandy accumulates the sparse sequence reads

into 10,000 base long bins and performs several noise reduction procedures to more

accurately characterize changes in coverage characteristic of Copy Number Variations

(CNVs). As a result, we have around 25 thousand points for each sample.
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1.2.6 Other Domains

In additional to the biomedical domain, the machine learning methods developed

in this dissertation can be applied to many other industrial fields. For instance, a

scalable clustering algorithm like CRAFTER is important for areas such as social net-

work analysis, community detection and recommendation system. GCRNN, as a time

series classifier, can also be applied to the decision making about the financial time

series data or control signals. The Bag-of-Segments representation can be used to

represent other long time series data with small sample size. The time series autoen-

coder can be applied to process monitoring and defect detection in the manufacturing

domain. As a toy example, we perform experiments to show that CRNN autoencoder

can effectively identify abnormal from normal events based on a synthetic control

dataset from the UCR repository. Discovering new domains or applications for the

proposed methods will be an on-going research effort in the future.

1.3 Background

To make the dissertation more self-contained, in this section, background for tree-

based ensembles, deep neural networks, and Bag-of-Features methods is provided.

1.3.1 Tree-based Ensembles

Ensemble methods are a type of supervised methods that combine the predictions

from many weak base learners to present a stronger model. The condition for an

ensemble model to outperform their individual members is the individual members

are accurate (better than random guessing) and diverse [19]. Two models are diverse

when their errors on new data points are uncorrelated. Therefore, we often make an

ensemble of the base learners such as decision trees which has high variance.
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To make the models less correlated, we can manipulate the training process of

each base learner in several ways. The first way by sampling the training data.

For example, Bagging is an ensemble method where each base learner is trained on a

bootstrap sample of the original data. Adaboost [20] is another ensemble model which

trains each base learner on a weighted sample of the data to focus on the misclassified

instances. Another kind of manipulation is through modifying the objective function

of the learning problem. For instance, a gradient boosting machine [21] with L2 loss

fits each based learner to model the current residuals iteratively.

Random Forest (RF) [22] is a bagging-style ensemble injected with more ran-

domness, which is used in several methodologies in this dissertation. CRAFTER is

developed based on both supervised and unsupervised RF models. A RF model is

also used as the classification model in Chapters 3 and 4, and as an important com-

ponent of the data representation method in Chapter 4. In the following we discuss

the supervised RF and unsupervised RF models in more details.

A supervised RF is a ensemble of decision or regression trees [23]. A tree model

splits the data based on the value of one feature at each node until a stopping criterion

is met. Each tree in the ensemble is trained on a bootstrap sample of the dataset.

Additional randomness is injected by randomly selected a subset of the features for

evaluation at each node split during the training of each base learner. The final

classification or prediction is made based on the majority of the votes or the average

prediction made by its tree members.

Although a RF is a supervised learning model, it can be adapted for unsupervised

problems. In this case it is used to measure the dissimilarity between each pair of

instances in the dataset and provides input for a clustering algorithm. We need to

first convert the unsupervised learning problem to a supervised setting. To this end,

all the instances in the original dataset are labeled with class “0”, and a synthetic
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dataset of the same size is created and labeled with class “1”. Each instance in

the synthetic set is randomly drawn from the product distribution of the marginal

attribute distributions from the original set. In other words, each attribute of the

synthetic set follows the same marginal distribution as the corresponding one in the

original set, but the dependencies among the attributes are broken through random

permutations [24]. A RF classifier is trained to distinguish these two classes. The

proximity between i-th and j-th instances of the original dataset, denoted as PROXij,

is estimated by the proportion of trees in which both instances fall into the same leaf

node. The RF dissimilarity between these two instances is defined as
√

1− PROXij.

1.3.2 Deep Neural Networks

The development of Chapter 5 and Chapter 6 are based on the existing deep learn-

ing models. In the following we give a brief introduction on the neural network models

including artificial neural networks (ANNs), convolutional neural networks (CNNs),

the basic recurrent neural networks (RNNs), long-short term memory (LSTM) and

gated recurrent unit (GRU). In the end of this section, an overview on autoencoder

models is also provided.

ANN

Figure 1.1: ANN Architecture
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Figure 1.2: Perceptron Structure

An ANN, also known as Multilayer Perception (MLP) can be represented by

the architecture in Fig. 1.1. The relationship between the input and the output

of each node (e.g. the red box in Fig. 1.1) is described by Fig. 1.2. Suppose

the input for a node is x1, x2, ..., xh, the output of the node can be expressed as

o = f(
∑H

i=1 xiwi + b). Here f is also known as an activation function, for which we

often use a non-linear function such as the logistic sigmoid function, the hyperbolic

tangent function or the rectified linear unit function (ReLU) [25]. The activation in

the hierarchical structure makes the neural network flexible to estimate the complex

non-linear relationship. Because the nodes between the adjacent layers in ANN are

fully connected, the number of parameters can be extremely large and the network

may be difficult to train as the network grows deeper.

CNN

CNNs [13] use the local connectivity and the weight sharing to reduce the number

of parameters in a deep neural network. Such structure is called a convolutional

layer. Furthermore, CNNs use the max-pooling layer to reduce the number of con-

nections/parameters. Fig. 1.3 provides a mini example for CNN, which is composed

of two convolutional layers (layer 1 and layer 3) and one max-pooling layer (layer 2).
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Figure 1.3: A CNN Example: The network is composed of 2 convolutional layers,
1 max-pooling layer and 1 fully connected layer. The network takes length-10 time
series as the input.

Local connectivity means that each node in layer l is only connected to a subset

of the nodes in layer l− 1. With the weight sharing, each node at the same layer uses

the same set of weights in the local connection. The relationship between the two

adjacent layers becomes a convolution operation whose filter is the shared parameters

wl = [wl1, ..., w
l
D] learned from the data. For instance, node i in the layer l takes the

subset of outputs from the previous layer, xl−1i+d−1, d = 1, ..., D, as its input. The

convolution operation can be expressed as

yli =
D∑
d=1

wldx
l−1
i+d−1. (1.1)

An activation function is then applied for the nonlinearity xli = f(yli).

A max-pooling reduces the number of units by a factor of k by extracting the

maximum ouput of each k non-overlapping nodes in the previous layer. A CNN

network usually consists of alternating convolutional layer and max-pooling layer at

the beginning, and a few fully connected layers to generate the final output.
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RNN

ANN and CNN assume that the input variables are independent of each other, but in

reality, many data are sequential. RNNs are able to model the nature of sequence [14,

15], therefore they are incorporated in developing the time series models in Chapter

5 and Chapter 6. A typical RNN looks like Fig. 1.4: on the left it is a compact

representation of a recurrent layer, and it can be unrolled to the full network on

the right that takes sequence data x = [x1, x2, ..., xT ] as the input. The “memory”

of the network at time step t, denoted as st, is calculated based on the previous

“memory” st−1 and the input at step t: st = f(Uxt + Wst−1). The function f is

for the nonlinearity. The output at step t, ot, is calculated as ot = V st. Note that

U, V,W and V are shared across all nodes from 1 to T . Depending on the application,

we can use the outputs at all time steps (e.g. the GCRNN in Chapter 5) or use only

the output at the last time step T (e.g. the CRNN autoencoder model in Chapter 6).

Figure 1.4: A Basic RNN Architecture for Input Time Series x = [x1, x2, ..., xT ].
Modified from the figure in [26]

RNNs are hard to train as they suffer the vanishing and exploding gradient prob-

lem due to their deep architecture in the time axis [27]. As the result, the ability

of RNNs to learn long-term dependency is degraded. Long short term memories

(LSTMs) [28] and gated recurrent units (GRUs) [29] use a special structure called a

gate to regulate the adding and removing information to the “memory” of the net-

work. A LSTM unit uses 3 gates while a GRU uses 2 gates. For simplicity, we can
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consider that using these two special unit structures is essentially replacing each node

in Fig. 1.4 with a more complex module, but the input/output structure (“the big

picture”) remains very similar. The next subsection introduces LSTM and GRU with

more details.

LSTM and GRU

The key idea of the LSTM is a memory cell that maintains its state over time,

and gating units that regulate the incoming and outgoing information flow of the

cell. The LSTM structure most commonly used in literature has incorporated the

changes introduced by [30] and [31] into the original LSTM architecture in [28]. More

specifically, the first major change is the forget gate introduced by [30]. It enables

the LSTM to reset its state. The second major change is the “peephole connections”

(connections from the internal cell state to the gates) introduced by [31]. These

connections allow all the gates to inspect the cell states even when the output gate

is closed. The resulted LSTM structure after these major changes can be presented

in Fig. 1.5.
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Figure 1.5: The Most Common LSTM Structure (figure from [32])

There are three gates in the most common LSTM structure, and each gate is a

function of the cell state ct−1 or ct, the current input xt and the previous output yt−1:

input gate: it = σ(Wixt +Riht−1 + pi � ct−1 + bi) (1.2)

forget gate: ft = σ(Wfxt +Rfht−1 + pf � ct−1 + bf ) (1.3)

output gate: ot = σ(Woxt +Roht−1 + po � ct + bo) (1.4)

The block input, cell state update and block output can be described by the

following equations:

block input: zt = tanh(Wzxt +Rzht−1 + bz) (1.5)
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cell update: ct = it � zt + ft � ct−1 (1.6)

block output: ot � tanh(ct) (1.7)

The � operation stands for the element-wise multiplication.

Similar to LSTM, gated recurrent unit (GRU) proposed by [29] uses gating units

to modulate the information flow into and out of the unit. GRU uses two gates, an

update gate and a reset, both a function of the current input xt and the previous

output ht−1:

update gate: zt = σ(Wzxt + Uzht−1 + bz) (1.8)

reset gate: rt = σ(Wrxr + Urht−1 + br) (1.9)

GRU first calculates a candidate output hct . The final output is a linear interpo-

lation between the previous output ht−1 and the new computed candidate hct based

on the update gate zt. When computing the new candidate, the reset gate rt deter-

mines how much previous information to combine. This update mechanism can be

illustrated as follows.

candidate: hct = tanh(Whxxt +Whh(rt � ht−1) + bh) (1.10)

output: ht = zt � ht−1 + (1− zt)� hct (1.11)

Autoencoders

Autoencoder usually refers to a neural network model that performs an identity map-

ping. It forces the data to pass through a bottleneck layer with a much fewer number
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of nodes than the original dimensionality of the data. The target of the network is

required to be identical as the input so that the network is trained to minimize the

reconstruction error. A traditional autoencoder is based on an ANN (or MLP). Fig.

1.6 depicts an ANN autoencoder with 3 hidden layers including a bottleneck layer

with 2 nodes.

Figure 1.6: An ANN Autoencoder Example with 3 Hidden Layers (h1, h2 and h3).
The Bottleneck Layer (h2 Layer) Has 2 Nodes.

Besides ANN, other neural network architectures have also been utilized in autoen-

coders for different applications. CNN is able to model the local relationship of the

input by the convolutional operation and the hierarchy of the features by the pooling

layers. CNN-based autoencoders have been used in image denoising [33] and image

restoration [34]. Given the strength of RNNs in sequential modeling, the RNN-based

autoencoder has been used in machine translation [35]. In Chapter 6, we propose a

CRNN autoencoder which leverages the advantages of both CNNs and RNNs. The

advantage of this new architecture in feature learning for time series is discussed.
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1.3.3 Bag-of-Features Methods

Deep learning models trained on large datasets achieve the state-of-the-art perfor-

mance across many domains. However, Bag-of-Features has proved its effectiveness

in applications such as image and audio classification, particularly for more moderate

sized datasets. Bag-of-Features is a group of feature representation methods. They

usually consist of two steps: local feature extraction and dictionary construction. For

images, the local features could be texture features such as HoG (short for Histograms

of Gradients) [36] and SIFT (short for Scale-Invariant Feature Transform) [37]. For

time series, they could be local statistics such as mean, slop, and standard deviation

[38]. The dictionary can be constructed using either a supervised method [39] or an

unsupervised method (e.g. clustering). In general, the dictionary is constructed by

partitioning the extracted local features into different groups, and each group rep-

resents a “word” in the dictionary. Bag-of-Features representation is the frequency

distribution over these groups, which can be used to train the classification models.

Nowadays Bag-of-Features still plays an important role when the training data is

limited or in a new domain. In addition, the domain knowledge can be easily incor-

porated into the framework based on the data or the application (as demonstrated in

Chapter 3), and the resulted representation is often more interpretable compared to

deep learning models.
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Chapter 2

CRAFTER: A TREE-ENSEMBLE CLUSTERING ALGORITHM FOR MIXED

ATTRIBUTES AND HIGH DIMENSIONALITY

2.1 Introduction

Clustering, as an unsupervised learning technique, attempts to partition data

such that similar data instances are in the same subset. After clustering data, useful

patterns can be discovered by explaining and characterizing the partition. Data

clustering is usually the first step for analyzing an unlabeled dataset. There are still

many remaining challenges in data clustering.

First of all, the high dimensionality in many real-life datasets presents a specific

challenge for clustering algorithms, especially those which are based on Euclidean

distance. These spaces exhibit the “curse of dimensionality” where all objects are ap-

proximately equidistant [7] and the nearest neighbor problem can become ill-defined

[8] [9]. Secondly, data is usually noisy, containing some irrelevant or redundant infor-

mation which hides the cluster patterns. The third challenge is that many algorithms

that rely on the traditional distance measure are sensitive to different units of the

attributes. Although data transformation [10] can be applied to alleviate the prob-

lem, this risks changing the distribution of data which might be an important clue for

finding the clusters. Last but not least, clustering of categorical attributes remains

an important task. Many applications deal with categorical or mixed data. For ex-

ample, in a user profile database for an online application, each user is described by

the categorical attributes such as region and hobby, as well as the numeric attributes

such as daily online time.
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Here we propose a clustering algorithm which addresses the challenges from a

different start. Our algorithm begins with a sample clustering, and then it converts

the unsupervised problem to a supervised learning setting under an iterative mech-

anism. More specifically, a Random Forest (RF) algorithm is iteratively applied to

select representative instances to guide the overall clustering. We named our algo-

rithm CRAFTER: Clustering algorithm using RAndom Forest-based iTERations.

CRAFTER has many attractive properties. First of all, as a tree-ensemble method,

it inherits the flexibility to handle mixed data and high dimensionality. It is also

invariant to the units of numeric attributes. In addition, CRAFTER is less sensitive

to irrelevant attributes, noise and outliers, and it scales well with the size of datasets.

Compared to Random Forest Clustering (RFC) [24], an existing tree-based ap-

proach and our major competitor, our advantage lies in both the scalability and the

clustering quality. A limitation of RFC is that it only provides distances that then

need to be clustered through a second algorithm. This second algorithm is restricted

to those that can work only from the pairwise distance and is usually computationally

expensive. Also, for large datasets, the size of the distance matrix and the compu-

tational demand increase dramatically. CRAFTER avoids both the distance matrix

computations for the entire dataset and the second clustering algorithm with a scal-

able alternative. Our experiments show that CRAFTER performs equally good or

better than RFC with a much lower computational complexity.

The remainder of this chapter is organized as follows. Section 2.2 reviews some re-

lated clustering methods in literature. Section 2.3 introduces the details of CRAFTER.

In Section 5.4 and Section 2.5, an exhaustive set of experiments and comparisons on

synthetic and real datasets is presented to demonstrate the effectiveness of CRAFTER.

Section 2.6 discusses the limitations of our work and points out some future research.

Finally, Section 5.7 provides conclusions.
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2.2 Related Methods

Clustering algorithms can be divided into the four major categories: partitioning,

hierarchical, density-based and grid-based [40]. In each category, efforts have been

made to handle mixed attributes or high dimensionality.

K-means [41] is one of the most well-known partitioning algorithms that uses the

coordinates of instances as its input. K-medoids [42] is more robust to outliers and

noise as compared to K-means, because it chooses representative instances as the

basis of clusters instead of means. K-medoid can work with an arbitrary-defined

distance measure, which contributes to its role in RFC as discussed later. K-modes

and K-prototypes [43] fall into the same category as extensions of K-means in cat-

egorical and mixed-attribute domains. K-modes algorithm uses a simple matching

dissimilarity measure to handle categorical attributes. It replaces the means with the

modes for each cluster, and the modes are updated using a frequency-based method.

To cluster mixed numeric and categorical data, K-prototypes algorithm [43] uses a

linear combination of two dissimilarity measures to integrate K-means and K-modes

algorithms. More specifically, the component of numeric attributes is measured by

Euclidean distance, while the categorical component is measured by simple matching.

A suitable group of weights need to be specified to achieve a good balance between

these two components.

Hierarchical clustering has two branches: agglomerative method and divisive

method. Agglomerative methods are more commonly used. Clusters at a lower level

merge into a larger cluster at a higher level based on a proximity measure. Hierarchi-

cal methods generate a dendrogram for the data, such that clusters in different levels

can be extracted without the predetermined cluster number. In the general case, the

computational complexity for agglomerative clustering is of O(N3), which makes it
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prohibitive for large datasets. For numeric attributes, Euclidean distance-based mea-

sure can be used to define the proximity. ROCK [44] extends agglomerative clustering

to the categorical domain. It defines links between two instances based on the num-

ber of neighbors they share, and favors merging clusters/instances with more links.

A pair of instances become neighbors if their similarity exceeds a certain threshold.

However, ROCK doesn’t scale well with the size of datasets due to its complexity of

O(N2 log N) [44]. To handle large datasets, a sampling approach needs to be adopted,

which might leave out some important patterns. Moreover, the parameter for defining

neighbors needs to be specified, which is not trivial.

In order to handle the high dimensionality, a group of subspace clustering ap-

proaches integrates feature selection into the clustering process [45]. For example,

CLIQUE [46] is a grid-based algorithm for finding density-based clusters in subspaces

with an APRIORI style approach. However, the quality of the clustering is greatly

affected by the parameters such as the density threshold, and it doesn’t scale well

with the dimensionality of the output clusters [45]. From a different aspect, some

research investigates good centrality measures for high dimensionality. For instance,

Hubness [47], defined by the number of times a data point appears to one of the

K nearest neighbors of other points, is shown to be a good local centrality measure

in high-dimensional space. Based on hubness, several K-means-like algorithms in a

deterministic or probabilistic manner were developed for high-dimensional data [48].

In this chapter, we utilize a tree-ensemble to tackle high dimensionality as the feature

selection is embedded within the learning algorithm of the tree models.

Random Forest Clustering (RFC) [24], which inherits many desirable properties

as a tree-ensemble method, is the most relevant method to our work. RFC is able

to handle datasets with a large number of attributes of disparate types and different

scales. First, an unsupervised Random Forest (RF) generates a unique dissimilarity
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measure (RF distance), and then this distance is clustered through a method such

as K-medoids clustering. RF distance is obtained by transforming the clustering

problem (an unsupervised problem) to a supervised learning problem. To this end,

all the instances in the original dataset are labeled with class “0”, and a synthetic

dataset of the same size is created and labeled with class “1”. Each instance in

the synthetic set is randomly drawn from the product distribution of the marginal

attribute distributions from the original set. In other words, each attribute of the

synthetic set follows the same marginal distribution as the corresponding one in the

original set, but the dependencies among the attributes are broken through random

permutations [24]. A RF classifier is trained to distinguish these two classes. The

proximity between i-th and j-th instances of the original dataset, denoted as PROXij,

is estimated by the proportion of trees in which both instances fall into the same leaf

node. The RF distance between these two instances is defined as
√

1− PROXij.

RFC has proved its effectiveness in many applications, such as genomic sequence

data clustering [49], tumor marker data clustering [50] and online user segmentation

[51]. However, additional work is required to handle the distance matrix in large-

instance applications, and, for the second step of RFC, a high computational cost is

required for the K-medoids algorithm.

Partitioning Around Medoids (PAM) [42] is one of the best-known realizations of

K-medoids algorithm. PAM begins with an arbitrary selection of K medoids from

the dataset, and then it keeps swapping a non-medoid instance with a medoid which

results in the greatest decrease in the cost function. This objective at each swap is

to minimize

E =
K∑
i=1

∑
d∈Ci

distance(d, oi) (2.1)

where d represents a non-medoid instance in cluster Ci, and oi is the medoid of this

cluster.
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The complexity for each iteration of PAM is of O(K(N − K)2). To reduce the

complexity, Clustering LARge Applications (CLARA) [42] utilizes a sampling-based

scheme. CLARA draws multiple samples from the dataset, and applies PAM to each

of them. The best K medoids giving the lowest cost function (Eq. (2.1)) evaluated at

the whole dataset are returned. By reducing the complexity to O(KS2 +K(N −K))

with sample size S for each iteration, CLARA makes K-medoids scheme applicable

to large datasets, while the quality of the clusters can be compromised. Other than

utilizing the sampling scheme, a K-medoids algorithm called CLATIN [52] utilizes

the Triangular Irregular Network concept to reduce the computational time during

the swap step of PAM. A K-means-like heuristic [53] was also proposed to update the

medoids in a faster fashion. Similar to CLARA, these heuristics are not guaranteed

to find the optimal K medoids.

2.3 CRAFTER Algorithm

CRAFTER begins with clustering a small sample of the dataset. In order to

handle a wide variety of problems, a standard RFC is applied for clustering the small

sample. Next, the clustering problem is converted to a supervised problem, with

the selected sample as the training set and their initial cluster labels as the target

attribute. A RF model is built to assign cluster labels to the rest of the dataset.

The algorithm continues modifying the clusters in an iterative fashion, until either

the clusters converge or a maximum iteration step is reached. More details about the

initialization and main step of CRAFTER are presented in the following subsections.

2.3.1 Initialization

From a dataset D of size N , first a random sample of size n is drawn, and then

RFC (unsupervised RF followed by PAM) is applied to this sample to generate K
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initial clusters, where K is prespecified. When N is large, usually we have n � N ,

so that the computation for clustering the sample is negligible. With a small n, this

process can be repeated M times to search for a good start at a low computational

cost. Each sample and its clusters are evaluated by the PAM cost function (Eq.

(2.1)), and the ones with the lowest cost function are chosen to initialize CRAFTER.

Algorithm 1 summarizes the initialization step.

Other than RFC, there are several alternatives for generating clusters from the

initial sample. For example, with RF distance, we can simply choose K instances far

away from each other as the cluster medoids, and assign the other instances to their

closest medoids. Besides, K-means can be used to cluster the samples for numeric

datasets, and so can K-modes for categorical datasets.

Algorithm 1 RFC-based Initialization
1: procedure Initialization(D, K)

2: for m← 1,M do

3: Draw sample data Sm ∈ D

4: {cm, Em} ← RFC(Sm) . Em and cm record the cost (Eq. (2.1)) and the clustering labels

5: cm and Em are saved

6: end for

7: T (0) and c(0) are the sample and its labels corresponding to the minimum Em

8: return T (0), c(0)

9: end procedure

2.3.2 Main Step

At this step, the clustering problem is transformed to a supervised learning prob-

lem. Consider the selected sample as the training set and the initial cluster labels as

the target attribute. A RF classifier is trained on this sample, and used to assign a

cluster label to the whole dataset (including the initial sample). The RF also provides
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class probability estimates for each instance in the dataset, which is the proportion

of the votes from the trees for assigning the cluster labels. For the training data, the

votes are only based on the classification results from the trees where the instance is

out-of-bag, and for the remainder of the dataset, the votes are based on the decisions

made by all the trees. The class probability estimates provide the confidence of the

cluster label assigned to each instance.

The margin is the difference between the maximum and the second greatest class

probability estimate for each instance. An instance having a high margin is more likely

to be labeled correctly by the RF. On the contrary, a low margin implies uncertainty

regarding the cluster label of the instance. Therefore, CRAFTER takes advantage of

those instances with high certainty in their cluster labels. That is, in each iteration,

CRAFTER forms a new training set with the instances having high margin, trains a

new RF model, and relabels the whole dataset including the training set. Although

the initialization from a small sample may not be accurate, CRAFTER has the ability

to revise the clustering iteration by iteration, by including the most representative

instances into its training set and excluding the ones potentially being mislabeled.

More specifically, in the r-th iteration, we have a training set T (r) of size n(r) and

the corresponding cluster labels c(r) as the target attribute. A RF classifier RF (r) is

trained on T (r) and c(r). In the very first iteration, denoted by iteration 0, T (0) is the

sample that provides the best initial clustering, and c(0) represents the initial clusters

assigned by RFC. During the model training, the out-of-bag (OOB) class probability

estimates for the training set, denoted by P (r) = {p(r)jk |j = 1, ..., n(r), k = 1, ..., K},

are obtained, where p
(r)
jk is the probability estimate that the j-th instance in the

training set T (r) belongs to the k-th cluster. The cluster label of every instance in the

remainder of the dataset D − T (r) is predicted by RF (r). The votes from the trees

decide the class probability estimates for each instance in D − T (r) which we denote
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by Q(r). Here Q(r) can also be considered OOB estimates, in the sense that the trees

which make the estimates are trained on other data, T (r), rather than themselves,

D−T (r). Combining these two concepts, the OOB class probability estimates for the

whole dataset D are defined as

P
(r)
OOB = P (r) ∪Q(r) = {p(r)OOB,jk|j = 1, . . . , N, k = 1, . . . , K}. (2.2)

Based on P
(r)
OOB, the cluster labels can be updated for the whole dataset. That is,

each instance is assigned to the cluster label giving the highest probability estimate.

Here L(r) represents the updated cluster labels for dataset D.

Also, P
(r)
OOB plays an important role in selecting the new training set T (r+1) for the

next iteration. Based on P
(r)
OOB, the set of probability margins, denoted by P

(r)
MG, can

be computed as follows:

P
(r)
MG = {p(r)MG,j = max

k
(p

(r)
OOB,jk)− secmax

k
(p

(r)
OOB,jk)|

j = 1, . . . , N},
(2.3)

where function secmax(x) retrieves the second greatest value from set x. We set a

threshold θ(r) to select the representative instances into the new training set T (r+1).

Only instances with probability margins which exceed θ(r) are selected. That is

T (r+1) = D[indice(P
(r)
MG > θ(r))], (2.4)

where function indice(cond.) extracts the indices of the instances satisfying the given

condition. The target attribute of the training set in the new iteration, c(r+1), is also

extracted from the updated label set L(r) accordingly:

c(r+1) = L[indice(P
(r)
MG > θ(r))]. (2.5)
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With this selection criterion, a new training set is formed by the instances whose

labels CRAFTER is most certain about, while the potentially mislabeled ones with

low margins are no longer a part of the new training set. With T (r+1) and c(r+1),

CRAFTER is ready for the next iteration.

The iterations stop when clustering converges, in other words, when very few

instances (less than 1%) change their cluster labels from the previous iteration. We

also set the maximum iterations R in case the clustering doesn’t converge within an

acceptable time. Algorithm 2 summarizes the main process of CRAFTER.

Algorithm 2 Main Step Algorithm

1: procedure Main Step(T (0), c(0), D)

2: for r ← 0, R do

3: {RF (r), P (r)} ← RandomForest(T (r), c(r))

4: Q(r) ← ApplyModel(RF (r), D − T (r))

5: P
(r)
OOB = P (r) ∪Q(r)

6: L(r) ← UpdateClusters(P
(r)
OOB)

7: if r > 0 & CountDifference(L(r), L(r−1)) < 1%×N then

8: return L(r)

9: end if

10: P
(r)
MG ← CalculateMargins(P

(r)
OOB) (Eq. (2.3))

11: T (r+1) = D[indice(P
(r)
MG > θ(r))]

12: c(r+1) = L[indice(P
(r)
MG > θ(r))]

13: end for

14: return L(r)

15: end procedure

We can also understand CRAFTER from the clustering validation perspective.

One common strategy to validate a clustering algorithm is splitting the data into

halves, clustering each part, and evaluating how a classification model built on one

half agrees with the clustering from the other half. A similar idea is adopted by
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CRAFTER. A large class probability estimate implies approximate agreement among

the tree models regarding the instance’s cluster label. CRAFTER embraces the vali-

dation process into its algorithm, by selecting the most agreed upon instances as the

training data.

2.3.3 Parameter Settings

In previous studies, many clustering results were reported with tuned parameters

of different values for different datasets, such as [44] and [54]. However, tuning pa-

rameters to match the clustering with the real class labels violates the purpose of

unsupervised learning. For CRAFTER, only K needs to be given by the user, and

all the other parameters are specified as follows across all the datasets. We do not

perform additional parameter tuning for each clustering scenario.

Initial sample size The sample size is kept small in the initialization step because

of the O(n2) computational complexity of RFC. Normally a sample size n = 5%×N

is adopted. In addition, we constrain the sample size to be no more than 500 and no

less than 25 × K, so that the sample is not too large, and CRAFTER has enough

data for each cluster at the start.

Threshold θ The threshold should decrease when there are more clusters because

the class probability is distributed among more classes. We set θ(r) = 1
K

+ 0.35 for

all the iterations, which works well for all the clustering tasks in our experiments.

Alternatively, we can set θ(r) to a specific percentile of P
(r)
MG. By setting it to a higher

percentile, less instances are selected into the training set in each iteration, which

adds more disturbances to the clustering process and slows the convergence. For

simplicity, we only used the first option in all our experiments.
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Convergence criteria The clustering is considered converged when less than 1%

of data changes their labels, and at most 20 iterations are allowed.

2.3.4 Computational Complexity

In the initialization step, applying RFC to the sample M times results in O(Mn2)

computational complexity because of the PAM clustering. The computational com-

plexity of the main step is capped by the RF algorithm. In each iteration, it takes

O(tFN logN) time to train a RF model, where t is the number of trees and F is the

number of features used at each split. Consequently, with maximum iterations R, the

total computational complexity of CRAFTER is of O(Mn2) + O(RtFN logN). In

general, when N is large, we have n,M, t, F,R� N , so the computational complexity

of CRAFTER can be concluded as O(N logN). Later in the section of the scalability

test, we show that the complexity of CRAFTER can be reduced to O(N) by adding

constraints on the depth of the trees.

2.3.5 Miscellaneous Issues

CRAFTER can effectively handle outliers and noise. In each iteration, we select

the training set based on the margin of class probability estimates so that outliers

with relatively low margins usually won’t be selected and, therefore, won’t impact

the clustering results. In addition, if clusters with fewer outliers are preferred, we can

decide to remove those instances with low margins from the final clusters.

Tree-based methods select important features during their model building. There-

fore, they are good at handling high dimensionality. CRAFTER shares the same

advantage by having tree-ensembles in both the initial RFC step and the main step.

According to Parsons et al.’s categorization scheme [45], we may consider CRAFTER

a subspace clustering algorithm.
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To handle datasets with missing values, for categorical datasets, CRAFTER sim-

ply considers the missing values as a new categorical value, and for numeric datasets,

the missing values are imputed by the attribute means.

CRAFTER also provides a compact method for organizing the clusters as it gen-

erates a supervised RF model RF (R) at the end of the clustering. If a small number

of new data instances arrive, they can be assigned to the clusters based on the clas-

sification outputs of RF (R). If the amount of new data is large, we can continue the

iterations with the new data included in the set D − T (r), starting from line 4 of Al-

gorithm 2. In addition, the important features for clustering can be identified by the

importance score generated by RF (R), which can help us gain deeper understanding

of the dataset.

2.4 Experiments

2.4.1 Clustering Evaluation

When the class labels for the data are provided but not used to cluster the data,

the cluster purity measure is one of the most commonly used criteria to evaluate the

quality of clusters. Suppose the final number of clusters is K, we have the following

definition for the clustering purity ([43], [54], [55] and [56]).

purity =

∑K
k=1ak
N

. (2.6)

where N is the total number of instances, and ak is the number of instances of the

majority class in the k-th cluster. Purity is the main evaluation criteria we considered.

Additionally, we present the Rand Index [57] and Cluster Mapping Measure (CMM)

[58] in our box plots (Fig. 2.2) to give other perspectives for the clustering evaluation.

We use RF distance when calculating CMM.
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2.4.2 Datasets

CRAFTER was tested on both synthetic datasets and real datasets to show its

ability to handle a wide range of clustering tasks. A synthetic dataset, named as

Noisy-set, was generated to test the performance of our algorithm in the presence

of many irrelevant attributes. To demonstrate that CRAFTER can handle high-

dimensional data effectively, we tested it on a group of synthetic datasets with Gaus-

sian clusters in high-dimensional space (Dim-sets). A series of large-scale datasets

generated by the data generator [59] was used to test the scalability of our algorithm.

The details of the synthetic datasets are provided in the following.

In addition, we covered three types of real datasets in our testing: numeric, cate-

gorical and mixed. All the real-life datasets tested in this chapter were obtained from

the UCI Machine Learning Repository [1]. The characteristics of these datasets are

summarized in Table 2.1. Note that the breast cancer dataset and the mice protein

dataset belong to the biomedical domain.

Table 2.1: Characteristics of UCI Datasets for the Clustering Experiments (N: Nu-
merical, C: Categorical)

Data type dataset Size
Attribute No.

(N/C)
Missing value Classes Class distribution

Numeric

Breast cancer 569 30 None Benign, Malignant 357 / 212

Mice protein 1,080 77 Yes CS, SC 525 / 555

Pen digits 7,494 16 None
0, 1, 2, 3, 4,

5, 6, 7, 8, 9

780/ 779/ 780/ 719/

780/ 720/ 720/

778/ 719/ 719

Categorical

Soybean(small) 47 35 None D, C, R, P 17/ 10/ 10/ 10

Voting 435 16 Yes Republican, Democrat 168 / 267

Mushroom 8,124 22 Yes Edible, Poisonous 4,208 / 3,916

Mixed
Credit approval 690 15 (6/9) Yes Approved, Rejected 307 / 383

KDD Cup 1999 sample 20,000 41 (34/7) None Attack, Normal 3872 / 16128
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Synthetic Dataset with Irrelevant Attributes (Noisy-set)

We generated a dataset having 1000 instances and 10 numeric attributes. Among

those 10 attributes, x1 and x2 primarily define the clusters. Here, (x1, x2) follows two

Gaussian clusters centered on (30, 30) and (70, 70), respectively, as shown in Fig. 2.1a.

The other 8 attributes are independent with the other attributes. We have x3, x4, x5

drawn from a uniform distribution U(0, 100) (Fig. 2.1b), and x6, x7, x8, x9, x10 follow

the same marginal distribution as that of x1, but they are independent (Fig. 2.1c).

We regard x3, ..., x10 as irrelevant attributes.

(a) x1 vs. x2 plot (b) x3 vs. x4 plot (c) x9 vs. x10 plot

Figure 2.1: Different Projections of Noisy-set - two true clusters are indicated in
red and black

High-dimensional Datasets with Gaussian Clusters (Dim-sets)

Dim-sets are composed of 6 high-dimensional datasets: Dim32, Dim64, Dim128,

Dim256, Dim512 and Dim1024. The numbers indicate the dimensionality. Each

dataset contains 1024 data points allocated in 16 Gaussian clusters. They were orig-

inally introduced by [60]. We used Dim-sets to demonstrate the performance of

CRAFTER in clustering high-dimensional data.
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Large-scale Rule-based Data (Rule-sets)

Rule-sets are generated by the data generator available in [59]. The generator provides

many options, in terms of the size of datasets, the number of attributes and the

domain size (the number of possible categorical values for each attribute). Each

class is specified by a conjunctive rule of the form (Attribute1 = v1 ∧ Attribute2 =

v2∧ . . . )⇒ Class = C1. For our experiments, we generated datasets of different sizes

(from 100 thousand to 5 million instances). Each dataset contains 20 attributes and

8 classes. The domain size of each attribute is 20.

2.4.3 Implementation Details and Comparison References

Both RFC and CRAFTER are able to handle datasets with different types of

attributes. Therefore, we compare these two methods over every dataset. RFC is

referred to as RF-PAM or RF-CLARA, depending on which K-medoids algorithm is

used. When the size of the dataset is larger than 5,000, we only run RF-CLARA,

because it becomes very computationally expensive to run RF-PAM for multiple

replicates. In addition, we compare CRAFTER to K-means, K-modes, K-prototypes

for numeric, categorical and mixed datasets, respectively. All of the testing was

conducted on a laptop with Core i7-7500U Processor and 16GB RAM.

Our RF-PAM/CLARA implementation uses R package “randomForest”[61] to

generate RF distances. We adopt the PAM implementation from the R package

“cluster” [62], and we implement CLARA based on this PAM implementation. Our

CLARA implementation employs 10 sampling processes with size of min(500, 10%×

N). The K-means implementation we use is from R’s basic “Stats” package, and

we use R package “clustMixType” [63] for the experiments with K-modes and K-

prototypes.
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The implementation of CRAFTER is also based on the R package “randomForest”[61].

The RF-PAM implementation discussed above is used in the initialization step. In the

main step, each RF model consists of 500 fully grown trees with the default setting.

In the testing, the initial cluster number K is always set to the number of classes

in the dataset. Additional larger K values are considered for datasets whose initial

purity is below 0.8. Such datasets include mice protein, pen digits, mushroom, credit

and KDD 1999 sample datasets. For mice protein dataset, we add the experiments

with K = 4 and 8, because this dataset may also be classified into 4 or 8 classes

when additional labels are considered. For all the clustering methods, the mean and

the standard deviation of the purity measure are reported based on 20 randomized

experiments.

2.5 Results and Discussion

2.5.1 Testing Results for Synthetic Datasets

Table 2.2: Testing Comparisons on Synthetic Datasets (Noisy-sets and Dim-sets):
each row compares the average clustering purity and its standard deviation (in paren-
theses) over 20 experiments using K-means, RF-PAM and CRAFTER

datasets
K-means

with transformation

K-means

without transformation
RF-PAM CRAFTER

Noisy-set 0.951 (0.149) 0.761 (0.222) 0.806 (0.042) 0.969 (0.075)

Dim32 0.778 (0.066) 0.791 (0.065) 1.0 (0.0) 1.0 (0.0)

Dim64 0.759 (0.062) 0.791 (0.068) 1.0 (0.0) 1.0 (0.0)

Dim128 0.775 (0.062) 0.788 (0.065) 1.0 (0.0) 1.0 (0.0)

Dim256 0.750 (0.061) 0.722 (0.074) 1.0 (0.0) 1.0 (0.0)

Dim512 0.763 (0.090) 0.788 (0.074) 1.0 (0.0) 1.0 (0.0)

Dim1024 0.766 (0.053) 0.788 (0.080) 1.0 (0.0) 1.0 (0.0)

36



For Noisy-set and Dim-sets, the numeric attributes in each dataset are already in

similar range, nevertheless, the results of K-means with and without transformation

are both provided to present the best K-means outcome. After the transformation, all

the attributes in the dataset have their mean equal to 0 and their standard deviation

equal to 1.

By reference to Table 2.2, for all the Dim-sets, both CRAFTER method and RF-

PAM fully discovered the 16 clusters with 0 error, which demonstrates the strong

capability of the tree-ensemble method on handling high-dimensional cases. On the

contrary, K-means only achieved 0.72-0.79 purity on the Dim-sets. Computational-

wise, CRAFTER is more efficient than RF-PAM in order to achieve the same high-

quality clusters.

For the Noisy-set, the clusters generated by CRAFTER and K-means (with trans-

formation) are of similar quality. CRAFTER’s clustering results are slightly better

on average with less variation. This test demonstrates the robustness of CRAFTER

in the presence of noise in the data.

2.5.2 Understand the Mechanism of CRAFTER

To get a better understanding about the mechanism of CRAFTER, Fig. 2.2

shows the “snapshots” of how CRAFTER clustered the Noisy-set in each iteration.

As discussed, many methods can be used to generate the initial sample clustering

which doesn’t need to be perfect, because the main step revises the clustering through

iterations until the clusters stabilize. In other words, CRAFTER is insensitive to the

quality of the starting sample. To illustrate this point, we forced the algorithm to

start with a weak initial clustering (generated by K-means) in this experiment. In

Fig. 2.2a, the colored points represent the sample data T (0), and the “red” and “blue”

colors indicate two initial sample clusters c(0). Unselected data remains in grey color.

37



(a) Initialization (b) First iteration (c) Second iteration

(d) Third iteration (e) Fourth iteration

Figure 2.2: Iteration-by-iteration Visualizations on the x1 vs. x2 Projection of Clus-
tering Noisy-set Using CRAFTER: red and blue points are the training instances
selected by CRAFTER in each iteration, and the color distinguishes the cluster la-
bels of the training data. The grey points are not selected yet in that iteration, so
they are assigned cluster labels by the maximum class probability estimate.

At this stage, data points of two colors were mixed inside the two true clusters, which

was not an ideal initialization. As the algorithm proceeded, we observed that data

points with incorrect labels at the beginning were excluded from the new training set

T (1) based on the class probability margin criterion (Fig. 2.2b). At the same time,

the data points with high margins started populating the two underlying clusters,

which dominated the cluster structure in the next few iterations. Fig. 2.2c, Fig.

2.2d and Fig. 2.2e show that more and more data points received high margins and

were included by the training set through the iterations. Eventually, the clustering

converged in the fourth iteration.
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2.5.3 Testing Results for Real-life Datasets

Table 2.3: Average and Standard Deviation (in Parentheses) of the Purity Measure
Obtained by Different Clustering Algorithms on Different Datasets. The Last Row
Summarizes the Counts of Win/Loss/Even Cases of CRAFTER Compared to Each
Other Method Based on the t Tests with Corrected Level of the Significance

scenario dataset K dataset type K-means/modes/prototypes RF-PAM RF-CLARA CRAFTER

1 Breast cancer 2 numeric 0.908 (0.003) 0.894 (0.016) 0.892 (0.020) 0.899 (0.023)

2 Mice protein 2 numeric 0.588 (0.000) 0.744 (0.039) 0.768 (0.071) 0.607 (0.101)

3 Mice protein 4 numeric 0.768 (0.040) 0.756 (0.039) 0.751 (0.038) 0.875 (0.118)

4 Mice protein 8 numeric 0.824 (0.030) 0.816 (0.025) 0.821 (0.028) 0.927 (0.072)

5 Pen digits 10 numeric 0.731 (0.038) - 0.682 (0.022) 0.726 (0.026)

6 Pen digits 20 numeric 0.850 (0.017) - 0.784 (0.017) 0.827 (0.037)

7 Voting 2 categorical 0.859 (0.007) 0.855 (0.010) 0.851 (0.012) 0.856 (0.023)

8 Soybean 4 categorical 0.799 (0.091) 0.949 (0.035) 0.951 (0.034) 1.000 (0.000)

9 Mushroom 2 categorical 0.715 (0.125) - 0.771 (0.042) 0.774 (0.086)

10 Mushroom 3 categorical 0.787 (0.078) - 0.835 (0.029) 0.876 (0.020)

11 Mushroom 4 categorical 0.845 (0.057) - 0.867 (0.015) 0.876 (0.037)

12 Credit 2 mixed 0.705 (0.122) 0.673 (0.066) 0.695 (0.055) 0.739 (0.054)

13 Credit 3 mixed 0.731 (0.082) 0.702 (0.028) 0.692 (0.055) 0.726 (0.044)

14 Credit 4 mixed 0.765 (0.053) 0.713 (0.031) 0.710 (0.032) 0.679 (0.060)

15 KDD1999 2 mixed - - 0.806 (0.000) 0.806 (0.000)

16 KDD1999 3 mixed - - 0.976 (0.003) 0.980 (0.003)

17 KDD1999 4 mixed - - 0.975 (0.007) 0.979 (0.011)

# of win/loss/even of CRAFTER 4/2/8 4/1/4 8/1/8

Table 2.3 summarizes the performance of different clustering algorithms on the

8 real-life datasets (17 scenarios). For each clustering method and each clustering

scenario, we run the experiments for 20 times and the average and the standard devi-

ation (in parentheses) of the purity measure are presented. In the table, the cluster-

ing results for K-means and its extensions, K-modes and K-prototypes, are presented

in the same column for numeric, categorical and mixed datasets respectively. The

K-prototypes in R package “clustMixType” failed to cluster the KDD1999 sample

dataset, therefore their results are not provided here. We do not provide the results

39



of RF-PAM for pen digits, mushroom and KDD1999 datasets due to the high compu-

tational cost for larger datasets, especially for multiple replicates of experiments. For

the numeric dataset, because the attributes in the breast cancer and mice protein data

are of very different scales, these attributes were normalized to have 0 mean and 1

standard deviation before applying K-means clustering. All the attributes in the pen

digits data had already shared the same range, so no transformation was performed.

On the other hand, there was no need to perform any kind of data transformation

before applying CRAFTER or RFCs due to their scale-invariant property.

For each scenario, we compare CRAFTER to each of the other methods using

t tests. The level of significance is corrected to α/As based on the Bonferroni cor-

rection, where α = 0.05, and As is the number of other clustering algorithms we

compare to in scenario s, s = 1, ..., 17. The need of this correction in the multiple

comparisons is highlighted in [64] and [65]. For example, in scenario 1, three pairs of

t tests (CRAFTER vs. K-means/modes/prototypes, CRAFTER vs. RF-PAM, and

CRAFTER vs. RF-CLARA) are performed, thus the null hypothesis is rejected only

when p value < 0.05/3 = 0.017. Two methods are considered to perform evenly when

the t test after the correction shows insignificance. A win or a loss is counted when the

t test shows the significant difference. The last row of Table 2.3 summarizes the num-

ber of times that CRAFTER wins, loses or performs evenly compared to each of other

clustering algorithms. From this summary, we observe that CRAFTER has more wins

than losses compared to any other method included in the comparison. More specif-

ically, CRAFTER has a slight advantage over K-means/modes/prototypes, and the

advantage of CRAFTER lies more in handling various clustering tasks with only

one approach. Compared to RF-CLARA, CRAFTER performs significantly better

in 8 out of 18 scenarios with only 1 loss. Despite that the Bonferroni correction is

quite conservative and results in many even cases, this comparison demonstrates that
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CRAFTER’s overall performance is stronger than that of RF-CLARA. The box-plots

in Fig. 2.2 compares CRAFTER to RFCs in terms of not only purity, but also Rand

Index and CMM. CMM is not calculated for KDD1999 dataset due to the high mem-

ory usage for this case. We find that the three measures give very similar evaluation

for both the quality and the variation of the clustering results. We also observe that

CRAFTER generates better clusters than RFCs for most testing scenarios, but some-

times results in a slightly higher variance (e.g. breast cancer, mice protein, pen digits

and credit approval). It is worth mentioning that CRAFTER is a lot more scalable

than RF-CLARA. For example, based on our implementation in R, it took CRAFTER

around 30 seconds on average to cluster the 20,000 instances in the KDD1999 sample

dataset into 4 clusters, but the same task took RF-CLARA around 8 minutes to com-

plete. As observed in Fig. 2.2q, the clusters found by CRAFTER is slightly better

with much less computational cost compared to RF-CLARA. This comparison shows

that CRAFTER is a better scalable clustering solution than RF-CLARA which also

leverages the advantages of a tree-based method.

2.5.4 Efficiency-effectiveness Trade-off

Constraining the depth of the tree (or the total number of leaf nodes) can reduce

the computational complexity of CRAFTER to O(N) and makes it scalable for large

dataset. The question is how this constraint would affect the quality of the clustering

result. Two other parameters that affect the clustering speed are: 1) the number of

iterations allowed and 2) the number of the trees in the RF model in each iteration.

Here we investigate the impact of these three parameters based on breast cancer,

credit approval and congressional voting datasets. The average clustering purity

over 20 experimental replicates against the three parameters are presented in Fig.

2.3. The default setting is the unconstrained depth for each tree, 500 trees for each
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RF model, and a maximum of 20 iterations. In our experiment, when changing

one parameter, the other two parameters remained the default. From Fig. 2.3 we

observe that the changes of these three parameters do not affect the clustering quality

much. In fact, the most computational expensive setting does not necessarily produce

the best clustering. The purity difference across different parameter settings are

insignificant. Two conclusions can be drawn from this experiment: 1) the performance

of CRAFTER is insensitive to the settings of these three parameters, 2) to cluster

large datasets, we may consider the setting that has linear computational complexity.

2.5.5 Scalability Test

Rule-sets were used to test the scalability of CRAFTER. To reduce the computa-

tions for these large datasets, in each iteration of the main step, a RF composed of

100 trees with at most 30 leaf nodes was trained instead, and the maximum number

of iterations allowed was also reduced to 10. Our experiments in Section 2.5.4 shows

that the performance of CRAFTER is insensitive to the configuration change.

The analysis in Section 2.3.4 has concluded that the computational complexity for

CRAFTER is O(N logN), mostly determined by the computations of building the

RF models in the main step. Here it is shown that the computational complexity can

be further reduced to O(N) for large datasets. Fig. 2.4 depicts that the computing

time increases with the sizes of the Rule-sets, and a nearly linear increasing trend is

observed. The complexity of RF training becomes close to O(N) if constraints on

the maximum number of leaf nodes or the maximum depth of trees are added. For

tree-ensemble methods, this is a common strategy when dealing with large datasets.

In the figure, the small deviations from the regression line are due to the different

numbers of iterations needed for the clustering to converge on different datasets. In

conclusion, in practice, CRAFTER can be used as an approximately O(N) algorithm.
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2.6 Limitations and Future Work

CRAFTER is not a deterministic algorithm, so in terms of the quality of the

generated clusters, variation exists from run to run. However, as shown in the box

plots in Fig. 2.2, the variance of the clustering results is acceptable as the clustering

quality is better in general. Another limitation of CRAFTER is that the it is not

designed to optimize a specific objective function but based on a heuristic, so only

empirical evaluations and comparisons are allowed.

For the future work, we will aim to improve the performance of CRAFTER for

special cases, and empirically compare it to more specialized algorithms, such as

ROCK [44] for categorical datasets and Birch [66] for numeric datasets. Also, as the

final clusters are organized by a black-box ensemble model, more work can be done

to better interpret the found clusters.

2.7 Conclusion

We have proposed a new tree-ensemble clustering algorithm which can effectively

handle large datasets with mixed attributes and high dimensionality. Different from

traditional clustering methods, CRAFTER tackles the unsupervised problems from

a supervised-learning perspective. It adopts tree-ensembles in both the initialization

and main steps, and inherits the desirable properties of tree-based methods through-

out the entire algorithm. Compared to RFC, an existing tree-based clustering al-

gorithm, CRAFTER first avoids the computations of the pair-wise distances for the

entire dataset with a sampling approach, and then it replaces the computationally in-

tensive K-medoids with a simple supervised RF-ensemble. All of these enhancements

make CRAFTER a scalable and storage-efficient clustering algorithm. In terms of the

quality of the clusters, our experiments demonstrate that CRAFTER is either com-
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parable with or better than K-means, K-modes, K-prototypes and RFC in their own

applicable domains. With all the desirable properties discussed above, CRAFTER

has the potential to handle different clustering tasks in a wide variety of applications

in the future.
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(a) breast cancer (b) pen digits (10 clusters)

(c) pen digits (20 clusters) (d) mice protein (2 clusters)

(e) mice protein (4 clusters) (f) mice protein (8 clusters)

(g) soybean (small) (h) congressional voting

(i) credit approval (2 clusters) (j) credit approval (3 clusters)
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(k) credit approval (4 clusters) (l) mushroom (2 clusters)

(m) mushroom (3 clusters) (n) mushroom (4 clusters)

(o) KDD 1999 (2 clusters) (p) KDD 1999 (3 clusters)

(q) KDD 1999 (4 clusters)

Figure 2.2: Box-plot Comparison Between CRAFTER and RFCs Based on Purity,
Rand Index and CMM

46



(a) purity vs. max leaf nodes (b) purity vs. ntrees (c) purity vs. max iterations

Figure 2.3: Relationship Between the Performance of CRAFTER (Estimated by
Average Purity) and 3 Parameters: (a) the total number of the leaf nodes for each
tree in the RF model, (b) the number of trees in the RF model in each iteration, (c)
the maximum number of iterations allowed

Figure 2.4: Execution Time of CRAFTER vs. Sizes of Datasets: estimated based
on the average execution time over 10 replicates (in seconds) on different sizes of
synthetic Rule-sets. The regression line indicates a approximately linear relationship.
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Chapter 3

BAG-OF-SEGMENTS REPRESENTATION FOR GENOME SEQUENCING

DATA

3.1 Introduction

Genome sequencing data can be considered as a special type of time series data as

their attributes are in biological order. The human genome contains approximately

3 billion of base pairs, and that implies that each instance may have as many as 3

billion features. However, the number of instances (e.g. patients, tumor samples,

etc.) for a medical study is usually smaller compared to other studies due to the

higher cost. The nature of high dimensionality and small data presents a specific

challenge for the classification problems involving genome sequencing data. In this

chapter, we introduce a compact data representation for the genome sequencing data.

The method can generalize to other time series classification problems which share

similar properties (very long time series and small dataset). We named this new rep-

resentation Bag-of-Segments (BoS). With this new representation, standard machine

learning algorithms can be applied to obtain a classification model.

BoS data representation is similar to the family of Bag-of-Features methods. Bag-

of-Features methods have been extensively used in the classification of images [67],

time series [38] and text documents [68]. Here we extend the methodology to the

classification problem of genome sequencing data or very long time series.

In this chapter, we study the grade classification problem of the ovarian serous

carcinoma in order to demonstrate the effectiveness of BoS representation. The input

data is the sequencing profile of the Copy Number Alterations (CNAs) (as shown in
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Fig. 3.1). Although the sequencing data is obtained through low-coverage sequencing

(1000 base pairs represented by one attribute), it contains over 250 thousand ordered

attributes per instance. On the contrary, we only have 34 instances, significantly

smaller than the number of attributes. Our experiment shows that the BoS represen-

tation can effectively extract CNA patterns predictive of tumor grades and lead to

high classification accuracy. Furthermore, the analysis of the BoS features contributes

to the differentiation highlighting two different underlying biological processes. One

involves large scale deletions or amplifications suggesting abnormal mitotic events

while the other involves local amplification and deletions commonly associated to

DNA repair malfunctions.

(a) A low grade example

(b) A high grade example

Figure 3.1: Low-grade and High-grade Examples for the CNA Profile Data: colors
are used only to distinguish the consecutive chromosomes.
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3.2 Backround

3.2.1 Copy Number Alterations (CNAs)

Defined as somatic gain or loss of DNA regions, Copy Number Alterations (CNAs)

are reflective of genome instability, frequently affecting functionally important genes,

such as tumor suppressors and oncogenes. CNAs are also associated to the early onset

of tumor. CNAs include both deletions and amplifications of large or small genome

regions. Large scale CNA events involving whole chromosome or chromosome arms

alterations also referred as aneuploidy. Small deletion events may target local regions

of the genome harboring tumor suppressor genes locations, while amplifications pref-

erentially target oncogenes locations [69]. As the consequence of tumor progression

and evolutions, CNAs are not randomly distributed across the genome. The profiles

of CNAs may provide a fingerprint specific to a tumor type or tumors class [18].

3.2.2 Ovarian Serous Carcinoma

Ovarian serous carcinoma is a group of heterogeneous diseases that are further

classified into low grade and high grade serous carcinoma based on their histologic

features. These two groups are thought to be mutually exclusive based on their

molecular characteristics. The majority (96%) of high grade serous carcinomas have

TP53 mutations and show high level of chromosomal copy number changes through

the entire genome, whereas low grade serous carcinomas dont have TP53 mutations,

show KRAS and BRAF mutations and in most cases are near diploid [70].

3.2.3 Low-coverage Whole Genome Sequencing

The availability of Next Generation Sequencing (NGS) technology platforms has

enabled the study of CNAs at a genome wide scale and at an unprecedented level
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of resolution. Not only the precision of the CNAs detection is enhanced but also

the number of copy changes can be more accurately defined. Numerous methods

are available to report CNAs from high-coverage whole genome sequencing and for

low-coverage sequencing (LC-WGS). LC-WGS has recently gained interest since suc-

cessfully translated into clinical applications. The Non-Invasive Prenatal Test (NIPT)

is one example where cell free DNA of pregnant woman is sequenced a low coverage

(< 1x) to report the presence of fetal DNA aneuploidy. The expertise acquired in our

group in the processing of LC-WGS as led us to explore how CNAs reporting from

LC-WGS combine with machine learning techniques can be used to stratify tumor

biospecimens of different grades.

3.2.4 Bag-of-Features and Bag-of-Segments

Bag-of-Features approaches usually consist of two steps: local feature extractions

and dictionary construction. For images, the local features could be texture features

such as HoG (short for Histograms of Gradients) [36] and SIFT (short for Scale-

Invariant Feature Transform) [37]. For time series, they could be local statistics such

as mean and standard deviation [38]. The dictionary can be constructed using either

a supervise method [39] or an unsupervised method (e.g. clustering). In general, the

dictionary is constructed by partitioning the local features into different groups, and

each group represents a “word” in the dictionary. The Bag-of-Features representation

is the frequency distribution over these groups. Although currently surpassed by other

methods such as deep learning, Bag-of-features remains a strong method when dealing

with small sample sizes like in the case for our study.

The proposed BoS is a variant of the Bag-of-Features methods for the CNA profile

data. In this case, the local features are the width and the height of the segments of the

sequencing after a segmentation step. The development of this method incorporates
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the domain knowledge regarding the CNAs profiles and aims to reflect the scale

differentiation of the deletion or amplification associated with tumor grades.

3.3 Data and Pre-processing

In this study, we have collected and processed 34 sequencing coverage profiles from

patients with ovarian serous carcinoma. Among these patients, 14 cases were diag-

nosed with high-grade and the remaining 20 with low-grade ovarian serous carcinoma

based on the histologic review of the surgical material from tumor debulking surgery.

In each case, area of tumor was macrodissected from the Formalin-Fixed-Paraffin-

Embedded (FFPE) tissue blocks and DNA was extracted using Qiagen extraction

kit. Sequencing reads were produced by Hiseq 4000, with multiplexing 8 samples

per lane. Samples were preprocessed by Wandy [17]. Wandy accumulates the sparse

sequence reads into 10000 base long bins and performs several noise reduction pro-

cedures to more accurately characterize changes in coverage characteristic of CNVs.

As a result, each point in the input sequencing data is the coverage of WGS in 10kb

genome window.

3.4 Method

The proposed method for the tumor grade classification based on LC-WGS data

consists of three major steps: 1) the segmentation of CNA profiles and extraction of

the local features (the segment width and the segment height) 2) BoS representation.

3) the training of the classification model using the BoS representation as the input.

3.4.1 Segmentation

We apply a top-down regression tree (CART algorithm [23]) to segment and iden-

tify the step-wise changes in the sequencing data. More specifically, the regression
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tree model is fitted to the sequence coverage of each chromosome resulting into 23

regression tree models per sample. During this process bin index is considered as

the predictor variable, and the coverage value at each bin is considered as the target

variable. Each leaf node of a regression tree represents a CNA segment. To obtain

a step-wise signal of a proper level of complexity, the CART algorithm is tuned by

modifying the cost-complexity parameter (Cp). When Cp is too large, the segmen-

tation may be too coarse to detect the high-grade signal. On the contrary, if Cp is

too small, the segmentation may overfit the noise in the data. Fig. 3.2 uses the CNA

profile data of the chromosome 12 from one tumor sample as the example to illustrate

the effect of Cp.

Each segment is then characterized by a width (in proportion to the chromosome

length) and a height (in log2 ratio to the median coverage). Fig. 3.3 gives a segmen-

tation example for the entire CNA profile (23 chromosomes) and the corresponding

2D distribution of the height and the width of its segments.

3.4.2 Bag-of-Segments

The CNA segments from all the samples are aggregated to produce a single 2D

distribution of heights and widths, as illustrated in Fig. 3.4. The CNA segment

dictionary is defined based on the 2D distribution as follows.

In analogy to the dictionary for a text document, the dictionary for the sequencing

segments is a collections of CNA segment classes. Each CNA segment class represents

the segments with certain characteristics, similar to a “word” in the dictionary. We

define the CNA segment classes in an unsupervised manner. More specifically, let

hα and h1−α denote the α and 1− α percentiles of the segment heights, and wα and

w1−α denote the α and 1 − α percentiles of the segment widths. The black lines in

the right subfigure of Fig. 3.4 indicate these quantiles. Using the quantiles of both
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(a) Cp = 0.001 (b) Cp = 0.005 (c) Cp = 0.01

(d) Cp = 0.05 (e) Cp = 0.1 (f) Cp = 0.2

Figure 3.2: Results of Regression-tree Segmentation with Different Cp Values Based
on a Chromosome-12 Sample

(a) (b)

Figure 3.3: Segmentation Result of a Whole Genome Sequencing Example and its
2D Representation: (a) each red dot is coverage of WGS in 10 kb genome window.
Black lines indicate the segmentation results fitted by CART. (b) the 2D distribution
of the segment width and height based on the segmentation results in (a).

the width and the height, 9 CNA segment classes (NA, MA, WA, NN, MN, WN, ND,

MD, WD) are defined as based on the rules described in Table 3.1. For each sample,

its segment frequency distribution over the segment classes generates the fix-length

BoS representation. We use quantiles instead of a clustering algorithm to partition

the space of segment height and segment width for better interpretability.
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Figure 3.4: Workflow of Bag-of-Segments: the 2D distributions in the height-width
space of the segments from different samples (on the left) are aggregated into a single
distribution (on the right). The dictionary is defined by the 9 cells divided by the
black lines which were drawn based on the percentiles of the width and the height.
The marginal density estimates for the width and height are shown on the top and
the left of the aggregated distribution plot respectively. The points for the segments
and their marginal density estimates are denoted in blue for the low grade samples,
and those are denoted in red for the high grade samples.

Table 3.1: Categorization for the Segments

w < wα wα ≤ w < w1−α w ≥ w1−α row sum

h ≥ h1−α Narrow Amplified (NA) Medium Amplified (MA) Wide Amplified (WA) Amplified

hα ≤ h < h1−α Narrow Normal (NN) Medium Normal (MN) Wide Normal (WN) Normal

h < hα Narrow Deleted (ND) Medium Deleted (MD) Wide Deleted (WD) Deleted

column sum Narrow Medium Wide

3.4.3 Classification Model

A Random Forest (RF) model [22] was trained on the BoS representation. In

addition to the classification, the RF model measures the variable importance using

the average Gini information gain enabling the identification of important features.

RF also provides continuous score between 0 and 1 for the grade classification, which

is meaningful in the real experimental environment, as the tumor samples could be

diluted by normal cells, and that may reduce the confidence of the classification.
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Table 3.2: Examples for the Final Bag-of-Segments Representation: the upper table
provides examples for the representation based on the raw counts over 9 segment
classes; the lower table presents the final BoS representation based on the frequency
distribution

MA MD MN NA ND NN WA WD WN Grade

1 9 16 9 9 1 2 2 1 1 High

2 1 1 2 1 2 0 1 1 18 Low

3 0 4 2 0 2 1 4 3 12 Low

4 0 0 1 0 1 0 3 0 19 Low

... ... ... ... ... ... ... ... ... ... ...

MA MD MN NA ND NN WA WD WN Grade

1 0.1800 0.3200 0.1800 0.1800 0.0200 0.0400 0.0400 0.0200 0.0200 High

2 0.0370 0.0370 0.0741 0.0370 0.0741 0.0000 0.0370 0.0370 0.6667 Low

3 0.0000 0.1429 0.0714 0.0000 0.0714 0.0357 0.1429 0.1071 0.4286 Low

4 0.0000 0.0000 0.0417 0.0000 0.0417 0.0000 0.1250 0.0000 0.7917 Low

... ... ... ... ... ... ... ... ... ... ...

3.5 Experimental Results

3.5.1 Model Evaluation and Sensitivity Analysis

Because of the small sample size, we estimate the generalization of our method

through leave-one-out cross-validation (LOOCV). The Cp and α are two critical pa-

rameters affecting our results: Cp controls the complexity of the regression tree in

the segmentation step, and α is the quantile percentage for defining CNA segment

classes. We perform sensitivity analysis with different Cp values (0.001, 0.005, 0.01,

0.05, 0.1, 0.2) and different α values (0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45). For each

combination, LOOCV using RF model was repeated 10 times to obtain the average

accuracy and the results are presented in Fig. 3.5.
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Figure 3.5: Sensitivity Analysis with Various α and Cp: for each combination
the average leave-one-out cross-validation accuracy over 10 experimental replicates is
reported

Our method shows high accuracy on the ovarian serous carcinoma classification

study. Over 98% LOOCV accuracy was obtained in various parameter combinations.

It is shown that our method performs the best when Cp = 0.05. It achieved 100%

accuracy with multiple different α values. We also observe that the accuracy of our

method is more sensitive to the choice of Cp than the choice of α. When Cp is properly

selected (= 0.1 or 0.05), our method works well with a wide range of α values. From

this experiment, we see that many combinations of these two parameters can work

well in the context of CNA sequencing data classification. It shouldn’t be difficult to

find a good parameter choice for another problem. For this study of ovarian serous

carcinoma, Cp = 0.05 is recommended.

3.5.2 Evaluation on the Reduced Feature Sets

In addition to building a classifier, we may be interested in a reduced number

of features as clinical metrics. Three sets of features derived from the original 9-

feature BoS representations are considered here for the evaluation. The first feature
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set consists of the most important features based on the RF importance score as

depicted in Fig.3.6c. According to RF importance, feature Narrow Amplified (NA)

and feature Wide Normal (WN) are the most important features. The second feature

set, amplified, deleted, normal, is another BoS representation where the segment

classes are only defined by the height quantiles. Similarly, the third feature set is

narrow, medium, wide which is defined by the width quantiles. We can also consider

the second and the third feature sets as a linear combination of the 9-feature BoS

representation as explained in Table 3.1. In our experiments, Cp = 0.05 and α = 0.25

are used, and LOOCV with RF model was repeated 10 times to obtain the average

accuracy for each feature set.

Table 3.3: Classification Accuracy Comparison with Different Feature Sets

features sets mean LOOCV accuracy (%)

all 98.82353

Top 2 RF features {Narrow Amplified, Wide Normal} 99.11765

height features (deleted, normal, amplified) 91.47059

width features (narrow, medium, wide) 100

The average LOOCV accuracies of the three feature sets are presented in Table

3.3. The top 2 RF features features can already achieve 99.12% average LOOCV

accuracy. Also, we observe that the width-defined features are more important than

the height-defined features. The width-defined features themselves are already able

to achieve 100% accuracy on average, while the average accuracy of the height-defined

features is only 91.47%. Therefore, {Narrow Amplified, Wide Normal} or the width

features can be potentially used as clinical metrics.

The good performance of the width-defined features also implies that our method

can still be useful when the tumor samples are diluted by the normal cells. In those

scenarios, the signal contained in the segment heights gets weakened, while the signal

in the segment width is still preserved.
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3.5.3 Biological Interpretation of Bag-of-Segments

(a) high-grade vs. low grade (b) correlation plot (c) RF feature importance plot

Figure 3.6: The Comparisons on the Bag-of-Segment Features

To understand the biology behind the BoS features, we provide the feature corre-

lation plot in Fig.3.6b and the feature comparison box-plot between the low grade-

and the high grade-samples in Fig.3.6a. From Fig.3.6b we observe that narrow-width

and medium-width features are positively correlated with each other, and negatively

correlated with the wide-width features. This divides the features into two groups,

representing two underlying biological patterns. The narrow- and medium- width

features are associated with local amplification and deletion, while the wide-width

features describe the process of large scale deletion or amplifications. Furthermore,

from the boxplot in Fig.3.6a, we discover that there are more local amplification

and deletion in high-grade samples, compared to the low-grade samples where more

largescale deletion and amplification appear.

3.6 Conclusion

In this chapter, we develop a method to classify the ovarian serous carcinoma

into high grade and low grade with high accuracy. BoS is proposed to represent

the information of the CNAs sequencing coverage data. The new representation
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summarizes each sequencing coverage data into 9 features predictive of the tumor

grades. The relationship between the extracted features and the underlying biological

processes are discussed. Furthermore, we identify some smaller sets of the features

which can potentially be used as clinical metrics in practice. This method specifically

may be beneficial in classifying ovarian serous carcinoma in patients with ambiguous

histologic features. In such challenging cases, prediction of a low versus high grade

disease by this method may provide valuable clue for patient clinical management.

In the next chapter, we discuss the limitations of BoS, and extend BoS to a more

powerful representation method with less assumption on the data.
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Chapter 4

LSDF: LOCATION-AWARE SUPERVISED DICTIONARY LEARNING BY

FOREST FOR SEQUENCING DATA

4.1 Motivation

In the previous chapter, we developed a simple data representation method, BoS,

for the grade classification of the ovarian serous carcinoma. This representation leads

to high classification accuracy. BoS assumes that the location of a specific type

of segment is unimportant for the classification. For example, the two time series

segmentations shown in Fig. 4.1 would have identical BoS representation. This

assumption may be too strong for the applications where the locations of the local

events are actually informative for the classification decision.

Figure 4.1: Two Time Series Segmentation Results that Have Identical BoS Repre-
sentation

Also, in BoS, the dictionary (the collection of several types of segments) is de-

fined in an unsupervised manner, which doesn’t ensure the prediction power of the

representation. For example, suppose 2 local features extracted from the segments

obtained from two time series of different labels are distributed as that in Fig. 4.2a.

If we generate a dictionary of size 2 using a Euclidean-distance-base clustering al-
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gorithm, we can obtain the clusters shown in Fig. 4.2b, and two time series have

identical representation (0.5, 0.5). If we defines the dictionary differently as shown

in Fig. 4.2c, the representation for two time series will be (0, 1) and (1, 0). This is a

better representation as it is discriminative of the class labels. The second represen-

tation can be obtained by a supervised method which takes the labels of the original

time series into account.

(a) Local features

(b) Unsupervised dictionary learning (c) Supervised dictionary learning

Figure 4.2: An Example to Demonstrate the Advantage of the Supervised Dictionary
Learning: the different shapes indicate different time series classes, and the colors
indicate the groups used to define dictionary. Here a supervised method (c) will
result in a more discriminative representation compared to an unsupervised method
(b).

With these motivations, in this short chapter we present a Location-aware Super-

vised Dictionary learning algorithm using Random Forest (LSDF) as the extension

to the previous chapter. We apply our method to the grade classification problem

using the UCEC dataset obtained from the TCGA network [4] to demonstrate its

effectiveness.
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4.2 Method

Similar to the work flow in the previous chapter, the classification method using

LSDF representation consists of three steps: 1) segmentation of the time series, 2)

constructing the LSDF representation and 3) training a classification model.

The first and the third steps are identical to the ones for BoS as discussed in

Section 3.4.1 and Section 3.4.3. As a reminder, we used a regression-tree based

approach for the segmentation and a random forest model as the final classification

model. Here our discussion focuses on the LSDF representation.

To learn the dictionary supervisely, the first step is to construct a labeled segment-

level dataset. Each segment is described by its height, width as well as the location

of the segment center if the location is considered important for the classification.

For the training set, each segment is labeled by the class label of the time series from

which it is segmented. The resulted segment-level dataset has the form of the data

table shown in Table 4.1.

Table 4.1: Example for a Segment-level Dataset

segment ID width height center location label

1 100 50 50 A

2 40 10 120 A

... ... ... ... ...

26 10 100 5 B

... ... ... ... ...

A RF model consisted of T trees, with each tree containing D leaf nodes, is

trained on this segment-level dataset. For a time series instance, each tree in the

RF generates a length-D vector representation using the leaf node distribution of

its segments when passed through the tree model. The final representation from
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the RF model is generated by concatenating all the tree representations. Therefore,

the final LSDF representation for each time series instance has a length of T × D.

Table 4.2 gives a few examples for the final representation. Each feature in the final

representation represents a certain type of segment (at certain region of the time

series, within certain ranges for the segment height and the segment width).

Table 4.2: Examples for the LSDF Representation

times series ID tree 1 tree 2 ... tree T label

leaf 1 leaf 2 ... leaf D leaf 1 ... leaf D ... leaf 1 ... leaf D

1 20% 10% ... 50% 5% ... 20% ... 10% ... 30% A

2 10% 15% ... 5% 50% ... 10% ... 40% ... 5% B

3 0% 10% ... 50% 10% ... 20% ... 8% ... 25% A

4.3 TCGA UCEC Data

For our experiments, we use uterine corpus endometrial carcinoma (UCEC) data

generated by the TCGA Research Network [4] to form a classification problem. Com-

pared to the CNA profile data used in Chapter 3, this data is subjected to more

noise. However, it has more genome sequencing samples than the previous study and

therefore allows more complex modeling techniques. We consider a binary classifica-

tion problem, where the original labels “G1” and “G2” are relabeled as the low-grade

class, “G3” and higher grades are relabeled as the high-grade class. As the result, we

have 191 low-grade instances and 301 high-grade instances.

The sequencing data provided by TCGA has already been segmented, so we skip

the segmentation step. When considering the location information, we need to gen-

erate the dictionary and representation for each chromosome separately and then

concatenate them, resulting in a total of 23 × T ×D features. If the location is not

considered, the number of features in the final representation can be reduced to T×D.
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4.4 Experimental Results

We perform 5-fold cross-validation (CV) to estimate the performance of each

method. A default RF model with 500 trees is used as the classification in all the

experiments. The following 3 data representation methods are compared: 1) unsuper-

vised dictionary learning with K-means clustering; 2) supervised dictionary learning

without the location information; 3) location-aware supervised dictionary learning

method (LSDF).

For the unsupervised dictionary learning with K-means algorithm, different K

values are tested. Because the location information is not considered, the clustering

is only based on the segment height and segment width after the standardization.

The 5-fold cross-validation accuracy for different K values is presented in Table 4.3.

The highest accuracy is obtained when K = 500. The best CV accuracy for the

unsupervised dictionary learning method is 0.715.

Table 4.3: CV Accuracy for K-means Dictionary Learning with Different K

K 10 20 50 100 500 1000 2000 3000 5000

CV accuracy 0.685 0.663 0.667 0.687 0.715 0.699 0.671 0.691 0.665

For the supervised dictionary learning, different combinations of T and D values

are experimented. The number of the trees T considered for LSDF (method 3) is

smaller than method 2 (the version without considering location information) because

the total number of features is scaled up by factor of 23 due to the number of the

chromosomes.

As we can observe from the results, the supervised method improve the accuracy

over the unsupervised method, and the accuracy is further improved by taking the

location information into account in this particular case. The best CV accuracy is

obtained using the LSDF method with T = 10 and D = 30. The best CV accuracy
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Table 4.4: CV Accuracy for Supervised Dictionary Learning without Location In-
formation with Different T and D Values

D

10 20 30 50 100 200

T

10 0.689 0.709 0.713 0.715 0.726 0.734

50 0.691 0.722 0.709 0.715 0.722 0.711

100 0.695 0.715 0.711 0.717 0.72 0.709

Table 4.5: CV Accuracy for Supervised Dictionary Learning with Location Using
Different T and D Values

D

10 20 30 50 100 200

T

5 0.738 0.717 0.74 0.736 0.728 0.734

10 0.732 0.752 0.758 0.742 0.726 0.711

50 0.742 0.732 0.746 0.754 0.742 0.709

Table 4.6: Confusion Matrix for the LSDF Representation with T = 10 and D = 30

predicted

actual low grade high grade

low grade 124 67

high grade 52 249

obtained by LSDF is 0.758, higher than that obtained by the unsupervised method

(0.715). The corresponding confusion matrix is presented in Table 4.6. From the

confusion matrix, we observe that the high grade samples are easier to predict than

the low grade samples.
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4.5 Summary

This chapter is an extension of the BoS representation method proposed in the

previous chapter. It aims to extract more complex and more discriminative represen-

tation from time series data using a supervised method, which may require a larger

dataset in practice. The case study on the TCGA UCEC dataset demonstrates that

supervised dictionary learning and incorporating the location information can im-

prove the predictive power of the representation and result in better performance for

the machine learning models.
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Chapter 5

GCRNN: GROUP-CONSTRAINED CONVOLUTIONAL RECURRENT NEURAL

NETWORK FOR TIME SERIES CLASSIFICATION

5.1 Introduction

Time series classification (TSC) is a classification task where the predictor at-

tributes are ordered. Compared to traditional classification problems, TSC is more

challenging due to the high-dimensional, ordered attributes. Typically the attributes

are auto-correlated, which implies redundancy in the data. Also, in contrast to other

classification tasks, a good TSC solution might rely on features related to the order

of the attributes.

TSC is important in many domains such as health care, manufacturing, finance,

etc. For example, for the seizure onset detection in health care, the primary tool is

based on the analysis of the EEG signal. In manufacturing systems, most monitoring

systems are based on the time series data collected from sensors.

The increase of publicly available temporal datasets promotes active research in

TSC in the last decade. Many researchers have tackled this problem through various

techniques. For example, there are distance-based classifiers such as Weighted Dy-

namic Time Warping [71], Mover-Split-Merge [72], dictionary-based classifiers such

as Bag of Patterns [73], shapelet-based classifiers such as Shapelet Transform [74],

and interval-based classifiers such as Time Series Forest [75] and Learned Pattern

Similarity [76]. A good review for the recent developments is provided by [12].

Also, previous research did not focus on the interpretation of the time series

patterns, which, however, is important for some applications. For instance, in a task
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where the genomic sequences are classified to different cancer types, we not only want

to obtain high accuracy, but also to understand where the discriminative patterns

appear in the sequence. One notable method along this effort is Sparse Multivariate

Tree (SMT) [77], where the time series classifier also provides location information

for the mean, slope and deviation patterns. The importance of the interpretability of

the time series classifier also motivates the development of this work.

Recently, deep learning techniques, particularly a Convolutional Neural Network

(CNN) (originally developed by [13]) and a Recurrent Neural Network (RNN) pro-

posed in the 80s [14] [15], have received interest in areas such as computer vision and

natural language processing. Refinements for RNNs use long short term memories

(LSTMs) [28] and gated recurrent units (GRUs) [29].

Consider the applications of CNNs or RNNs to time series data. CNNs are attrac-

tive for their feature learning ability. However, they do not fully explore the temporal

characteristics of time series data. RNN can effectively model the sequencing data,

but the dependencies in the raw time series may be too long for RNN to capture.

Combining two networks allows us to leverage the advantages of both CNNs and

RNNs. That is what this research aims to accomplish.

Here we present a new architecture, a general end-to-end deep neural network

model for general TSC tasks. We named our neural network model Group-constrained

Convolutional Recurrent Network (GCRNN). GCRNN takes the raw time-series as

the input without any feature engineering. Both the features and the classification

model are learned jointly through the training of the entire neural network. GCRNN

not only leads to good classification accuracy, it also highlights the most important

and discriminative time-series regions for the TSC task. That is a novel contribution

of this work, because neural networks are usually considered “black-box” models, and

are often difficult to interpret.
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GCRNN breaks down to three key components: a CNN module, a RNN module

and a fully connected module with a group lasso penalty. More specifically, the CNN

module learns the task-specific features through the training, and the RNN module

enhances the modeling of the temporal characteristics of time series. To connect a

CNN with a RNN, the outputs of the CNN module need to be redistributed in time.

This is handled with a new architecture. Finally, the outputs of RNN layers are fully

connected to the final layer of different classes. A sparse group lasso (SGL) penalty

is imposed on this final layer to discover the most discriminative regions as well as

to reduce the model complexity. Therefore, there are two key contributions in this

work. First, we propose a new architecture, an end-to-end system for general time

series classification. Second, our model is designed to be interpretable to highlight

the discriminative patterns.

The remainder of this chapter is organized as follows. Section 5.2 reviews the

related work and background knowledge. Section 5.3 introduces the GCRNN model.

Section 5.4 presents the experimental results and Section 5.5 discusses how our model

can be applied to real-world problems. Finally, Section 5.7 provides conclusions.

5.2 Related Work

5.2.1 Time Series Classification

At a higher level, most existing work for TSC follows two types: distance-based

and feature-based. The key part of distance-based methods is to measure the sim-

ilarity between two time series, and apply kernel-based classifiers such as k-Nearest

Neighbors (kNN) [78] or Support Vector Machine (SVM) [79]. A well-known ap-

proach to measure time-series similarity is through Dynamic Time Warping (DTW)

[80], based on an optimal matching. For feature-based approaches, features are ex-
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tracted from different window sizes at different regions of the time series. The features

could be based on simple statistics such as mean and variance [75] [38], or more com-

plicated ones like the spectrogram. These methods separate the feature extraction

part from the classification part, and the performance relies heavily on the quality of

these handcrafted features. Different tasks may require different sets of features to

obtain good classification performance. A principled and systematic way to design

features according to a specific dataset is not obvious. Ideally, the features should

be learned according to the task, which motivates the development of our model.

GCRNN learns the task-specific features through training, which frees the modeling

from feature engineering.

5.2.2 Deep Neural Networks

CNN has been extensively studied in image-related tasks, such as object detec-

tion [81] and face verification [82]. Previous study has shown that CNN has strong

capability to learn meaningful features [83]. However, its applications to TSC is more

recent. In [84], a multi-channel CNN was proposed, where a time series is put into

multiple CNNs and then the extracted features are concatenated. To train a com-

plex CNN model like this, large datasets are needed, which, unfortunately, is not

the case in many domains. RNN has led to impressive results in various tasks with

sequence data, such as machine translation [35], time series prediction [85] and time

series anomaly detection [86]. The invention of LSTM [28] and GRU [29] units makes

RNN applicable to model long-term dependency and overcomes the vanishing and

exploding gradient problem [27] of training deep networks. Applying RNN to time

series can benefit from the extraction of high-level features from the raw time series,

which further reduces the burden of modeling long-term dependency. In the proposed

GCRNN model, the features are learned jointly through the CNN module.
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There are some existing researches that connect CNN and RNN in an end-to-

end system. For image domain, such system was used in image captioning [87] and

visual question answering [88]. For speech recognition, [89] utilized both a CNN and

a RNN, and used the spectrogram of the speech signal as the network input. Instead

of forcing the model to use the full spectrum, the input of the proposed GCRNN

model is the raw time series with no feature engineering. With the unique network

architecture, only the relevant frequencies are utilized through the learned filters in

the convolutional layers.

In spite of the strong performance of neural network models, they are discouraged

in some applications due to lack of interpretability. Along the efforts to understand

how neural networks work, an attention mechanism was leveraged in [87] to uncover

attended image regions of the neural network when generating captions for images.

An attention mechanism was also introduced in [90] to model which part of sequence

to attend to in a machine translation task. For a similar goal, in this work, we propose

to use the sparse group lasso to understand the network’s attention in TSC tasks.

5.3 GCRNN Architecture

5.3.1 Overview

A time series of length T is denoted as x = {x1, x2, . . . , xT}, where xt is the

value(s) at time stamp t, and xt is a scalar for a single-channel time series or a vector

for time series with multiple channels. We assume that multiple time series are of

the same length (otherwise they are down-sampled or interpolated to equal length).

A time series dataset is denoted as D = {{xn, yn}Nn=1} which contains N time series,

each associated with label yn. For a C-class classification problem, yn ∈ {1, ..., C}.

72



(a) GCRNN network (b) Benchmark CNN network

Figure 5.1: Network Architectures of the GCRNN and the Benchmark CNN. The
bottom layer is the input time series with 1 channel, but both networks can work
with multi-channel time series. The CNN component includes 3 convolutional, ReLU
and max-pooling layers which are not shown here. With 3 max-pooling layers with
non-overlapping size-2 windows, each input region of 8 time steps maps to one unit
before the RNN layers

A robust classifier for time series data should be invariant to small distortion and

translation in the data. It should model the temporal characteristics of the time series,

but be aware of the redundancy contained in the data. Moreover, interpretability is

also a desirable property for a TS classifier. In some applications, we are interested

in not only the good classification accuracy, but also what discriminative patterns

contribute to the classification tasks.

GCRNN achieves these goals through three stacked modules: a CNN module, a

RNN module and a fully connected module with sparse group lasso penalty. The

CNN module generates the task-specific features. Thanks to the max-pooling layers,

the model is invariant to small distortion and translation in the data [91]. The

RNN module contributes to the modeling of the temporal characteristics. The SGL

imposed on the fully connected layer uncovers the important regions of the time series,

which makes the model more interpretable while less complex. In greater details, the

following subsections introduce each of the three modules.
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5.3.2 CNN Module

The CNN part is very similar to the architecture in LeNet [13][92], but in one

dimension. It consists of K convolutional, rectified linear units (ReLU) [25] and max-

pooling layers. The inputs of the CNN module are the raw time series. Suppose

that each input time series has m0 channels, and let mk and sk denote the number

of filters and the length of the filters at the k-th convolutional layer, for k = 1, ..., K.

Therefore, the trainable parameters of the CNN module are composed of the weight

matrices of size mk ×mk−1 × sk and threshold vectors of size mk, for k = 1, ..., K.

The ReLU activation function, f(x) = max(0, x), is applied to the outputs of

each convolutional layer for the nonlinearity, followed by a max-pooling over non-

overlapping intervals of length sMP . A max-pooling operation pools the maximum

over each interval as its output. Thus, the length of the output is reduced by a factor

of sMP . For instance, as depicted in Fig. 5.1a, after three max-pooling layers with

sMP = 2, the feature vectors at the outputs of the CNN module are approximately

of length T ′ ≈ T/8.

5.3.3 Connecting CNN with RNN (Redistributed in Time)

The feature vectors at the output of the CNN module are denoted as Fj, j =

1, . . . ,mK . Each feature vector has length T ′, so we have Fj = (Fj,1, Fj,2, ..., Fj,T ′).

Note that each feature vector is a higher level summary of the original time series

with a shorter length along the time axis. For example, in Fig. 5.1a, the first element

of each feature vector (in orange) approximately summarizes the information from

the starting of the time series (also in orange). Therefore, we can redistribute the

elements of the feature vectors along the time axis. Specifically, we reconstruct T ′

feature vectors, and each corresponds to a time stamp from 1 to T ′. They are F(t) =
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(F1,t, ..., FmK ,t), t = 1, ..., T ′. The new feature vectors are in the meaningful order of

time, which can be further modeled by the RNN module.

5.3.4 RNN Module

The RNN module consists of two layers of bidirectional RNNs, and each layer

can be unrolled to T ′ GRU units along the time axis. Because of the bidirectional

property, each unit accumulates the information from both sides of the time series,

with an emphasis on its own corresponding region. So each unit captures both local

and global information, which makes it reasonable to apply a group lasso penalty

(discussed later). The extensive comparison in [93] showed no significant difference

between the LSTM unit and the GRU unit. The time series data sets studied here

are not large (with less than 1000 instances). Therefore, we choose the GRU because

it has fewer parameters to train.

5.3.5 Fully Connected Module with Sparse Group Lasso

The output vectors from all the GRU units in the second RNN layer are fully

connected to the C units in the final layer, each representing a class in the TSC task.

Also, Dropout [94] is applied to this fully connected layer to mitigate overfitting.

Our final loss function to be minimized consists of two parts: a cross-entropy term

representing the classification error and a penalty term for the regularization

loss = cross entropy + penalty. (5.1)

Suppose that passing {xn, yn} through the network gives the outputs on(1), on(2), . . . , on(C),

and the batch stochastic gradient decent is used, then the cross-entropy term can be

written as

cross entropy = − 1

|Batch|
∑

n∈Batch

log on(yn). (5.2)
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We propose to use a sparse group lasso (SGL) penalty [95] to regularize the weights

of the final, fully connected layer. We consider the weights associated with each GRU

unit as a group. A SGL penalty blends the lasso (L1 norm) with the group lasso

(L2 norm) penalties in order to achieve a sparse solution at both the group and the

individual levels. The group lasso (L2) shrinks all the weights from the same GRU if

its corresponding region in the time series is not discriminative. A relatively high L2

norm from a group implies the high importance of a specific region. Within a group,

lasso (L1) also selects the important individual features. A parameter α determines

the weights between these two components, and a higher α increases the penalty on

groups.

The regularization term is

penalty = λα
T ′∑
t=1

√
pt||Wt||2 + λ(1− α)||W||1, (5.3)

where Wt is the weight matrix between the output vector of the t-th GRU unit and

the C class units. Specifically, Wt = {wt1,wt2, ...,wtC} for t = 1, ..., T ′. Each wtk

is a vector whose length depends on the output dimension of the GRU unit, and pt

is the total number of parameters in Wt. Here W represents the union of all the

parameters at this fully connected layer. That is W = {W1, ...,WT ′}. The threshold

terms are neglected here for the simplicity.

Because every unit encodes the information from the entire time series, but with a

different concentration/attention, a simpler model using only a few groups may have

captured all the important information for the classification. This is the objective

of the SGL regularization. Furthermore, the SGL provides feedback on the location

of the discriminative patterns in the original time series that conveys some useful

insights about the data, e.g., how the classes differ from each other.
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5.3.6 Benchmark Networks

This section lists the benchmark networks to be compared in our experiments.

GCRNN is first compared to a conventional CNN whose architecture is presented

in Fig. 5.1b. The CNN has identical structure for the CNN module compared to

GCRNN, but the two RNN layers in GCRNN are replaced with two fully connected

layers. This CNN architecture corresponds to the 1D CNN described by [96]. The

purpose of this benchmark is to demonstrate the effectiveness of RNN layers in the

temporal modeling, as well as the advantage of our joint CNN-RNN architecture.

In addition, several variations of GCRNN are considered in our experiments.

When λ = 0, GCRNN doesn’t have any penalization. This simplified model is refered

to as a Convolutional Recurrent Neural Network (CRNN) hereafter. When λ > 0, dif-

ferent values for α also result in different models. One special case is when α = 0, the

SGL penalty is simplified to a lasso penalty without any group-level regularization.

Both variations are compared in our experiments.

5.4 Experiments

For the convolutional module in both the CNN and the GCRNN models, we have

K = 3 convolutional, ReLU, max-pooling layers. For the size of the filters, we set

s1 = 21, s2 = 11, s3 = 5, and for the number of the filters, we set m1 = 5,m2 =

10,m3 = 20. The window size for the max-pooling, sMP , is set to 2. For GCRNN,

the dimension of the hidden memory size of the GRU unit is set to 20. Dropout [94]

is applied on the last fully connected layer in the GCRNN model and the last two

fully connected layers in the CNN model to alleviate the overfitting problem. The

Adagrad method [97] is used in the batch stochastic gradient descent, and the batch

size is set to 50 for all the data sets.
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In this preliminary study, the same network structure for GCRNN is tested for all

the data sets, , resulting in competitive accuracies. Additional tuning in the network

settings for each data set could potentially achieve better accuracy. However, because

the focus here is to illustrate the advantages of combining RNN with CNN, we did

not experiment with many other parameter settings.

5.4.1 Time Series Datasets

We experimented on 14 time series datasets from the UCR time series repository

archive [2]. Their characteristics are summarized in Table 5.1. Each data set has

been divided to a training set and a testing set by the provider. Only the training

set is involved in the training process of all the networks, and the testing set is tested

after each training epoch to provide the results presented in this chapter.

All the time series datasets have only one channel, so that m0 = 1 in our models.

But it is worth noting that our model is capable to handle multivariate time series in

an intuitive manner.

5.4.2 Experimental Results

We compare the following 6 models on the UCR datasets: GCRNN with α = 0.0,

GCRNN with α = 0.25, GCRNN with α = 0.50, GCRNN with α = 0.75, CRNN,

and CNN. We use λ = 0.001 for all the GCRNN models. Each model is trained

and tested 10 times with the default training-testing sets split. Fig. 5.4 presents the

median testing accuracies over the first 200 training epochs for each model on each

dataset. From Fig. 5.4, it can be observed that GCRNN/CRNN models outperform

CNN with a significant advantage in the testing accuracies in 10 out of 14 datasets.

In the other 4 datasets (Ham, Haptics, Yoga, HandOutlines), GCRNN/CRNN and

CNN perform almost equally at the end of the training. This comparison provides
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Table 5.1: Characteristics of the UCR Time Series Datasets
Datasets Number of classes Size of training set Size of testing set Time series length

Computers 2 250 250 720

FISH 7 175 175 463

FordB 2 810 3636 500

Ham 2 109 105 431

HandOutlines 2 370 1000 2709

Haptics 5 155 308 1092

LargeKitchenAppliances 3 375 375 720

OSU Leaf 6 200 242 427

RegrigerationDevices 3 375 375 720

ScreenType 3 375 375 720

uWaveGestureLibrary-X 8 896 3582 315

uWaveGestureLibrary-Y 8 896 3582 315

uWaveGestureLibrary-Z 8 896 3582 315

Yoga 2 300 3000 426

strong evidence for the effectiveness of the proposed GCRNN architecture for TSC.

Fig. 5.4 also reveals that different variations of GCRNN perform quite similarly. One

variation might performs slightly better than the others for a specific dataset.

To facilitate the comparison across different datasets, Fig. 5.2 shows box plots

of different models in terms of the normalized accuracies. We define the normalized

accuracy as the following. For each dataset, the median accuracy in the last 50

training epochs for each model is first calculated, then normalized by the highest

median accuracy among the 6 models. Therefore, the best model achieves 1 for the

normalized accuracy, while the others receive a value less than 1. From Fig. 5.2,

similar conclusions to the previous ones can be drawn. That is, GCRNN/CRNN

models significantly outperform the CNN model. Comparing the GCRNN model

with α = 0.75 to the CRNN model, we observe that the SGL regularization slightly

improves the classification accuracy.
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Figure 5.2: Normalized Median Testing Accuracy for 6 Neural Network Models on
14 TS Datasets

Although the goal of this work is not to improve the prediction results in specific

datasets, for reference purpose Table 5.2 compares the median testing accuracy of the

last 50 epochs of the GCRNN and CNN models to the accuracies reported by other

popular TSC methods. Here two versions of Nearest Neighbour Classifier with DTW

distance are considered: NNDTWBest [98] searches the best warping windows using

the training data, while NNDTWNoWin doesn’t use warping window. We should

note that DTW is considered a strong solution for TS problems in many domains

[99]. In addition, we compare them to TSBF (a TS classifier with Bag-of-Features

algorithm) [38] for the datasets also reported in their paper. TSBF is considered

one of the state-of-the-art approaches for TSC. We observe that GCRNN models

outperform the two NNDTW methods by a significant advantage for 12 out of 14

datasets (except for the Computer and Yoga datasets). Although GCRNN methods

only win TSBF in 1 out of 7 datasets, the difference between their accuracies is quite

small across all the datasets. Considering that the performance of GCRNNs can be

further improved by applying early stopping [100] or tuning the network architectures,

GCRNN has the potential to be a very strong time-series classifier.
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Table 5.2: Performance Comparison Among GCRNN/CRNN, CNN, NNDTWBest,
NNDTWNoWin and TSBF: the median testing accuracy of the last 50 epochs is
report for GCRNN/CRNN and CNN, and the testing accuracy of NNDTWBest,
NNDTWNoWin and TSBF were reported in [2] and [38]

Datesets
GCRNN

α = 0.00

GCRNN

α = 0.25

GCRNN

α = 0.50

GCRNN

α = 0.75
CRNN CNN

NNDTW

-Best

NNDTW

-NoWin
TSBF

Computers 0.680 0.692 0.688 0.688 0.680 0.592 0.620 0.7 *

FISH 0.931 0.926 0.926 0.926 0.926 0.886 0.846 0.823 0.853

ForB 0.906 0.905 0.906 0.904 0.904 0.883 0.586 0.594 *

Ham 0.695 0.686 0.676 0.686 0.686 0.705 0.600 0.467 *

HandOutlines 0.851 0.850 0.847 0.848 0.847 0.851 0.803 0.798 *

Haptics 0.448 0.451 0.448 0.455 0.455 0.458 0.412 0.377 0.515

LargeKitchenAppliances 0.841 0.845 0.853 0.832 0.819 0.613 0.795 0.795 *

OSULeaf 0.764 0.764 0.760 0.760 0.760 0.579 0.612 0.591 0.671

RefrigerationDevices 0.493 0.499 0.491 0.484 0.491 0.456 0.440 0.464 *

ScreenType 0.424 0.443 0.440 0.464 0.423 0.381 0.411 0.397 *

uWaveGestureLibrary X 0.809 0.813 0.812 0.811 0.810 0.802 0.773 0.727 0.836

uWaveGestureLibrary Y 0.735 0.738 0.740 0.734 0.736 0.712 0.699 0.634 0.751

uWaveGestureLibrary Z 0.745 0.750 0.743 0.745 0.744 0.717 0.678 0.658 0.783

Yoga 0.842 0.833 0.839 0.840 0.839 0.842 0.845 0.836 0.851

5.4.3 Task-specific Features

The CNN module learns task-specific features through the training. To illustrate

this point, the learned filters at the first layer of the CNN module are presented in

Fig. 5.3 for two datasets. These filters were obtained from the GCRNN model with

α = 0.75. Fig. 5.3 (a)-(e) depict the filters of the first convolutional layer for the

FordB dataset, and Fig. 5.3 (f)-(j) present the filters for the LargeKitchenAppliances

dataset. We observe that different patterns are learned for different classification

tasks. For the same dataset, different filters are learned to capture different char-

acteristics. For instance, Fig. 5.3 (g) represents a relatively low-frequency pattern

learned by the GCRNN model, while a relatively high-frequency pattern is shown in

Fig. 5.3 (h).

81



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.3: Learned Filters for the First Convolutional Layer for FordB Dataset and
LargeKitchenAppliances Dataset: (a)-(e) are the filters for the FordB dataset, and
(f)-(g) are the filters for the LargeKitchenAppliances dataset

5.4.4 Model Interpretation

With the SGL, the improvement in the classification accuracy is not large. How-

ever, the gain in terms of the model interpretation is much more valuable. Consider

the examples in Fig. 5.5. Each sub-figure presents the time series of a dataset, with

different colors indicating different classes. The depth of the background color tells

the attention/importance of the regions uncovered by the SGL for the classification

model. The deeper the color is, the more important that region is for the TSC task.

Here a larger λ value (= 0.01) was used to emphasize the effects of SGL. The at-

tention/importance is measured by the L2 norm of the weights associated with each

GRU unit, specifically ||Wt||2, t = 1, ..., T ′, which are rendered at the corresponding

time series regions in the background.

The importance information helps us understand the time series data. For exam-

ple, in Fig. 5.5a, it shows that the shifting patterns between two classes are the most

discriminative. From Fig. 5.5b, our model identifies two regions which are relatively

more important for the classification task. The first region is at the starting 50 time
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stamps of the time series, and the second one is roughly from time stamp 600 to

the end. As another example, from Fig. 5.5c, we see that the network utilizes the

information throughout the entire time series, with a stronger focus in the end.

5.5 Applications to Real-world Problems

So far we have demonstrated the ability of GCRNN on the benchmark datasets

where all the time series from the training and testing sets have an equal length. To

apply GCRNN to a real-world scenario, we need to define a proper length for the time

series beforehand, and use it to collect a training dataset from the history. The length

can usually be defined based on the domain knowledge. For example, in the problem

of seizure detection using EEG, an EEG abnormality is usually required to persist

and evolve for a minimum of 6-10 s before considering the abnormality of a seizure

[6]. If minimizing the detection latency is also desirable, 6 s is a reasonable choice for

the length. A training dataset consists of randomly sampled 6-s multivariate EEGs

from both normal and abnormal period in the historical data. For online testing, as

the EEG stream arrives, the GCRNN takes the most recent 6-s EEG as the input

and provides the classification output.

Without the domain knowledge, the length of the time series can be chosen by cross

validation using the historical data. More specifically, datasets with the same class

distribution but different time-series lengths are collected from the historical data.

The length which generates the best cross-validation accuracy (or other metrics) is

selected.

5.6 Case Study in Biomedical Domain: EEG Seizure Classification

As a case study, we apply our method to a publicly available seizure dataset

provided by Bonn University [3]. The dataset consists of five subsets ( set Z, O,
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Figure 5.4: The Testing Accuracies of GCRNN/CRNN and CNN Models over 200
Training Epochs on 14 TS Datasets
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(a) HandOutlines

(b) LargeKitchenAppliances

(c) Haptics

(d) Computers

(e) Ham

Figure 5.5: Region Importance for 5 Time Series Datasets Identified by GCRNN(λ =
0.01)
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N, F and S), and each has 100 single-channel EEG segment of equal length. Set S

contains EEG segments during the seizure activity. Set Z and Set O are the EEG

segments collected when the awake healthy volunteers with their eyes open and closed,

respectively. Set N and set F contain the non-seizure segments from the seizure

patients, recorded from two different brain regions. Three classification tasks (Z vs.

S, ZNF vs. S, ZONF vs. S) are formed to compare GCRNN to other methods in the

literature.

For each classification task, we randomly split the data into two halves for training

and testing for each experiment. The average testing accuracy over 20 experiments is

reported for GCRNN. We use λ = 0 as the location of the patterns are less meaningful

for the EEG segments. We compared GCRNN to two methods based on artificial

neural network (ANN) that take different sets of hand-crafted features as input [101]

[102]. The results for these two ANN-based methods are obtained from [102].

Table 5.3: A Comparison of the Classification Accuracy (%) Obtained by GCRNN
and Two Other ANN-based Method for Three Seizure Classification Tasks

classification

tasks

time frequency features

with ANN [101]

line length features

with ANN [102]
GCRNN

Z vs. S 100 99.6 99.95

(Z, N, F) vs. S - 97.75 98.6

(Z, O, N, F) vs. S 97.73 97.77 99.06

From the comparison in Table 5.3, we show that GCRNN achieves high accuracy

across all three classification problems. It outperforms the others for tasks (Z, N, F)

vs. S and (Z, O, N, F) vs. S and performs almost equally well as the time-frequency-

ANN method for task Z vs. S. This case study provides a successful application of

GCRNN towards biomedical time series data.
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5.7 Conclusion and Future Work

Here, GCRNN, an end-to-end neural network model for TSC, is proposed. This

method leverages both CNN and RNN for the feature learning and the temporal

modeling. In addition, the SGL is deployed to reduce the model complexity, but

also to understand the attention region of the model. This combination generates a

unique, general architecture for time series classification. Our experiments compare

different variations of GCRNN with the traditional CNN model to demonstrate that

the proposed network architecture performs strongly for time series modeling.

Our model can be generally applied to a large variety of TSC tasks across differ-

ent domains. For the future work, it is worthwhile to investigate more applications

for the proposed GCRNN model, especially for those problems where understanding

the discriminative patterns is also of interest. For example, it could be used to clas-

sify heartbeat signals (ECG) into the normal and abnormal classes. Along with the

classification, the sparse group lasso component of our model could uncover where ab-

normal patterns appear in the signals. That could help us gain deeper understanding

of heart diseases. As another example, GCRNN can be applied to genome sequencing

data for the classification of different cancer types. In this particular task, it is im-

portant to understand where informative mutations occur and how different cancers

are developed.
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Chapter 6

CRNN AUTOENCODER FOR TIME SERIES

6.1 Introduction

Dimensionality reduction is useful for the analysis, visualization and understand-

ing of high-dimensional data. The goal of dimensionality reduction is to find a low-

dimensional representation of the data which preserves the most important charac-

teristics of the data and minimizes the information loss.

Principal Component Analysis (PCA) is a linear method frequently used to extract

low-dimesnioal features from high-diemnsioal data. However, PCA may fail to capture

underlying nonlinear patterns and result in large reconstruction error for the nonlinear

cases. An ANN autoencoder [103], is a non-linear generalization of PCA (NLPCA).

The model is a multiple-layer perceptron which performs an identity mapping. It

forces the data to pass through a bottleneck layer with a fewer number of nodes than

the original dimensionality of the data. The target of the network is required to be

identical as the input so that the network is trained to minimize the reconstruction

error. A typical ANN architecture is presented in Fig. 1.6.

Dimensionality reduction is also used in discovering the variation patterns. The

reduced number of features is considered to represent the sources of variations, which

can enhance our understanding on the mechanism of the data generation. To further

improve the interpretability of the patterns, previous works [104] [105] use different

regularization strategies to make the features more distinct to each other.

As huge volume of the time series data are collected from the wearable devices and

sensors at real time, a good dimensionality reduction method for time series data can

88



significantly improve the analysis, storage and pattern visualization for time series

data. Time series is a special type of high-dimensional data with ordered attributes.

Because of the temporal characteristics of time series data (such as autocorrelation),

they typically contain high redundancy and can therefore be represented by a much

smaller number of features than the original dimensionality (time series length T ×

the number of channels D). However, neither the PCA nor the ANN autoencoder

utilizes the temporal characteristics of times series during the dimensionality reduc-

tion. They ignore the sequential property of the input variables and treat them as

independent feature. A dimensionality reduction model that better utilizes the tem-

poral characteristics of time series is expected to be more effective and efficient in

summarizing the important time series features at a certain compression level. As

pointed out in Chapter 5, convolutional neural networks (CNNs) are effective in ex-

tracting high-level features, and recurrent neural networks (RNNs) use their internal

memory to model the sequential nature of the time series inputs. In this chapter,

we introduce a convolutional recurrent neural networks (CRNN) autoencoder which

leverages the advantages of both the CNN and the RNN architectures.

The proposed CRNN model can be considered as a generalization of the existing

CNN autoencoder and the RNN autoencoder. A CNN autoencoder is a special variant

of a CRNN autoencoder with no RNN components. CNN autoencoder models have

been used in image denoising [33] and image restoration [34]. The RNN autoencoder

(often known as the sequence-to-sequence model) is also a special variant of the

CRNN autoencoder without the CNN components, which has been shown useful in

the machine translation task [35].

In this chapter, we discuss different variants of the CRNN autoencoder. The

advantage and disadvantage of each variant are discussed via empirical comparisons

on 3 ECG datasets and a process control dataset. In addition, the application of
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CRNN autoencoder towards the anomaly detection is illustrated based on a simulated

study using the same process control dataset.

6.2 CRNN Autoencoder

6.2.1 Problem Statement

Suppose the input data has length T and D channels. The i-th instance in the

time series dataset is denoted as xi = [xi,1, xi,2, ..., xi,T ], where xi,t is a scalar for single-

channel time series or a vector of length D for multi-channel time series. Dimension-

ality reduction is to identify a P -dimensional representation vi = [vi,1, vi,2, ..., vi,P ], as

well as a reconstruction function f(vi) = [f1(vi), f2(vi), ..., fT (vi)] : RP → RTD to

map vi to the original time series space.

From the view of variation pattern discovery [104], vi = [vi,1, vi,2, ..., vi,P ] repre-

sents P underlying variation patterns, and the observed instance xi as the recovered

data corrupted by a noise component wi = [wi,1, ..., wi,T ]. That is xi = f(vi) +wi.

6.2.2 General Architecture

Figure 6.1 describes the architecture of the proposed CRNN autoencoder. For

the encoding part, the input time series is first processed by the convolutional and

max-pooling layer(s). Their output is usually a multi-channel time series but with

a shorter length due to the pooling layer(s). Next, the output of the convolutional-

pooling layer(s) is processed by recurrent layer(s) in sequences. The final node of the

recurrent layer(s) contains the encoded information from the entire time series, and

is densely connected to the bottleneck layer consisted of P nodes.

The output of the bottleneck layer is considered as the compressed representation

of the original time series vi. In the decoder, vi is densely connected the decoding
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recurrent layer(s) at each time step, and a few upsampling-convolutional layers are

applied to reconstruct a time series of the same dimensionality as the input. The

output of the network is denoted as x′
i = [x′i,1, ..., x

′
i,T ]. The decoding network learns

a reconstruction function f(vi) = [f1(vi), f2(vi), ..., fT (vi)] : RP → RTD, so we have

x′
i = f(vi).

Figure 6.1: CRNN Autoencoder Architecture

6.2.3 Variants 1 and 2: CNN Autoencoder and RNN Autoencoder

A CNN autoencoder is a variant of the CRNN autoencoder without any recur-

rent layer. In the encoder network of the CNN autoencoder, the output of the last

convolutional-pooling layer is fully connected to the bottleneck nodes. Likewise, a

RNN autoencoder is another variant of the CRNN autoencoder that only contains

recurrent layers.
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6.2.4 Variant 3: Variational CRNN Autoencoder

The theoretical details of variational autoencoder can be found in [106]. In prac-

tice, to build a variational autoencoder, we consider that the bottleneck representation

vi is sampled from a normal distribution parametrized by vectors of mean and stan-

dard deviation, µi and σi. That is vi ∼ N (µi,σiI)S. The parameters µi and σi are

vectors of P elements generated by the encoder network. The variational autoencoder

adds a regularization term to the loss function, which is the Kullback-Leibler (KL)

divergence between the bottleneck distribution N (µi,σi) and the standard normal

distribution N (0, I). The final KL regularization term is equivalent ot the sum of the

KL divergence at each latent dimension as expressed in Eq. 6.1 [106].

KL Lossi = 0.5(
P∑
p=1

σ2
i,p + µ2

i,p − log σ2
i,p − 1) (6.1)

Many existing statistical approaches for anomaly detection is to model the data

points using a parametric distribution, and the points are determined to be anomaly

when their likelihood is low. However, it becomes increasingly inaccurate to estimate

the distribution of the data in high dimensionality [107]. Thanks to the KL regular-

ization, variational CRNN autoencoders can map complex time series instances to a

bottleneck representation in low-dimensional space which can be easily modeled by a

Gaussian distribution. Furthermore, many control chart methods reply on normality

assumptions to effectively detect anomalies. Variational CRNN autoencoders enable

the future applications of the control chart methods on the bottleneck representation

in order to monitor complex time series data.
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6.3 Experiments

In the firs set of experiments, we compare CRNN autoencoder, CNN autoencoder,

RNN autoencoder, ANN autoencoder and PCA based on two performance metrics,

the reconstruction error and cross-validation error. Section 6.3.1 defines these two

metrics.

In the second set of experiment, we simulate the anomaly detection scenario.

More specifically, the autoencoder model is trained on the normal samples in the

dataset and tested on both the normal and abnormal cases. The performance of the

autoencoder is evaluated based on the cross-validation error to reflect the degree of the

separation between the normal and the abnormal cases. We include variational CRNN

autoencoder for this set of experiments. In the following, Section 6.3.2 introduces the

parameter and training setting for each autoencoder. Section 6.3.3 provides a brief

introduction for the datasets used in our experiments.

6.3.1 Evaluation Metrics

Reconstruction error

A good dimensionality reduction method should minimize the information loss during

the data compression. We should be able to reconstruct the original data as close

as possible from the data representation in the reduced dimensionality. Therefore,

we calculate mean squared error (MSE) between the reconstruction and the original

time series:

MSE =
1

NTD

N∑
i=1

||xi − f(vi)||2, (6.2)

where N is the number of times series instances in the dataset, T is the length of the

time series and D is the number of time series channels.
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However, an autoencoder giving a low reconstruction error does not necessar-

ily generate a good low-dimensional representation for the machine learning tasks.

Over-fitting may occur, as the deep autoencoder models in our experiments are very

complex with thousands of parameters. The model could overfit the data, and the

representation may not generalize well to an unseen instance. Therefore, in the next

subsection we propose another metric based on the cross-validation performance to

measure the generalibility of the autoencoder models.

Cross-validation classification error (CV error)

A good dimensionality reduction method should also capture the discriminative infor-

mation for the further analysis and decision making. It should be able to generalize

to an unseen case. For a labeled time series dataset, we can evaluate a dimension-

ality reduction algorithm by evaluating the classification performance of a simple

classification model trained on the reduced features. In our experiment, we use 1-

nearest-neighbor (1-NN) classifier and present the classification error from a 5-fold

cross-validation.

6.3.2 Network Parameter and Training Settings

The CRNN autoencoder we experimented has 2 convolutional-pooling layers and

2 LSTM layers in the encoding network. For the decoding network, it consists of 2

upsampling-convolutional layers and 2 LSTM layers. Each convolutional layer has 10

feature maps. The filter sizes for the 4 convolutional layers are set to 5, 3, 3 and 5.

The memory size of the LSTM unit is set to 20. The max-pooling/upsampling layer

each reduces/increases the dimensionality by a factor of 2.

The CNN autoencoder is a variant of the CRNN autoencoder discussed above

without the LSTM layers. The output of the encoder convolutional-pooling layers
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is fully connected to the bottleneck nodes. The RNN autoencoder is another vari-

ant of this exact CRNN autoencoder without the convolutional, max-pooling and

upsampling layers.

The ANN autoencoder we compare to contains 2 hidden layers in both the encoder

network and the decoder network, with 20 and 10 hidden nodes respectively.

We train each autoencoder for 500 epochs. We use rmsprop [108] as the stochastic

gradient method. As the stochastic nature of training a neural network models, we

repeat each experiment 10 times and present the box-plots of the metrics or the

median cases.

6.3.3 Datasets

The datasets used in our experiments are obtained from the UEA & UCR Time

Series Repository [2]. They include 3 ECG datasets and a synthetic control chart

dataset. Table 6.1 provides a brief summary of these datasets. Note that the synthetic

control dataset contains control charts of six classes: 1. normal 2. cyclic 3. increasing

trend 4. decreasing trend 5. upward shift 6. downward shift, so we also use it to

simulate a testing scenario for the anomaly detection.

Table 6.1: Summary for the Time Series Datasets Used to Compare Different Au-
toencoder Models

dataset name TS length No. of instances No. of classes

ECG200 96 200 2

ECGFiveDays 136 884 2

TwoLeadECG 82 1162 2

Synthetic Control 60 600 6
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6.4 Experimental Results and Discussion

6.4.1 Performance Comparison on Both Metrics

Figures 6.2, 6.3, 6.4 and 6.5 summarize the performance of CRNN, RNN, CNN and

ANN autoencoders on both metrics for each dataset. At the same time, the results

for PCA is provided as the benchmark. In this set of experiments, we set the number

of bottleneck to 2 for all the autoencoder models. In the following, our discussion

focuses on the comparison for CRNN autoencoder vs. ANN autoencoder, CRNN

autoencoder vs. RNN autoencoder, and CRNN autoencoder vs. CNN autoencoder,

respectively.

(a) Recontruction MSE (b) CV Error

Figure 6.2: Performance Comparison for Different Dimensionality Reduction Models
Based on ECG200 Dataset

Comparing CRNN autoencoder with ANN autoencoder, CRNN and ANN au-

toencoders both result in the lowest reconstruction MSE across 4 datasets. CRNN

autoencoder gives slightly lower reconstruction error than ANN for ECGFiveDays

and synthetic control datasets, and slightly higher reconstruction error for ECG200

and TwoLeadECG datasets. So two autoencoder models are comparable in terms of

the reconstruction error. CRNN autoencoder is significantly better than ANN au-

toencoder in terms of the cross-validation classification performance. It presents a
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(a) Recontruction MSE (b) CV Error

Figure 6.3: Performance Comparison for Different Dimensionality Reduction Models
Based on ECGFiveDays Dataset

(a) Recontruction MSE (b) CV Error

Figure 6.4: Performance Comparison for Different Dimensionality Reduction Models
Based on TwoLeadECG Dataset

(a) Reconstruction MSE (b) CV Error

Figure 6.5: Performance Comparison for Different Dimensionality Reduction Models
Based on Synthetic Control Dataset
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much lower classification error on 3 datasets and a comparable result on the other

dataset (ECG200). Our comparison shows that CRNN autoencoder has stronger

ability in extracting discriminative features compared to ANN autoencoder, given a

similar reconstruction error.

Comparing CRNN autoencoder with RNN autoencoder, they both present strong

ability in feature extraction. They both have achieved the low CV error across all

the datasets using the low-dimensional representation. A more in-depth comparison

on the CV error shows that CRNN autoencoder is slightly better on the synthetic

control dataset and significant better on the ECGFiveDays dataset. Our observation

demonstrates that incorporating RNN into the autoencoder architecture enhances

the extraction of the temporal characteristics of time series, which is often discrimi-

native and informative for a classification task. However, RNN autoencoders result

in a higher reconstruction error compared to CRNN autoencoders, as shown in our

experiments on the 3 ECG datasets.

The box-plots show that the CRNN autoencoder consistently outperforms the

CNN autoencoder in both metrics on all the 4 datasets. This comparison demon-

strates the strong advantage of the CRNN autoencoder over the CNN autoencoder.

To conclude, CRNN is a strong model to reduce the dimensionality for time series

data. The features obtained from the low-dimensional representation have strong

ability in both the signal reconstruction and the generalization.

6.4.2 Comparison with Different Number of Bottleneck Nodes

Here we take the synthetic control dataset as the example and illustrate the effect

of changing number of bottleneck nodes. For each autoencoder, we experiment with

different numbers of bottleneck nodes (1, 2 and 3) and compare their performance

in both the reconstruction MSE and CV error. As the number of bottleneck nodes
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increases, the reconstruction decreases for all the autoencoders, which is expected as

the bottleneck layer is allowed to store more information from the original time series.

For the classification performance, the same decreasing trend is observed for ANN

and CNN autoencoders, however a slight bounce is observed for CRNN and RNN

autoencoders at 3 bottleneck nodes, along with a slight increase in the variance.

That can be an indication for overfitting. This experiment also demonstrates that

low reconstruction error doesn’t always guarantee well-generalized features.

(a) Reconstruction MSE vs. bottleneck dimension (b) CV error vs. bottleneck dimension

Figure 6.6: Autoencoder Performance Metrics vs. Number of Bottleneck Nodes:
reconstruction MSE and classification accuracy of different autoencoder models with
1, 2, 3 bottleneck nodes for synthetic control dataset.

6.4.3 MSE vs. CV Error

In this section we elaborate our discussion on the relationship among the recon-

struction error, the CV error and the model complexity. Our discussion focuses on

the CRNN and ANN autoencoders which share a similar level of the reconstruction

error. Previous comparisons have made clear that the reconstruction error shouldn’t

be the sole criteria for evaluating a dimension reduction method, as the overfitting

could occur. Therefore, the generalization of the reduced representation should also

be taken into the evaluation.
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Furthermore, the complexity of the model shouldn’t be simply based on the num-

ber of parameters, because the constraints imposed on different neural network ar-

chitecture vary a lot. A CRNN autoencoder model can be significantly less complex

than an ANN model with the same number of parameters due to the constraints such

as weight sharing in the convolutional and recurrent layers. Instead of the number of

parameters, we measure the model complexity by the reconstruction error for differ-

ent autoencoder models. The lower the reconstruction error, the more complex the

autoencoder model.

With that being said, the advantage of the CRNN autoencoder over the ANN

autoencoder indeed lies in the better features (measured by the CV error) given the

same model complexity (measured by the reconstruction error). To demonstrate the

point, we train ANN autoencoders with different number of hidden nodes and CRNN

autoencoders with different recurrent memory sizes, and record the CV error and the

reconstruction MSE for each parameter setting. The relationship between these two

metrics are depicted in Fig. 6.7 based on the ECGFiveDays and Synthetic Control

datasets. It is difficult to control the exact reconstruction error for each model, so the

spaces of the reconstruction MSE covered by two models are not perfectly aligned.

From the shared MSE regions, with similar reconstruction MSE (or similar model

complexity), the features generated by CRNN have stronger predictive power.

6.4.4 Simulation Experiments for Anomaly Detection

Time series autoencoders can be used for anomaly detection tasks. For example,

the monitoring signals for process control applications are often time series. Autoen-

coders can summarize the complex time series data with a much smaller number of

features, so that the anomaly can be detected more easily.
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(a) ECGFiveDays (b) Synthetic Control

Figure 6.7: Relationship Between the CV Error and the Reconstruction MSE
for CRNN and ANN Autoencoders based on ECGFiveDays and Synthetic Control
Datasets

Here we use the synthetic control dataset to simulate an anomaly detection exper-

iment. In a real-life scenario for process control, a process often starts with normal

state, and we want to detect the abnormal events when they occur. To mimic the

real scenario, in our experiment, we train each autoencoder using only the normal

samples. With this autoencoder, we can encode the samples from both the normal

class and other abnormal classes. We evaluate the performance of the autoencoder

by measuring how well each abnormal class is separated from the normal class. More

specifically, the CV error is calculated between the normal class and each abnormal

class. The lower the CV error, the more effective the autoencoder is in the anomaly

detection task. Therefore, five classification tasks will be considered: normal vs.

cyclic, normal vs. increasing trend, normal vs. decreasing trend, normal vs. upward

shift, and normal vs. downward shift. Fig. 6.8 presents the average classification

accuracy over 5 tasks. Fig. 6.9 shows the detailed results for each classification task.

In additional to the 4 autoencoders we considered in the previous experiments,

we also consider the variational CRNN autoencoder, denoted as V-CRNN, in this
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experiment. The variational autoencoder regularizes the bottleneck representation to

be close to a standard normal distribution, and that enables the applications of control

chart methods which often rely on the normality assumption. All the autoencoders

are set to have 2 bottleneck nodes, and the distributions of the their bottleneck

representation are visualized in Fig. 6.10.

Figure 6.8: Overall CV Error for Different Autoencoders in the Anomaly Detection
Experiments

Figure 6.9: CV Error for Different Autoencoders in Each Anomaly Detection Task

From the experimental results, we observe that two CRNN autoencoders obtain

the best separation between the normal and abnormal samples in the low-dimensional
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(a) CRNN (b) V-CRNN (c) RNN

(d) CNN (e) ANN

Figure 6.10: Bottleneck Representations Generated by Different Autoencoders in
the Process Control Experiment: each subfigure corresponds to the case with the
median overall CV error. All the autoencoders are trained on normal samples (in
red) and used to encode other abnormal samples

representation. This observation demonstrates that the CRNN autoencoder has the

strongest ability in anomaly detection among all the autoencoder models included in

this experiment. Furthermore, we observe that V-CRNN autoencoder outperforms

the regular CRNN autoencoder, which indicates that it is beneficial to include the

normality regularization on the bottleneck representation. This observation lays the

foundation for the future incorporation of control chart methods. RNN also presents

good performance on this task, but not as strong as the CRNN autoencoders. CNN

and ANN autoencoders fail to separate the abnormal samples from the normal samples
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for all the tasks and result in high CV error. From this experiment, we can conclude

that CRNN autoencoder is effective dimensionality reduction method for anomaly

detection in complex time series profile data.

6.5 Conclusion

In this chapter, we introduce a novel autoencoder architecture, CRNN autoen-

coder, for time series data. CRNN autoencoder can be considered a generalization

of the existing CNN or RNN autoencoder models, however, this unique combination

makes CRNN autoencoder a superior autoencoder model than these two variants.

Through a series of experiments, we demonstrate that CRNN is a strong time se-

ries autoencoder model which gives the lowest reconstruction error and CV error at

the same time. We highlight the advantages of CRNN over its variants (CNN and

RNN autoencoders) and the ANN autoencoder in different aspects. More specifically,

CRNN autoencoders result in lower reconstruction error than RNN autoencoders,

lower CV error than ANN autoencoders, and superior performance in both metrics

compared to CNN autoencoders.

Variational CRNN autoencoder is shown to have good potential in the field of

process monitoring and anomaly detection. In the future, it can be combined with

control chart methods as it imposes the normality of the bottleneck representation.

Based our experiments, we have pointed out that the reconstruction error should

not be the only criterion of evaluating an autoencoder. Instead, we can consider

the reconstruction error a measure for the model complexity. An over-complex au-

toencoder (very low reconstruction MSE) may potentially overfit the data, and the

features induced by such autoencoder may not generalize well to the unseen cases. In

the future, it will be interesting to investigate more metrics for a more comprehensive

evaluation for the autoencoder models.
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Chapter 7

FUTURE WORK

Although multiple research publications have been derived from the previous chap-

ters, more work can be done to make our methods more comprehensive and applicable

to real-world challenges. The following sections discuss how our work can be extended

in different aspects in the future.

7.1 Data Clustering

In Chapter 2, we introduce CRAFTER, a scalable clustering algorithm to tackle

high-dimensionality and mixed attributes. Similar to many other clustering algo-

rithms, CRAFTER requires a prespecified number of clusters to detect, often denoted

as K, as its input. The choice of K is not trivial depending on many characteristics

of the data as well as the desired resolution of the clustering. CRAFTER works in

an iterative way in updating the clusters. Potentially, the selection of K can also

be updated iteratively based on some measure derived from the RF distance. That

would make CRAFTER a more powerful clustering algorithm that requires no input

from its users.

Compared to the development for new clustering algorithms, relatively less at-

tention has been put on how to interpret the found clusters. However, that is an

important step towards a comprehensive understanding for a dataset. Also it is a

challenging problem when a dataset contains lots of mixed attributes. After data

clustering, it is natural to ask the following questions: what are the most important

features that cause the data clusters? What are the common characteristics for in-

stances in each cluster? How can we assign the cluster label for a future instance?
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The final supervised RF model obtained by CRAFTER can model and manage the

found clusters quite easily, however, the interpretability is limited as the RF is an

ensemble model. The variable importance generated by the RF model may be useful

for the research in this direction.

Utilizing the clustering structure has shown beneficial for active learning. An

active learning paradigm aims to train a good model with reduced labeling cost by

selective queries. Stochastic Query-By-Forest (SQBF) [109] uses a tree ensemble

to generate the uncertainty score to guide the sampling. Later Shams et al. [110]

shows that incorporating the cluster information into SQBF promotes the search in

diverse areas of the input space. CRAFTER is an ensemble method that evaluates the

representativeness of the instances by the probability margin, which may be combined

with the uncertainty score used in [109] and [110] to perform a cluster-guided search.

7.2 Deep Learning for Time Series Classification

In Chapter 5, we have shown that the overall performance of GCRNN is better

than CNN based on our experiments on 14 TSC tasks. However, the improvement

on some datasets are more significant than the others. That naturally leads us to a

question: what characteristics of the the time series data causes one deep learning

model to outperform the other? The answer to this questions can provide important

guidance to the selection of deep learning tools for time series data.

To simplify the comparison between GCRNN and the other models, we use the

same setting in the experiments with different datasets. In practice, how to system-

atically select the hyper-parameters is a key issue for neural network practitioners.

In addition, the resolution of the identified important regions can affect the number

of pooling layers. In the future, it is worth to investigate the relationships between

the hyper-parameters and the model accuracy or the interpretability.
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7.3 Deep Autoencoder for Time Series

The combination of the variational autoencoder and control chart methods can

lead to a new anomaly detection method for monitoring complex time series profile.

Many control chart methods reply on the normality assumption for the input data,

and variational autoencoder is able to provide a near normal representation in a

low-dimensional space. This new anomaly detection technique has many potential

applications, such ash the detection for abnormal heart beats in ECG monitoring, the

product defect detection based on control signals, and the seizure onset prediction

based on EEG stream.

Dimensionality reduction is associated with variational pattern mining. Ideally

each feature in the reduced feature space corresponds to a specific variation pattern.

The interpretation of the feature can help us understand the underlying data gen-

eration mechanism. How well the solution can be interpreted with respect to the

variation exhibited in the original feature space is important. However, the direct

application of autoencoder models often results in confound features. That means

that each feature is a combination of multiple sources of variations, thus the inter-

pretation becomes difficult. The distinct feature/variation pattern discovery can be

imposed in the model training via some regularization methods [104] [105]. Similar

techniques can be applied to CRNN autoencoders for discovering distinct features for

time series.

7.4 Discovering Future Applications

There are many potential applications for the developed algorithms which we

haven’t experimented on. For example, CRAFTER can be used to cluster heteroge-

neous patient data, which can help doctors to utilize the knowledge from similar past
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cases in giving a diagnosis. CRAFTER can also be used to generate the matching

groups for the matched case-control analysis which is widely used in clinical studies.

Given the availability of a large genome sequencing dataset for different cancers, we

can apply CRNN autoencoder to discover the underlying relationship between dif-

ferent cancer types in the embedded feature space. GCRNN can be used to classify

different tumor types or tumor grades and identify the abnormal genome regions. To

conclude, discovering new applications in not only the biomedical domain but also

other domains will be an ongoing effort in the future.
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