1,281 research outputs found

    A Network Topology Approach to Bot Classification

    Full text link
    Automated social agents, or bots, are increasingly becoming a problem on social media platforms. There is a growing body of literature and multiple tools to aid in the detection of such agents on online social networking platforms. We propose that the social network topology of a user would be sufficient to determine whether the user is a automated agent or a human. To test this, we use a publicly available dataset containing users on Twitter labelled as either automated social agent or human. Using an unsupervised machine learning approach, we obtain a detection accuracy rate of 70%

    Simulation of a neural network-driven fuzzy controller

    Get PDF
    A software simulation package was developed to facilitate the analysis of a fuzzy logic tracking system constructed by first training a neural network. The adaptive vector quantization neural network used a competitive learning algorithm to classify control data from a controller in a noisy environment. The neural network memory generated rules for a fuzzy controller by mapping the state of the network into a predetermined fuzzy database. The software is intended to be expanded to allow further analysis of neural dynamics and to compare the performance of the resulting fuzzy controller to conventional controllers

    Computation Approaches for Continuous Reinforcement Learning Problems

    Get PDF
    Optimisation theory is at the heart of any control process, where we seek to control the behaviour of a system through a set of actions. Linear control problems have been extensively studied, and optimal control laws have been identified. But the world around us is highly non-linear and unpredictable. For these dynamic systems, which don’t possess the nice mathematical properties of the linear counterpart, the classic control theory breaks and other methods have to be employed. But nature thrives by optimising non-linear and over-complicated systems. Evolutionary Computing (EC) methods exploit nature’s way by imitating the evolution process and avoid to solve the control problem analytically. Reinforcement Learning (RL) from the other side regards the optimal control problem as a sequential one. In every discrete time step an action is applied. The transition of the system to a new state is accompanied by a sole numerical value, the “reward” that designate the quality of the control action. Even though the amount of feedback information is limited into a sole real number, the introduction of the Temporal Difference method made possible to have accurate predictions of the value-functions. This paved the way to optimise complex structures, like the Neural Networks, which are used to approximate the value functions. In this thesis we investigate the solution of continuous Reinforcement Learning control problems by EC methodologies. The accumulated reward of such problems throughout an episode suffices as information to formulate the required measure, fitness, in order to optimise a population of candidate solutions. Especially, we explore the limits of applicability of a specific branch of EC, that of Genetic Programming (GP). The evolving population in the GP case is comprised from individuals, which are immediately translated to mathematical functions, which can serve as a control law. The major contribution of this thesis is the proposed unification of these disparate Artificial Intelligence paradigms. The provided information from the systems are exploited by a step by step basis from the RL part of the proposed scheme and by an episodic basis from GP. This makes possible to augment the function set of the GP scheme with adaptable Neural Networks. In the quest to achieve stable behaviour of the RL part of the system a modification of the Actor-Critic algorithm has been implemented. Finally we successfully apply the GP method in multi-action control problems extending the spectrum of the problems that this method has been proved to solve. Also we investigated the capability of GP in relation to problems from the food industry. These type of problems exhibit also non-linearity and there is no definite model describing its behaviour

    Advances and Novel Approaches in Discrete Optimization

    Get PDF
    Discrete optimization is an important area of Applied Mathematics with a broad spectrum of applications in many fields. This book results from a Special Issue in the journal Mathematics entitled ‘Advances and Novel Approaches in Discrete Optimization’. It contains 17 articles covering a broad spectrum of subjects which have been selected from 43 submitted papers after a thorough refereeing process. Among other topics, it includes seven articles dealing with scheduling problems, e.g., online scheduling, batching, dual and inverse scheduling problems, or uncertain scheduling problems. Other subjects are graphs and applications, evacuation planning, the max-cut problem, capacitated lot-sizing, and packing algorithms

    Montana Kaimin, December 3, 1964

    Get PDF
    Student newspaper of the University of Montana, Missoula.https://scholarworks.umt.edu/studentnewspaper/5163/thumbnail.jp

    Why we interact : on the functional role of the striatum in the subjective experience of social interaction

    Get PDF
    Acknowledgments We thank Neil Macrae and Axel Cleeremans for comments on earlier versions of this manuscript. Furthermore, we are grateful to DorothĂ© Krug and Barbara Elghahwagi for their assistance in data acquisition. This study was supported by a grant of the Köln Fortune Program of the Medical Faculty at the University of Cologne to L.S. and by a grant “Other Minds” of the German Ministry of Research and Education to K.V.Peer reviewedPreprin

    Spartan Daily, March 24, 1994

    Get PDF
    Volume 102, Issue 40https://scholarworks.sjsu.edu/spartandaily/8540/thumbnail.jp

    Optimal forecasting accuracy using Lp‑norm combination

    Get PDF
    A well-known result in statistics is that a linear combination of two-point forecasts has a smaller Mean Square Error (MSE) than the two competing forecasts themselves (Bates and Granger in J Oper Res Soc 20(4):451–468, 1969). The only case in which no improvements are possible is when one of the single forecasts is already the optimal one in terms of MSE. The kinds of combination methods are various, ranging from the simple average (SA) to more robust methods such as the one based on median or Trimmed Average (TA) or Least Absolute Deviations or optimization techniques (Stock and Watson in J Forecast 23(6):405–430, 2004). Standard regression-based combination approaches may fail to get a realistic result if the forecasts show high collinearity in several situations or the data distribution is not Gaussian. Therefore, we propose a forecast combination method based on Lp-norm estimators. These estimators are based on the Generalized Error Distribution, which is a generalization of the Gaussian distribution, and they can be used to solve the cases of multicollinearity and non-Gaussianity. In order to demonstrate the potential of Lpnorms, we conducted a simulated and an empirical study, comparing its performance with other standard-regression combination approaches. We carried out the simulation study with diferent values of the autoregressive parameter, by alternating heteroskedasticity and homoskedasticity. On the other hand, the real data application is based on the daily Bitfnex historical series of bitcoins (2014–2020) and the 25 historical series relating to companies included in the Dow Jonson, were subsequently considered. We showed that, by combining diferent GARCH and the ARIMA models, assuming both Gaussian and non-Gaussian distributions, the Lp-norm scheme improves the forecasting accuracy with respect to other regression-based combination procedures
    • 

    corecore