304,030 research outputs found

    Re-designing Main Memory Subsystems with Emerging Monolithic 3D (M3D) Integration and Phase Change Memory Technologies

    Get PDF
    Over the past two decades, Dynamic Random-Access Memory (DRAM) has emerged as the dominant technology for implementing the main memory subsystems of all types of computing systems. However, inferring from several recent trends, computer architects in both the industry and academia have widely accepted that the density (memory capacity per chip area) and latency of DRAM based main memory subsystems cannot sufficiently scale in the future to meet the requirements of future data-centric workloads related to Artificial Intelligence (AI), Big Data, and Internet-of-Things (IoT). In fact, the achievable density and access latency in main memory subsystems presents a very fundamental trade-off. Pushing for a higher density inevitably increases access latency, and pushing for a reduced access latency often leads to a decreased density. This trade-off is so fundamental in DRAM based main memory subsystems that merely looking to re-architect DRAM subsystems cannot improve this trade-off, unless disruptive technological advancements are realized for implementing main memory subsystems. In this thesis, we focus on two key contributions to overcome the density (represented as the total chip area for the given capacity) and access latency related challenges in main memory subsystems. First, we show that the fundamental area-latency trade-offs in DRAM can be significantly improved by redesigning the DRAM cell-array structure using the emerging monolithic 3D (M3D) integration technology. A DRAM bank structure can be split across two or more M3D-integrated tiers on the same DRAM chip, to consequently be able to significantly reduce the total on-chip area occupancy of the DRAM bank and its access peripherals. This approach is fundamentally different from the well known approach of through-silicon vias (TSVs)-based 3D stacking of DRAM tiers. This is because the M3D integration based approach does not require a separate DRAM chip per tier, whereas the 3D-stacking based approach does. Our evaluation results for PARSEC benchmarks show that our designed M3D DRAM cellarray organizations can yield up to 9.56% less latency and up to 21.21% less energy-delay product (EDP), with up to 14% less DRAM die area, compared to the conventional 2D DDR4 DRAM. Second, we demonstrate a pathway for eliminating the write disturbance errors in single-level-cell PCM, thereby positioning the PCM technology, which has inherently more relaxed density and latency trade-off compared to DRAM, as a more viable option for replacing the DRAM technology. We introduce low-temperature partial-RESET operations for writing ‘0’s in PCM cells. Compared to traditional operations that write \u270\u27s in PCM cells, partial-RESET operations do not cause disturbance errors in neighboring cells during PCM writes. The overarching theme that connects the two individual contributions into this single thesis is the density versus latency argument. The existing PCM technology has 3 to 4× higher write latency compared to DRAM; nevertheless, the existing PCM technology can store 2 to 4 bits in a single cell compared to one bit per cell storage capacity of DRAM. Therefore, unlike DRAM, it becomes possible to increase the density of PCM without consequently increasing PCM latency. In other words, PCM exhibits inherently improved (more relaxed) density and latency trade-off. Thus, both of our contributions in this thesis, the first contribution of re-designing DRAM with M3D integration technology and the second contribution of making the PCM technology a more viable replacement of DRAM by eliminating the write disturbance errors in PCM, connect to the common overarching goal of improving the density and latency trade-off in main memory subsystems. In addition, we also discuss in this thesis possible future research directions that are aimed at extending the impacts of our proposed ideas so that they can transform the performance of main memory subsystems of the future

    Accelerating Time Series Analysis via Processing using Non-Volatile Memories

    Full text link
    Time Series Analysis (TSA) is a critical workload for consumer-facing devices. Accelerating TSA is vital for many domains as it enables the extraction of valuable information and predict future events. The state-of-the-art algorithm in TSA is the subsequence Dynamic Time Warping (sDTW) algorithm. However, sDTW's computation complexity increases quadratically with the time series' length, resulting in two performance implications. First, the amount of data parallelism available is significantly higher than the small number of processing units enabled by commodity systems (e.g., CPUs). Second, sDTW is bottlenecked by memory because it 1) has low arithmetic intensity and 2) incurs a large memory footprint. To tackle these two challenges, we leverage Processing-using-Memory (PuM) by performing in-situ computation where data resides, using the memory cells. PuM provides a promising solution to alleviate data movement bottlenecks and exposes immense parallelism. In this work, we present MATSA, the first MRAM-based Accelerator for Time Series Analysis. The key idea is to exploit magneto-resistive memory crossbars to enable energy-efficient and fast time series computation in memory. MATSA provides the following key benefits: 1) it leverages high levels of parallelism in the memory substrate by exploiting column-wise arithmetic operations, and 2) it significantly reduces the data movement costs performing computation using the memory cells. We evaluate three versions of MATSA to match the requirements of different environments (e.g., embedded, desktop, or HPC computing) based on MRAM technology trends. We perform a design space exploration and demonstrate that our HPC version of MATSA can improve performance by 7.35x/6.15x/6.31x and energy efficiency by 11.29x/4.21x/2.65x over server CPU, GPU and PNM architectures, respectively

    Energy challenges for ICT

    Get PDF
    The energy consumption from the expanding use of information and communications technology (ICT) is unsustainable with present drivers, and it will impact heavily on the future climate change. However, ICT devices have the potential to contribute signi - cantly to the reduction of CO2 emission and enhance resource e ciency in other sectors, e.g., transportation (through intelligent transportation and advanced driver assistance systems and self-driving vehicles), heating (through smart building control), and manu- facturing (through digital automation based on smart autonomous sensors). To address the energy sustainability of ICT and capture the full potential of ICT in resource e - ciency, a multidisciplinary ICT-energy community needs to be brought together cover- ing devices, microarchitectures, ultra large-scale integration (ULSI), high-performance computing (HPC), energy harvesting, energy storage, system design, embedded sys- tems, e cient electronics, static analysis, and computation. In this chapter, we introduce challenges and opportunities in this emerging eld and a common framework to strive towards energy-sustainable ICT

    The future of computing beyond Moore's Law.

    Get PDF
    Moore's Law is a techno-economic model that has enabled the information technology industry to double the performance and functionality of digital electronics roughly every 2 years within a fixed cost, power and area. Advances in silicon lithography have enabled this exponential miniaturization of electronics, but, as transistors reach atomic scale and fabrication costs continue to rise, the classical technological driver that has underpinned Moore's Law for 50 years is failing and is anticipated to flatten by 2025. This article provides an updated view of what a post-exascale system will look like and the challenges ahead, based on our most recent understanding of technology roadmaps. It also discusses the tapering of historical improvements, and how it affects options available to continue scaling of successors to the first exascale machine. Lastly, this article covers the many different opportunities and strategies available to continue computing performance improvements in the absence of historical technology drivers. This article is part of a discussion meeting issue 'Numerical algorithms for high-performance computational science'
    • …
    corecore