1,152 research outputs found

    Principal variable selection to explain grain yield variation in winter wheat from features extracted from UAV imagery

    Get PDF
    Background: Automated phenotyping technologies are continually advancing the breeding process. However, collecting various secondary traits throughout the growing season and processing massive amounts of data still take great efforts and time. Selecting a minimum number of secondary traits that have the maximum predictive power has the potential to reduce phenotyping efforts. The objective of this study was to select principal features extracted from UAV imagery and critical growth stages that contributed the most in explaining winter wheat grain yield. Five dates of multispectral images and seven dates of RGB images were collected by a UAV system during the spring growing season in 2018. Two classes of features (variables), totaling to 172 variables, were extracted for each plot from the vegetation index and plant height maps, including pixel statistics and dynamic growth rates. A parametric algorithm, LASSO regression (the least angle and shrinkage selection operator), and a non-parametric algorithm, random forest, were applied for variable selection. The regression coefficients estimated by LASSO and the permutation importance scores provided by random forest were used to determine the ten most important variables influencing grain yield from each algorithm. Results: Both selection algorithms assigned the highest importance score to the variables related with plant height around the grain filling stage. Some vegetation indices related variables were also selected by the algorithms mainly at earlier to mid growth stages and during the senescence. Compared with the yield prediction using all 172 variables derived from measured phenotypes, using the selected variables performed comparable or even better. We also noticed that the prediction accuracy on the adapted NE lines (r = 0.58–0.81) was higher than the other lines (r = 0.21–0.59) included in this study with different genetic backgrounds. Conclusions: With the ultra-high resolution plot imagery obtained by the UAS-based phenotyping we are now able to derive more features, such as the variation of plant height or vegetation indices within a plot other than just an averaged number, that are potentially very useful for the breeding purpose. However, too many features or variables can be derived in this way. The promising results from this study suggests that the selected set from those variables can have comparable prediction accuracies on the grain yield prediction than the full set of them but possibly resulting in a better allocation of efforts and resources on phenotypic data collection and processing

    Elucidating Sorghum Biomass, Nitrogen and Chlorophyll Contents With Spectral and Morphological Traits Derived From Unmanned Aircraft System

    Get PDF
    Unmanned aircraft systems (UAS) provide an efficient way to phenotype cropmorphology with spectral traits such as plant height, canopy cover and various vegetation indices (VIs) providing information to elucidate genotypic responses to the environment. In this study, we investigated the potential use of UAS-derived traits to elucidate biomass, nitrogen and chlorophyll content in sorghum under nitrogen stress treatments. A nitrogen stress trial located in Nebraska, USA, contained 24 different sorghum lines, 2 nitrogen treatments and 8 replications, for a total of 384 plots. Morphological and spectral traits including plant height, canopy cover and various VIs were derived from UAS flights with a true-color RGB camera and a 5-band multispectral camera at early, mid and late growth stages across the sorghum growing season in 2017. Simple and multiple regression models were investigated for sorghum biomass, nitrogen and chlorophyll content estimations using the derived morphological and spectral traits along with manual ground truthed measurements. Results showed that, the UAS-derived plant height was strongly correlated with manually measured plant height (r = 0.85); and the UAS-derived biomass using plant height, canopy cover and VIs had strong exponential correlations with the sampled biomass of fresh stalks and leaves (maximum r = 0.85) and the biomass of dry stalks and leaves (maximum r = 0.88). The UAS-derived VIs were moderately correlated with the laboratory measured leaf nitrogen content (r = 0.52) and the measured leaf chlorophyll content (r = 0.69) in each plot. The methods developed in this study will facilitate genetic improvement and agronomic studies that require assessment of stress responses in large-scale field trials

    Uumanned Aerial Vehicle Data Analysis For High-throughput Plant Phenotyping

    Get PDF
    The continuing population is placing unprecedented demands on worldwide crop yield production and quality. Improving genomic selection for breeding process is one essential aspect for solving this dilemma. Benefitted from the advances in high-throughput genotyping, researchers already gained better understanding of genetic traits. However, given the comparatively lower efficiency in current phenotyping technique, the significance of phenotypic traits has still not fully exploited in genomic selection. Therefore, improving HTPP efficiency has become an urgent task for researchers. As one of the platforms utilized for collecting HTPP data, unmanned aerial vehicle (UAV) allows high quality data to be collected within short time and by less labor. There are currently many options for customized UAV system on market; however, data analysis efficiency is still one limitation for the fully implementation of HTPP. To this end, the focus of this program was data analysis of UAV acquired data. The specific objectives were two-fold, one was to investigate statistical correlations between UAV derived phenotypic traits and manually measured sorghum biomass, nitrogen and chlorophyll content. Another was to conduct variable selection on the phenotypic parameters calculated from UAV derived vegetation index (VI) and plant height maps, aiming to find out the principal parameters that contribute most in explaining winter wheat grain yield. Corresponding, two studies were carried out. Good correlations between UAV-derived VI/plant height and sorghum biomass/nitrogen/chlorophyll in the first study suggested that UAV-based HTPP has great potential in facilitating genetic improvement. For the second study, variable selection results from the single-year data showed that plant height related parameters, especially from later season, contributed more in explaining grain yield. Advisor: Yeyin Sh

    Digital phenotyping and genotype-to-phenotype (G2P) models to predict complex traits in cereal crops

    Get PDF
    The revolution in digital phenotyping combined with the new layers of omics and envirotyping tools offers great promise to improve selection and accelerate genetic gains for crop improvement. This chapter examines the latest methods involving digital phenotyping tools to predict complex traits in cereals crops. The chapter has two parts. In the first part, entitled “Digital phenotyping as a tool to support breeding programs”, the secondary phenotypes measured by high-throughput plant phenotyping that are potentially useful for breeding are reviewed. In the second part, “Implementing complex G2P models in breeding programs”, the integration of data from digital phenotyping into genotype to phenotype (G2P) models to improve the prediction of complex traits using genomic information is discussed. The current status of statistical models to incorporate secondary traits in univariate and multivariate models, as well as how to better handle longitudinal (for example light interception, biomass accumulation, canopy height) traits, is reviewe

    Investigating the Potential of a Newly Developed UAV-Mounted VNIR/SWIR Imaging System for Monitoring Crop Traits—A Case Study for Winter Wheat

    Get PDF
    UAV-based multispectral multi-camera systems are widely used in scientific research for non-destructive crop traits estimation to optimize agricultural management decisions. These systems typically provide data from the visible and near-infrared (VNIR) domain. However, several key absorption features related to biomass and nitrogen (N) are located in the short-wave infrared (SWIR) domain. Therefore, this study investigates a novel multi-camera system prototype that addresses this spectral gap with a sensitivity from 600 to 1700 nm by implementing dedicated bandpass filter combinations to derive application-specific vegetation indices (VIs). In this study, two VIs, GnyLi and NRI, were applied using data obtained on a single observation date at a winter wheat field experiment located in Germany. Ground truth data were destructively sampled for the entire growing season. Likewise, crop heights were derived from UAV-based RGB image data using an improved approach developed within this study. Based on these variables, regression models were derived to estimate fresh and dry biomass, crop moisture, N concentration, and N uptake. The relationships between the NIR/SWIR-based VIs and the estimated crop traits were successfully evaluated (R2: 0.57 to 0.66). Both VIs were further validated against the sampled ground truth data (R2: 0.75 to 0.84). These results indicate the imaging system’s potential for monitoring crop traits in agricultural applications, but further multitemporal validations are needed

    Investigating the Potential of a Newly Developed UAV-Mounted VNIR/SWIR Imaging System for Monitoring Crop Traits-A Case Study for Winter Wheat

    Get PDF
    UAV-based multispectral multi-camera systems are widely used in scientific research for non-destructive crop traits estimation to optimize agricultural management decisions. These systems typically provide data from the visible and near-infrared (VNIR) domain. However, several key absorption features related to biomass and nitrogen (N) are located in the short-wave infrared (SWIR) domain. Therefore, this study investigates a novel multi-camera system prototype that addresses this spectral gap with a sensitivity from 600 to 1700 nm by implementing dedicated bandpass filter combinations to derive application-specific vegetation indices (VIs). In this study, two VIs, GnyLi and NRI, were applied using data obtained on a single observation date at a winter wheat field experiment located in Germany. Ground truth data were destructively sampled for the entire growing season. Likewise, crop heights were derived from UAV-based RGB image data using an improved approach developed within this study. Based on these variables, regression models were derived to estimate fresh and dry biomass, crop moisture, N concentration, and N uptake. The relationships between the NIR/SWIR-based VIs and the estimated crop traits were successfully evaluated (R-2: 0.57 to 0.66). Both VIs were further validated against the sampled ground truth data (R-2: 0.75 to 0.84). These results indicate the imaging system's potential for monitoring crop traits in agricultural applications, but further multitemporal validations are needed.Peer reviewe

    Investigating the Potential of a Newly Developed UAV-Mounted VNIR/SWIR Imaging System for Monitoring Crop Traits—A Case Study for Winter Wheat

    Get PDF
    UAV-based multispectral multi-camera systems are widely used in scientific research for non-destructive crop traits estimation to optimize agricultural management decisions. These systems typically provide data from the visible and near-infrared (VNIR) domain. However, several key absorption features related to biomass and nitrogen (N) are located in the short-wave infrared (SWIR) domain. Therefore, this study investigates a novel multi-camera system prototype that addresses this spectral gap with a sensitivity from 600 to 1700 nm by implementing dedicated bandpass filter combinations to derive application-specific vegetation indices (VIs). In this study, two VIs, GnyLi and NRI, were applied using data obtained on a single observation date at a winter wheat field experiment located in Germany. Ground truth data were destructively sampled for the entire growing season. Likewise, crop heights were derived from UAV-based RGB image data using an improved approach developed within this study. Based on these variables, regression models were derived to estimate fresh and dry biomass, crop moisture, N concentration, and N uptake. The relationships between the NIR/SWIR-based VIs and the estimated crop traits were successfully evaluated (R2: 0.57 to 0.66). Both VIs were further validated against the sampled ground truth data (R2: 0.75 to 0.84). These results indicate the imaging system’s potential for monitoring crop traits in agricultural applications, but further multitemporal validations are needed

    Terrestrial laser scanning for crop monitoring. Capturing 3D data of plant height for estimating biomass at field scale

    Get PDF
    Terrestrial laser scanning (TLS) is a young remote sensing method, but the trustworthiness of such measurements offers great potential for accurate surveying. TLS allows non-experts to rapidly acquire 3D data of high density. Generally, this acquisition of accurate geoinformation is increasingly desired in various fields, however this study focuses on the application of TLS for crop monitoring. The increasing cost and efficiency pressure on agriculture induced the emergence of site specific crop management, which requires a comprehensive knowledge about the plant development. An important parameter to evaluate this development or rather the actual plant status is the amount of plant biomass, which is however directly only determinable with destructive sampling. With the aim of avoiding destructive measurements, interest is increasingly directed towards non-contact remote sensing surveys. Nowadays, different approaches address biomass estimations based on other parameters, such as vegetation indices (VIs) from spectral data or plant height. Since the plants are not taken it is feasible to perform several measurements across a field and across the growing season. Hence, the change of spatial and temporal patterns can be monitored. This study applies TLS for objectively measuring and monitoring plant height as estimator for biomass at field scale. Overall 35 TLS campaigns were carried out at three sites over four growing seasons. In each campaign a 3D point cloud, covering the surface of the field, was obtained and interpolated to a crop surface model (CSM). A CSM represents the crop canopy in a very high spatial resolution on a specific date. By subtracting a digital terrain model (DTM) of the bare ground from each CSM, plant heights were calculated pixel-wise. Manual measurements aligned well with the TLS data and demonstrated the main benefit of CSMs: the highly detailed acquisition of the entire crop surface. The plant height data were used to estimate biomass with empirically developed biomass regression models (BRMs). Validation analyses against destructive measurements were carried out to confirm the results. The spatial and temporal transferability of crop-specific BRMs was shown. In one case study, the estimations from plant height and six VIs were compared and the benefit of fusing both parameters was investigated. The analyses were based on the TLS-derived CSMs and spectral data measured with a field spectrometer. The important role of plant height as a robust estimator was shown in contrast to a varying performance of BRMs based on the VIs. A major benefit through the fusion of both parameters in multivariate BRMs could not be concluded in this study. Nevertheless, further research should address this fusion, with regard to the capability of VIs to assess information about the vegetation cover or biochemical and biophysical parameters
    • …
    corecore