12,379 research outputs found

    Fusion of Global and Local Motion Estimation Using Foreground Objects for Distributed Video Coding

    Get PDF
    International audienceThe side information in distributed video coding is estimated using the available decoded frames, and exploited for the decoding and reconstruction of other frames. The quality of the side information has a strong impact on the performance of distributed video coding. Here we propose a new approach that combines both global and local side information to improve coding performance. Since the background pixels in a frame are assigned to global estimation and the foreground objects to local estimation, one needs to estimate foreground objects in the side information using the backward and forward foreground objects, The background pixels are directly taken from the global side information. Specifically, elastic curves and local motion compensation are used to generate the foreground objects masks in the side information. Experimental results show that, as far as the rate-distortion performance is concerned, the proposed approach can achieve a PSNR improvement of up to 1.39 dB for a GOP size of 2, and up to 4.73 dB for larger GOP sizes, with respect to the reference DISCOVER codec. Index Terms A. ABOU-ELAILAH, F. DUFAUX, M. CAGNAZZO, and B. PESQUET-POPESCU are with the Signal and Image Processin

    Vision Science and Technology at NASA: Results of a Workshop

    Get PDF
    A broad review is given of vision science and technology within NASA. The subject is defined and its applications in both NASA and the nation at large are noted. A survey of current NASA efforts is given, noting strengths and weaknesses of the NASA program

    Transform domain distributed video coding using larger transform blocks

    Get PDF
    Distributed Video Coding (DVC) displays promising performance at low spatial resolutions but begins to struggle as the resolution increases. One of the limiting aspects is its 4x4 block size of Discrete Cosine Transform (DCT) which is often impractical at higher resolutions. This paper investigates the impact of exploiting larger DCT block sizes on the performance of transform domain DVC at higher spatial resolutions. In order to utilize a larger block size in DVC, appropriate quantisers have to be selected and this has been solved by means of incorporating a content-aware quantisation mechanism to generate image specific quantisation matrix for any DCT block size. Experimental results confirm that the larger 8x8 block size consistently exhibit superior RD performance for CIF resolution sequences compared to the smaller 4x4 block sizes. Significant PSNR improvement has been observed for 16x16 block size at 4CIF resolution with up to 1.78dB average PSNR gain compared to its smaller block alternatives

    Video modeling via implicit motion representations

    Get PDF
    Video modeling refers to the development of analytical representations for explaining the intensity distribution in video signals. Based on the analytical representation, we can develop algorithms for accomplishing particular video-related tasks. Therefore video modeling provides us a foundation to bridge video data and related-tasks. Although there are many video models proposed in the past decades, the rise of new applications calls for more efficient and accurate video modeling approaches.;Most existing video modeling approaches are based on explicit motion representations, where motion information is explicitly expressed by correspondence-based representations (i.e., motion velocity or displacement). Although it is conceptually simple, the limitations of those representations and the suboptimum of motion estimation techniques can degrade such video modeling approaches, especially for handling complex motion or non-ideal observation video data. In this thesis, we propose to investigate video modeling without explicit motion representation. Motion information is implicitly embedded into the spatio-temporal dependency among pixels or patches instead of being explicitly described by motion vectors.;Firstly, we propose a parametric model based on a spatio-temporal adaptive localized learning (STALL). We formulate video modeling as a linear regression problem, in which motion information is embedded within the regression coefficients. The coefficients are adaptively learned within a local space-time window based on LMMSE criterion. Incorporating a spatio-temporal resampling and a Bayesian fusion scheme, we can enhance the modeling capability of STALL on more general videos. Under the framework of STALL, we can develop video processing algorithms for a variety of applications by adjusting model parameters (i.e., the size and topology of model support and training window). We apply STALL on three video processing problems. The simulation results show that motion information can be efficiently exploited by our implicit motion representation and the resampling and fusion do help to enhance the modeling capability of STALL.;Secondly, we propose a nonparametric video modeling approach, which is not dependent on explicit motion estimation. Assuming the video sequence is composed of many overlapping space-time patches, we propose to embed motion-related information into the relationships among video patches and develop a generic sparsity-based prior for typical video sequences. First, we extend block matching to more general kNN-based patch clustering, which provides an implicit and distributed representation for motion information. We propose to enforce the sparsity constraint on a higher-dimensional data array signal, which is generated by packing the patches in the similar patch set. Then we solve the inference problem by updating the kNN array and the wanted signal iteratively. Finally, we present a Bayesian fusion approach to fuse multiple-hypothesis inferences. Simulation results in video error concealment, denoising, and deartifacting are reported to demonstrate its modeling capability.;Finally, we summarize the proposed two video modeling approaches. We also point out the perspectives of implicit motion representations in applications ranging from low to high level problems
    • …
    corecore